SlideShare una empresa de Scribd logo
1 de 29
Descargar para leer sin conexión
Chapter 9 Parallel Manipulators




                                                                                       1


Chapter               Lecture Notes for
 Parallel
Manipulators
                 A Geometrical Introduction to
Introduction

Configuration
                  Robotics and Manipulation
Space and
Singularities

Singularity
                 Richard Murray and Zexiang Li and Shankar S. Sastry
Classification                       CRC Press



                        Zexiang Li and Yuanqing Wu

                 ECE, Hong Kong University of Science & Technology


                                   July    ,
Chapter 9 Parallel Manipulators




                                                                                       2


Chapter
 Parallel
                 Chapter 9 Parallel Manipulators
Manipulators

Introduction

Configuration
                   Introduction
Space and
Singularities

Singularity
Classification     Con guration Space and Singularities


                   Singularity Classi cation
Chapter 9 Parallel Manipulators

                 9.1 Introduction
                                                                            3
                  ◻ Samples of parallel manipulators:
                  1-DoF:
Chapter
 Parallel
Manipulators

Introduction

Configuration
Space and
Singularities     2-DoF:
Singularity
Classification




                  3-DoF:
Chapter 9 Parallel Manipulators

                 9.1 Introduction
                                                                            4
                  ◻ Samples of parallel manipulators:
                  4-DoF:
Chapter
 Parallel
Manipulators

Introduction

Configuration
Space and
Singularities     5-DoF:
Singularity
Classification




                  6-DoF:
Chapter 9 Parallel Manipulators

                 9.2 Configuration Space and Singularities
                                                                                                           5


Chapter
 Parallel        k limbs, with SE( ) as task space.
Manipulators     Limb i:
Introduction

Configuration
                 θ i = (θ i , . . . , θ ini ) ∈ Ei
Space and
Singularities    gi ∶ Ei ↦ SE( ) ∶ θ i ↦ gi (θ i )
Singularity              k
Classification    n=         ni                   ˙                ˙
                                      Vst = J (θ )θ = ⋯ = Jk (θ k )θ k
                        i=

                 Ambient Space:

                                                       E = E × ⋯ × Ek
                 Loop equations or Structure constraints:

                                                     g (θ ) = ⋯ = gk (θ k )
Chapter 9 Parallel Manipulators

                    9.2 Configuration Space and Singularities
                                                                                                 6

                    Define
Chapter
 Parallel
Manipulators                  H ∶ E ↦ SE( ) × ⋯ × SE( ) = SEk− ( )
Introduction
                                               k−
Configuration
                                               −                    −
Space and
Singularities
                                  θ ↦ (g (θ )g (θ ), . . . , g (θ )gk (θ k ))
Singularity
Classification
                    Configuration Space (CS)

                                         Q = {θ ∈ E H(θ) = I}
                    Jacobian of H at θ ∈ Q:
                               ⎡ J (θ ) −J (θ )                                 ⎤
                               ⎢                        ⋯                       ⎥
                               ⎢                −J (θ )                         ⎥
                 Dθ H ≜ J(θ) = ⎢                                                ⎥∈R
                               ⎢                                                ⎥
                                                                                         (k− )×n

                               ⎢ J (θ )                                         ⎥
                                                        ⋱
                               ⎣                   ⋯      −Jk (θ k )            ⎦
Chapter 9 Parallel Manipulators

                 9.2 Configuration Space and Singularities
                                                                                                  7
                 Property 1: If ∀θ ∈ Q, J(θ) ∈ R (k− )×n is of constant rank (k − ),
                 then Q is a differentiable manifold of dimension d = n − (k − ).
Chapter
 Parallel
Manipulators     Definition:
Introduction     If J(θ) is of full rank, constraints H are said to be linearly
Configuration    independent.
Space and
Singularities

Singularity      Gr¨bler Fromula for predicting dimension of Q:
                   u
Classification

                          n = Number of joints
                          fi = DoF of the ith joint
                          m = Number of links
                               ⎧       n                   n
                               ⎪ m − ( − fi ) = (m − n) + fi ⇒ (planar)
                               ⎪
                               ⎪
                               ⎪
                               ⎪
                               ⎪
                          d=⎨
                                      i=                  i=
                               ⎪
                               ⎪
                               ⎪ (m − n) + fi ⇒ (spatial)
                                               n
                               ⎪
                               ⎪
                               ⎪
                               ⎩              i=
Chapter 9 Parallel Manipulators

                 9.2 Configuration Space and Singularities
                                                                                        8
                  Example:        Planar mechanism & Delta manipulator

Chapter
 Parallel         a   n = , fi = , m =
                      d = ( − )+ =
Manipulators

Introduction

Configuration
Space and
Singularities

Singularity
Classification



                  b   n = , fi = , m =
                      d= ( − )+ =
Chapter 9 Parallel Manipulators

                 9.2 Configuration Space and Singularities
                                                                                       9


Chapter           c   n = , fi = , m =
                      d= ( − )+ ⋅ =
 Parallel
Manipulators

Introduction

Configuration
Space and
Singularities

Singularity
Classification    d   n= × =         , fi = , m = × + =
                      d = ×(     −    )+   = − (?)
Chapter 9 Parallel Manipulators

                 9.2 Configuration Space and Singularities
                                                                                                            10
                 Definition: CS Singularity
                 A point θ ∈ Q is a config. space singularity if Dθ H drops rank.
Chapter
 Parallel
Manipulators
                   Review: Differential forms(independent of
Introduction     coordinates)
Configuration
                                                                         n
                          θ ∶ (θ , . . . , θ n ) ∈ E, h ∶ E ↦ R, dh =
Space and                                                                     ∂h           ∗
Singularities                                                                      dθ i ∈ Tθ E
Singularity                                                              i=   ∂θ i
Classification

                                dh ∶ Tθ E ↦ R, v ↦ dh(v) =
                                                                    d
                                                                              h(θ(t))
                                                                    dt   t=
                 where θ( ) = θ, θ( ) = v
                                 ˙


                            dθ i (        ) = δ ij , dθ i ∧ dθ j = −dθ j ∧ dθ i
                                      ∂
                                     ∂θ j
                                                     dθ i ∧ dθ j ∶ Tθ E × Tθ E ↦ R
                                                     (dθ i ∧ dθ j )(v, w)
                                                  = dθ i (v)dθ j (w) − dθ i (w)dθ j (v)
Chapter 9 Parallel Manipulators

                 9.2 Configuration Space and Singularities
                                                                                               11

                 Given h , h :
Chapter                                      ∂h   ∂h
                                                       ⋯    ∂h
                                  dh =       ∂θ   ∂θ        ∂θ n
                                                       ⋯
 Parallel
Manipulators                                 ∂h   ∂h        ∂h
                                             ∂θ   ∂θ        ∂θ n

                                       × :
Introduction

Configuration    Principal minors of
Space and
Singularities

                                             (    ⋅     −     ⋅    )dθ ∧ dθ
Singularity
                                           ∂h       ∂h    ∂h ∂h
Classification                             ∂θ       ∂θ    ∂θ ∂θ
                                         (        ⋅     −     ⋅    )dθ ∧ dθ
                                           ∂h       ∂h    ∂h ∂h
                                           ∂θ       ∂θ    ∂θ ∂θ
                         us, dh ∧ dh = (          ⋅     −    ⋅     )dθ i ∧ dθ j
                                           ∂h       ∂h    ∂h ∂h
                                      i<j ∂θ i      ∂θ j ∂θ j ∂θ i
Chapter 9 Parallel Manipulators

                 9.2 Configuration Space and Singularities
                                                                                               12


Chapter          Definition:
                 h and h are said to be linearly independent if dh (θ) and
 Parallel


                 dh (θ) are linearly independent at θ ∈ E
Manipulators

Introduction

Configuration
Space and
Singularities


                 Property 3: h , h linearly independent ⇔ dh ∧ dh
Singularity
Classification                                                                 θ   ≠

                 Property 4: A set of functions hi , i = , . . . , n are linearly
                 independent iff

                                      dh ∧ dh ∧ ⋯ ∧ dhm θ ≠
Chapter 9 Parallel Manipulators

                 9.2 Configuration Space and Singularities
                                                                                          13
                   Example: 4-bar mechanism
Chapter
 Parallel
                    θ = (θ , θ , θ ) ∈ E
Manipulators

Introduction         Loop equations:
Configuration
Space and
Singularities


                 H ∶E ↦ R
Singularity
Classification



                    θ ↦ H(θ) =        l sin θ + l sin θ − l sin θ             h (θ)
                                   l cos θ + l cos θ − l cos θ − δ      ≜
                                                                              h (θ)
                 CS Singularities:
                          dh (θ) ∧ dh (θ) = l l sin(θ − θ )dθ ∧ dθ
                                           − l l sin(θ − θ )dθ ∧ dθ
                                           − l l sin(θ − θ )dθ ∧ dθ
                              dh (θ) ∧ dh = ⇔ sin(θ i − θ j ) = , i < j
Chapter 9 Parallel Manipulators

                 9.2 Configuration Space and Singularities
                                                                                                                    14
                 Assume: l − l > l , l > l
                      Singularities           Parameter Relation                Parameter Value
Chapter
                      p = ( , , π)              l +l +l ≜ δ                         δ=δ
                      p =( , , )                l +l −l ≜ δ
 Parallel
Manipulators                                                                        δ=δ
Introduction          p = ( , π, π)             l −l +l ≜ δ                         δ=δ
Configuration         p = ( , π, )              l −l −l ≜ δ                          δ=δ
Space and
Singularities                       Case 1                               Case 2
Singularity                         l1                l2    l3              l1                       l2
Classification              1                     2              3                           2
                                                                     1


                                                                                                 3
                                                                                    3
                                                                                                          l3
                                                  4

                                    Case 3                               Case 4
                                                            l2
                                             l1                                     l1
                                1
                                                                 2   1          3                              2

                                                            3
                                                                            1           l3            l2
                                         2
                                                       l3
Chapter 9 Parallel Manipulators

                 9.2 Configuration Space and Singularities
                                                                                                                                    15
                    Example: SNU manipulator
                 gi (θ i ) = eξi, θ i, ⋯eξi,                   gi ( ), i = , ,
Chapter
                                ˆ                ˆ θ i,
 Parallel

                 (gi− dgi )∧ =
Manipulators

Introduction                                  Ad      ˆ
                                                      ξ i,j θ i,j    ˆ                    ξi,j dθ i,j
                                                  e               ⋯e ξ i, θ i,   gi ( )
Configuration
                                        j=

                                    ∈ se ( ) ∶ Maurer-Cartan form
                                          ∗
Space and
Singularities

Singularity
Classification




                 V=          Ad−ξˆi,j θ i,j       ˆ
                                                                             ˙
                                                                        ξi,j θ i,j
                        j=          e         ⋯e ξ i,   θ i,
                                                               gi ( )

                    = Ji (θ i )θ i , i = , ,
                               ˙
Chapter 9 Parallel Manipulators

                 9.2 Configuration Space and Singularities
                                                                                              16


Chapter
 Parallel        Loop constraint:
Manipulators

Introduction

Configuration
Space and
                 g (θ ) = g (θ ) = g (θ )
                             ω θ,       (g − dg )∧ − (g − dg )∧           J dθ − J dθ
Singularities

                    ωθ =            ≜
                                        (g − dg )∧ − (g − dg )∧
                                                                   =      J dθ − J dθ
Singularity
Classification              ω θ,
                   ω θ, ∧ ⋯ ∧ ω θ, = , at home con g.
Chapter 9 Parallel Manipulators

                 9.2 Configuration Space and Singularities
                                                                                   17
                   ◻ Relation between Q and δ:
                 Q = h− ( ): A -dimensional torus
                 ˜
Chapter
 Parallel
                 Morse function:
                 h ∶ Q ↦ R ∶ θ ↦ h (δ)
Manipulators

Introduction
                 ˜ ˜
Configuration
Space and
                    = l c + l c − l c , Q = h− (δ)
                                            ˜
Singularities
                                    ˜
                 Definition: q ∈ Q is a critical
Singularity
Classification
                          ˜ if ∀v ∈ Tp Q, ⟨dh , v⟩ q
                 point of h              ˜    ˜
                 = . δ = h (q) is called a critical
                          ˜
                 value.

                 As Q = h− ( ), ⟨dh , v⟩ =
                    ˜

                      ⇒ dh ∧ dh    q   =
                      ⇒ q is a CS Singularity.
Chapter 9 Parallel Manipulators

                 9.2 Configuration Space and Singularities
                                                                                                  18
                  ◻ Morse Theory:
                  Let a < b and Qa = h− (−∞, a] = {q ∈ Q h (q) ≤ a} contains no
                                  ¯                        ˜ ˜
Chapter
 Parallel                            ˜           ˜                       ˜   ˜
                  critical points of h , then Qa is diffeomorphic to Qb . (Qa is a
Manipulators
                  deformation retract of Q ˜ b ) ⇒ δ should be lie in [a, b]
Introduction

Configuration      If Dq h (q) is non-degenerate, then q is an isolated critical point.
                         ˜
                   Parameterize Q by (θ , θ )
Space and
Singularities                      ˜
Singularity
Classification

                       ⇒ θ = θ (θ , θ ),
                                            ∂θ        ∂h ∂h
                                                  =−           ,i = ,
                                             ∂θ i     ∂θ i ∂θ
                                                                    ⎡ ∂h                      ⎤
                                                                    ⎢ ∂θ                      ⎥
                                                                          ˜            ˜
                                                                                     ∂ h
                  h (θ , θ ) = h (θ , θ , θ (θ , θ )) ⇒ D h = ⎢ ∂ h ⎢
                                                                                              ⎥
                                                                                              ⎥
                  ˜                                           ˜                     ∂θ ∂θ
                                                                    ⎢ ∂θ ∂θ                   ⎥
                                                                          ˜            ˜
                                                                    ⎣                         ⎦
                                                                                     ∂ h
                                                                                     ∂θ
                               ⎡                                                ⎤
                               ⎢ −l c − l s s + l c                             ⎥
                               ⎢                                                ⎥
                                                               ll cc
                             =⎢                                                 ⎥
                                           c      l c           l c
                               ⎢                                                ⎥
                               ⎢                                                ⎥
                                        ll cc                           l c
                                                        −l c − l s s + l c
                               ⎣         l c                      c             ⎦
Chapter 9 Parallel Manipulators

                 9.3 Singularity Classification
                                                                                         19


Chapter
                  ◻ Configuration space versus geometric
 Parallel        parameter δ:
Manipulators

Introduction
                     Parameter Value        Description of Q       Morse Index
Configuration
                           δ=δ               a single point          Mi =
                        δ ∈ (δ , δ )
Space and
Singularities                                  Unit circle
                           δ=δ                  Figure                  Mi =
                        δ ∈ (δ , δ )
Singularity
Classification
                                           Two separate circles
                           δ=δ                  Figure                  Mi =
                        δ ∈ (δ , δ )           Unit circle
                           δ=δ               A single point             Mi =
                    δ ∈ ( , δ ), (δ , ∞)       Empty set
Chapter 9 Parallel Manipulators

                 9.3 Singularity Classification
                                                                                               20
                   ◻ Parametrization Singularity:
                 Consider
Chapter               H ∶ R ↦ R ∶ (x , x , x ) ↦ x + x + x −
                       Q = H − ( ) ∶ unit sphere
 Parallel
Manipulators
                 Local coordinates:
                                             ψ (x)
Introduction

                         ψ∶Q↦R ∶x↦                        x
                                             ψ (x)
Configuration                                        = x
                  Tp ψ drops rank on Q ⇔ ∃v ∈ Tp Q s.t. ⟨dψ i , v⟩ =
Space and
Singularities

Singularity      However, ⟨dH, v⟩ =
                               ⇒ dψ , dψ , dH are linearly dependent.
Classification


                              ⇒ dH ∧ dψ ∧ dψ =

                                 =(                        dx ) ∧ dx ∧ dx
                                    ∂H       ∂H        ∂H
                                        dx +     dx +
                                    ∂x       ∂x        ∂x
                                   ∂H
                                 =     dx ∧ dx ∧ dx = x dx ∧ dx ∧ dx
                                   ∂x
                              ⇒ x = , Points of the equator are P-singularity.
Chapter 9 Parallel Manipulators

                 9.3 Singularity Classification
                                                                                            21
                 Alternatively, p ∈ Q is a P-singularity iff ∂xp of (∗) drops rank
                                                            ∂H


                                                              (∗)
                                     ∂H        ∂H
Chapter                                  dxa +     xp =
                                     ∂xa       ∂xp
                 where xa = (x , x ), xp = x .
 Parallel
Manipulators


                 Implicit Function Theorem ⇒ ∃ψ ∶ R ↦ R s.t. xp = ψ(xa ).
Introduction

Configuration

                 Property 5: Let ψi ∶ E ↦ R be a set of local coordinate
Space and
Singularities

Singularity      functions on Q. A point p ∈ Q is a P-singularity iff
Classification
                              dh ∧ ⋯ ∧ dhm ∧ dψ ∧ ⋯ ∧ dψn−m p =
                      Actuator Singularity:
                                      ψ ∶ (θ , . . . , θ n ) ↦ θ a
                            dh ∧ ⋯ ∧ dhm ∧ dθ a, ∧ ⋯ ∧ dθ a,n−m p =
                      End-e ector Singularity:
                                     ψ ∶ Q ↦ SE( ) ∶ θ ↦ x
                             dh ∧ ⋯ ∧ dhm ∧ dx ∧ ⋯ ∧ dxn−m p =
Chapter 9 Parallel Manipulators

                 9.3 Singularity Classification
                                                                                                 22
                  ◻ Irregular P-singularity:
                  If p ∈ Q is also a CS-singularity, then
Chapter
 Parallel
Manipulators
                     dh ∧ ⋯ ∧ dhm ∧ dψ ∧ ⋯ ∧ dψn−m p =
Introduction

Configuration
Space and
                  holds automatically. Q is not a manifold,
Singularities     gains dimension by or more, thus:
Singularity
Classification
                     Nominally actuated ⇒ under-actuated




                  ◻ Redundant actuation:
                                   S = U(x ,x ) ∪ U(x   ,x )   ∪ U(x ,x   )

                  P-Singularity: {x = } ∩ {x = } ∩ {x = } = ∅
Chapter 9 Parallel Manipulators

                 9.3 Singularity Classification
                                                                                                        23
                  ◻ Singularity classification:
                  A-singularity of redundantly actuated manipulator
Chapter

                   l redundant actuators: θ a = (θ a, , . . . , θ a,n−m+l ) ∈ Rn−m+l , l >
 Parallel
Manipulators

Introduction
                   p ∈ Q: A-singularity if
Configuration
Space and
Singularities      dh ∧⋯∧dhm ∧dθ a,i ∧⋯∧dθ a,in−m p = , ≤ i ≤ ⋯ ≤ in−m ≤ n−m+l
Singularity
Classification
                   E ect: eliminate A-singularity

                                    2   l2                        Act or
                                                                     uat s              l2
                        l1                   l3                                     2
                                                                                                   l3
                                        c
                                                                     l1
                                1                 3
                                                                                1       c           3




                   Eliminate A-singularity by     3
                                                             Eliminate A-singularity by             1
Chapter 9 Parallel Manipulators

                 9.3 Singularity Classification
                                                                                                 24
                  ◻ Stratified structure of A-singularities :
Chapter
 Parallel            Singular set Qs ⊂ Q: all A-singularities
Manipulators

Introduction
                           Qs = {p ∈ Q dh ∧ ⋯ ∧ dhm ∧ dθ a,i ∧ ⋯ ∧ dθ a,in−m         p   = ,
                             dh ∧ ⋯ ∧ dhm p ≠ , ≤ i < ⋯ < in−m ≤ n − m + }
Configuration
Space and
Singularities

Singularity
Classification
                     Annihilation space

                                   Tp V = {v ∈ Tp Q ⟨v, dθ a,j ⟩ = ⟨v, dhi ⟩ = ,
                                   , i = , ⋯, m, j = , ⋯, n − m + l}

                     Degree of de ciency: d = dim(Tp V)
                                             d ≤ d = min(n − m, m − l)
Chapter 9 Parallel Manipulators

                 9.3 Singularity Classification
                                                                                                       25
                     Strati ed structure
Chapter
                              Qsk = {p ∈ Qs dim(Tp V) = k}, k = , ⋯, kmax
 Parallel
Manipulators                                                kmax                kmax
Introduction                   ∆sk =           Tp V, Qs =          Qsk , ∆s =          ∆sk
                                       p∈Qsk                k=                  k=
Configuration
Space and
Singularities
                 Definition:
Singularity
                 p ∈ Qsk is a first-order singularity iff there does not exist v ∈ ∆sk
Classification   that is also tangent to Qsk .Otherwise, p is a second-order
                 singularity.

                 Definition:
                 A second-order singularity p ∈ Qsk is degenerate iff ∃ constant
                 rank k (k < k) sub-distribution ∆sk ⊂ ∆sk s.t.
                                                  ¯
                     ∆sk (p) ⊂ Tp Qsk ,
                     ¯
                     ∆sk (p) is involutive.
                     ¯
Chapter 9 Parallel Manipulators

                 9.3 Singularity Classification
                                                                             26


Chapter
 Parallel
Manipulators

Introduction

Configuration
Space and
Singularities

Singularity
Classification
Chapter 9 Parallel Manipulators

                 9.3 Singularity Classification
                                                                                                              27
                   ◻ Degeneracy of P-singularity:
Chapter
 Parallel
                             Degenerate: allow continuous motion with xed parameters
Manipulators
                             Non-degenerate: allow instantaneous motion with xed
Introduction
                             parameters
Configuration
Space and
Singularities

Singularity
Classification




                  Fig. 19.   Nondegenerate P-singularity.   Fig. 20.   Degenerate P-singularity.
Chapter 9 Parallel Manipulators

                 9.3 Singularity Classification
                                                                                                 28
                  ◻ Conditions for degenerate A-singularity:
Chapter              Basis of ∆sk :
 Parallel

                                        ∆sk = span{Y}, Y = {Y , ⋯, Yk }
Manipulators

Introduction

Configuration
Space and            Annihilation vector:
Singularities

Singularity                               ˙
                                          θa
Classification
                                 vs =     ˙     =    ˙
                                                     θp    = Y α ∈ ∆sk , α ∈ Rk
                                          θp

                     θ s ∈ Qsk : degenerate A-singularity i
                                  hi (θ s + εvs ) − hi (θ s ) = , i = , ⋯, m
                     Conditions on coe cients of Taylor series
                             (Y α, Y α) = α T Y T
                      ∂ hi                        ∂ hi
                                                         Y α = , ⋯, i = , ⋯, m
                      ∂θ θ s                      ∂θ θ s
Chapter 9 Parallel Manipulators

                 9.3 Singularity Classification
                                                                                                   29
                  ◻ Classification diagram:
Chapter
 Parallel
Manipulators

Introduction

Configuration
Space and
Singularities

Singularity
Classification




                  Fig. 15. A hierarchic diagram of singularities, A-sing.: actuator singularity.
                  E-sing.: end-effector singularity. P-sing.: parametrization singularity. N.
                  Degenerate: Nondegenerate.

Más contenido relacionado

La actualidad más candente

Lecture 02 internet video search
Lecture 02 internet video searchLecture 02 internet video search
Lecture 02 internet video searchzukun
 
Second Order Perturbations During Inflation Beyond Slow-roll
Second Order Perturbations During Inflation Beyond Slow-rollSecond Order Perturbations During Inflation Beyond Slow-roll
Second Order Perturbations During Inflation Beyond Slow-rollIan Huston
 
Polynomial Kernel for Interval Vertex Deletion
Polynomial Kernel for Interval Vertex DeletionPolynomial Kernel for Interval Vertex Deletion
Polynomial Kernel for Interval Vertex DeletionAkankshaAgrawal55
 
Ultrasound Modular Architecture
Ultrasound Modular ArchitectureUltrasound Modular Architecture
Ultrasound Modular ArchitectureJose Miguel Moreno
 
Parallel communicating flip pushdown automata systems communicating by stacks
Parallel communicating flip pushdown automata systems communicating by stacksParallel communicating flip pushdown automata systems communicating by stacks
Parallel communicating flip pushdown automata systems communicating by stacksIAEME Publication
 
Parallel communicating flip pushdown automata systems
Parallel communicating flip pushdown automata systemsParallel communicating flip pushdown automata systems
Parallel communicating flip pushdown automata systemsiaemedu
 
Nondeterministic testing of Sequential Quantum Logic Propositions on a Quant...
Nondeterministic testing of Sequential Quantum Logic  Propositions on a Quant...Nondeterministic testing of Sequential Quantum Logic  Propositions on a Quant...
Nondeterministic testing of Sequential Quantum Logic Propositions on a Quant...Matthew Leifer
 
12 x1 t04 06 integrating functions of time (2013)
12 x1 t04 06 integrating functions of time (2013)12 x1 t04 06 integrating functions of time (2013)
12 x1 t04 06 integrating functions of time (2013)Nigel Simmons
 
12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)Nigel Simmons
 
Camera calibration
Camera calibrationCamera calibration
Camera calibrationYuji Oyamada
 
Bouguet's MatLab Camera Calibration Toolbox
Bouguet's MatLab Camera Calibration ToolboxBouguet's MatLab Camera Calibration Toolbox
Bouguet's MatLab Camera Calibration ToolboxYuji Oyamada
 
Kernel for Chordal Vertex Deletion
Kernel for Chordal Vertex DeletionKernel for Chordal Vertex Deletion
Kernel for Chordal Vertex DeletionAkankshaAgrawal55
 
DESIGN PERFORMANCE INVESTIGATION OF MODIFIED PARSEC AIRFOIL REPRESENTATION US...
DESIGN PERFORMANCE INVESTIGATION OF MODIFIED PARSEC AIRFOIL REPRESENTATION US...DESIGN PERFORMANCE INVESTIGATION OF MODIFIED PARSEC AIRFOIL REPRESENTATION US...
DESIGN PERFORMANCE INVESTIGATION OF MODIFIED PARSEC AIRFOIL REPRESENTATION US...Masahiro Kanazaki
 
Ds31568573
Ds31568573Ds31568573
Ds31568573IJMER
 

La actualidad más candente (20)

Lecture 02 internet video search
Lecture 02 internet video searchLecture 02 internet video search
Lecture 02 internet video search
 
Guarding Polygons via CSP
Guarding Polygons via CSPGuarding Polygons via CSP
Guarding Polygons via CSP
 
PMF BPMF and BPTF
PMF BPMF and BPTFPMF BPMF and BPTF
PMF BPMF and BPTF
 
Second Order Perturbations During Inflation Beyond Slow-roll
Second Order Perturbations During Inflation Beyond Slow-rollSecond Order Perturbations During Inflation Beyond Slow-roll
Second Order Perturbations During Inflation Beyond Slow-roll
 
Polynomial Kernel for Interval Vertex Deletion
Polynomial Kernel for Interval Vertex DeletionPolynomial Kernel for Interval Vertex Deletion
Polynomial Kernel for Interval Vertex Deletion
 
Ultrasound Modular Architecture
Ultrasound Modular ArchitectureUltrasound Modular Architecture
Ultrasound Modular Architecture
 
FDTD Presentation
FDTD PresentationFDTD Presentation
FDTD Presentation
 
Parallel communicating flip pushdown automata systems communicating by stacks
Parallel communicating flip pushdown automata systems communicating by stacksParallel communicating flip pushdown automata systems communicating by stacks
Parallel communicating flip pushdown automata systems communicating by stacks
 
Parallel communicating flip pushdown automata systems
Parallel communicating flip pushdown automata systemsParallel communicating flip pushdown automata systems
Parallel communicating flip pushdown automata systems
 
Nondeterministic testing of Sequential Quantum Logic Propositions on a Quant...
Nondeterministic testing of Sequential Quantum Logic  Propositions on a Quant...Nondeterministic testing of Sequential Quantum Logic  Propositions on a Quant...
Nondeterministic testing of Sequential Quantum Logic Propositions on a Quant...
 
12 x1 t04 06 integrating functions of time (2013)
12 x1 t04 06 integrating functions of time (2013)12 x1 t04 06 integrating functions of time (2013)
12 x1 t04 06 integrating functions of time (2013)
 
12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)
 
Shuronr
ShuronrShuronr
Shuronr
 
Camera calibration
Camera calibrationCamera calibration
Camera calibration
 
Sdof
SdofSdof
Sdof
 
NC time seminar
NC time seminarNC time seminar
NC time seminar
 
Bouguet's MatLab Camera Calibration Toolbox
Bouguet's MatLab Camera Calibration ToolboxBouguet's MatLab Camera Calibration Toolbox
Bouguet's MatLab Camera Calibration Toolbox
 
Kernel for Chordal Vertex Deletion
Kernel for Chordal Vertex DeletionKernel for Chordal Vertex Deletion
Kernel for Chordal Vertex Deletion
 
DESIGN PERFORMANCE INVESTIGATION OF MODIFIED PARSEC AIRFOIL REPRESENTATION US...
DESIGN PERFORMANCE INVESTIGATION OF MODIFIED PARSEC AIRFOIL REPRESENTATION US...DESIGN PERFORMANCE INVESTIGATION OF MODIFIED PARSEC AIRFOIL REPRESENTATION US...
DESIGN PERFORMANCE INVESTIGATION OF MODIFIED PARSEC AIRFOIL REPRESENTATION US...
 
Ds31568573
Ds31568573Ds31568573
Ds31568573
 

Similar a [Download] rev chapter-9-june26th

Kinematic modelofrobotmanipulators (1)
Kinematic modelofrobotmanipulators (1)Kinematic modelofrobotmanipulators (1)
Kinematic modelofrobotmanipulators (1)Amarildo Pasha
 
Notes on Intersection theory
Notes on Intersection theoryNotes on Intersection theory
Notes on Intersection theoryHeinrich Hartmann
 
UMAP - Mathematics and implementational details
UMAP - Mathematics and implementational detailsUMAP - Mathematics and implementational details
UMAP - Mathematics and implementational detailsUmberto Lupo
 
Maximizing Submodular Function over the Integer Lattice
Maximizing Submodular Function over the Integer LatticeMaximizing Submodular Function over the Integer Lattice
Maximizing Submodular Function over the Integer LatticeTasuku Soma
 
Elementary Landscape Decomposition of the Hamiltonian Path Optimization Problem
Elementary Landscape Decomposition of the Hamiltonian Path Optimization ProblemElementary Landscape Decomposition of the Hamiltonian Path Optimization Problem
Elementary Landscape Decomposition of the Hamiltonian Path Optimization Problemjfrchicanog
 
Mesh Processing Course : Mesh Parameterization
Mesh Processing Course : Mesh ParameterizationMesh Processing Course : Mesh Parameterization
Mesh Processing Course : Mesh ParameterizationGabriel Peyré
 
lecture01_lecture01_lecture0001_ceva.pdf
lecture01_lecture01_lecture0001_ceva.pdflecture01_lecture01_lecture0001_ceva.pdf
lecture01_lecture01_lecture0001_ceva.pdfAnaNeacsu5
 
Optimization introduction
Optimization introductionOptimization introduction
Optimization introductionhelalmohammad2
 
Collision Detection In 3D Environments
Collision Detection In 3D EnvironmentsCollision Detection In 3D Environments
Collision Detection In 3D EnvironmentsUng-Su Lee
 
Aerospace Engineering Seminar Series
Aerospace Engineering Seminar SeriesAerospace Engineering Seminar Series
Aerospace Engineering Seminar Seriestrumanellis
 
Kernels and Support Vector Machines
Kernels and Support Vector  MachinesKernels and Support Vector  Machines
Kernels and Support Vector MachinesEdgar Marca
 
Применение машинного обучения для навигации и управления роботами
Применение машинного обучения для навигации и управления роботамиПрименение машинного обучения для навигации и управления роботами
Применение машинного обучения для навигации и управления роботамиSkolkovo Robotics Center
 
Redundancy in robot manipulators and multi robot systems
Redundancy in robot manipulators and multi robot systemsRedundancy in robot manipulators and multi robot systems
Redundancy in robot manipulators and multi robot systemsSpringer
 
11.final paper -0047www.iiste.org call-for_paper-58
11.final paper -0047www.iiste.org call-for_paper-5811.final paper -0047www.iiste.org call-for_paper-58
11.final paper -0047www.iiste.org call-for_paper-58Alexander Decker
 
Algebras for programming languages
Algebras for programming languagesAlgebras for programming languages
Algebras for programming languagesYoshihiro Mizoguchi
 
Differential kinematics robotic
Differential kinematics  roboticDifferential kinematics  robotic
Differential kinematics roboticdahmane sid ahmed
 

Similar a [Download] rev chapter-9-june26th (20)

Kinematic modelofrobotmanipulators (1)
Kinematic modelofrobotmanipulators (1)Kinematic modelofrobotmanipulators (1)
Kinematic modelofrobotmanipulators (1)
 
Fir 04 kinem
Fir 04 kinemFir 04 kinem
Fir 04 kinem
 
Notes on Intersection theory
Notes on Intersection theoryNotes on Intersection theory
Notes on Intersection theory
 
UMAP - Mathematics and implementational details
UMAP - Mathematics and implementational detailsUMAP - Mathematics and implementational details
UMAP - Mathematics and implementational details
 
Maximizing Submodular Function over the Integer Lattice
Maximizing Submodular Function over the Integer LatticeMaximizing Submodular Function over the Integer Lattice
Maximizing Submodular Function over the Integer Lattice
 
Elementary Landscape Decomposition of the Hamiltonian Path Optimization Problem
Elementary Landscape Decomposition of the Hamiltonian Path Optimization ProblemElementary Landscape Decomposition of the Hamiltonian Path Optimization Problem
Elementary Landscape Decomposition of the Hamiltonian Path Optimization Problem
 
Mesh Processing Course : Mesh Parameterization
Mesh Processing Course : Mesh ParameterizationMesh Processing Course : Mesh Parameterization
Mesh Processing Course : Mesh Parameterization
 
lecture01_lecture01_lecture0001_ceva.pdf
lecture01_lecture01_lecture0001_ceva.pdflecture01_lecture01_lecture0001_ceva.pdf
lecture01_lecture01_lecture0001_ceva.pdf
 
Delta Like Robot
Delta Like RobotDelta Like Robot
Delta Like Robot
 
Optimization introduction
Optimization introductionOptimization introduction
Optimization introduction
 
Collision Detection In 3D Environments
Collision Detection In 3D EnvironmentsCollision Detection In 3D Environments
Collision Detection In 3D Environments
 
Aerospace Engineering Seminar Series
Aerospace Engineering Seminar SeriesAerospace Engineering Seminar Series
Aerospace Engineering Seminar Series
 
Kernels and Support Vector Machines
Kernels and Support Vector  MachinesKernels and Support Vector  Machines
Kernels and Support Vector Machines
 
Применение машинного обучения для навигации и управления роботами
Применение машинного обучения для навигации и управления роботамиПрименение машинного обучения для навигации и управления роботами
Применение машинного обучения для навигации и управления роботами
 
Redundancy in robot manipulators and multi robot systems
Redundancy in robot manipulators and multi robot systemsRedundancy in robot manipulators and multi robot systems
Redundancy in robot manipulators and multi robot systems
 
11.final paper -0047www.iiste.org call-for_paper-58
11.final paper -0047www.iiste.org call-for_paper-5811.final paper -0047www.iiste.org call-for_paper-58
11.final paper -0047www.iiste.org call-for_paper-58
 
Algebras for programming languages
Algebras for programming languagesAlgebras for programming languages
Algebras for programming languages
 
Rdnd2008
Rdnd2008Rdnd2008
Rdnd2008
 
Adc
AdcAdc
Adc
 
Differential kinematics robotic
Differential kinematics  roboticDifferential kinematics  robotic
Differential kinematics robotic
 

Más de ATC, ECE, Hong Kong University of Science and Technology (6)

[Download] rev chapter-7-june26th
[Download] rev chapter-7-june26th[Download] rev chapter-7-june26th
[Download] rev chapter-7-june26th
 
[Download] rev chapter-8-june26th
[Download] rev chapter-8-june26th[Download] rev chapter-8-june26th
[Download] rev chapter-8-june26th
 
[Download] rev chapter-6-june26th
[Download] rev chapter-6-june26th[Download] rev chapter-6-june26th
[Download] rev chapter-6-june26th
 
[Download] rev chapter-1-july3rd
[Download] rev chapter-1-july3rd[Download] rev chapter-1-july3rd
[Download] rev chapter-1-july3rd
 
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
 
[Download] Rev-Chapter-2
[Download] Rev-Chapter-2[Download] Rev-Chapter-2
[Download] Rev-Chapter-2
 

Último

Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 

Último (20)

Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 

[Download] rev chapter-9-june26th

  • 1. Chapter 9 Parallel Manipulators 1 Chapter Lecture Notes for Parallel Manipulators A Geometrical Introduction to Introduction Configuration Robotics and Manipulation Space and Singularities Singularity Richard Murray and Zexiang Li and Shankar S. Sastry Classification CRC Press Zexiang Li and Yuanqing Wu ECE, Hong Kong University of Science & Technology July ,
  • 2. Chapter 9 Parallel Manipulators 2 Chapter Parallel Chapter 9 Parallel Manipulators Manipulators Introduction Configuration Introduction Space and Singularities Singularity Classification Con guration Space and Singularities Singularity Classi cation
  • 3. Chapter 9 Parallel Manipulators 9.1 Introduction 3 ◻ Samples of parallel manipulators: 1-DoF: Chapter Parallel Manipulators Introduction Configuration Space and Singularities 2-DoF: Singularity Classification 3-DoF:
  • 4. Chapter 9 Parallel Manipulators 9.1 Introduction 4 ◻ Samples of parallel manipulators: 4-DoF: Chapter Parallel Manipulators Introduction Configuration Space and Singularities 5-DoF: Singularity Classification 6-DoF:
  • 5. Chapter 9 Parallel Manipulators 9.2 Configuration Space and Singularities 5 Chapter Parallel k limbs, with SE( ) as task space. Manipulators Limb i: Introduction Configuration θ i = (θ i , . . . , θ ini ) ∈ Ei Space and Singularities gi ∶ Ei ↦ SE( ) ∶ θ i ↦ gi (θ i ) Singularity k Classification n= ni ˙ ˙ Vst = J (θ )θ = ⋯ = Jk (θ k )θ k i= Ambient Space: E = E × ⋯ × Ek Loop equations or Structure constraints: g (θ ) = ⋯ = gk (θ k )
  • 6. Chapter 9 Parallel Manipulators 9.2 Configuration Space and Singularities 6 Define Chapter Parallel Manipulators H ∶ E ↦ SE( ) × ⋯ × SE( ) = SEk− ( ) Introduction k− Configuration − − Space and Singularities θ ↦ (g (θ )g (θ ), . . . , g (θ )gk (θ k )) Singularity Classification Configuration Space (CS) Q = {θ ∈ E H(θ) = I} Jacobian of H at θ ∈ Q: ⎡ J (θ ) −J (θ ) ⎤ ⎢ ⋯ ⎥ ⎢ −J (θ ) ⎥ Dθ H ≜ J(θ) = ⎢ ⎥∈R ⎢ ⎥ (k− )×n ⎢ J (θ ) ⎥ ⋱ ⎣ ⋯ −Jk (θ k ) ⎦
  • 7. Chapter 9 Parallel Manipulators 9.2 Configuration Space and Singularities 7 Property 1: If ∀θ ∈ Q, J(θ) ∈ R (k− )×n is of constant rank (k − ), then Q is a differentiable manifold of dimension d = n − (k − ). Chapter Parallel Manipulators Definition: Introduction If J(θ) is of full rank, constraints H are said to be linearly Configuration independent. Space and Singularities Singularity Gr¨bler Fromula for predicting dimension of Q: u Classification n = Number of joints fi = DoF of the ith joint m = Number of links ⎧ n n ⎪ m − ( − fi ) = (m − n) + fi ⇒ (planar) ⎪ ⎪ ⎪ ⎪ ⎪ d=⎨ i= i= ⎪ ⎪ ⎪ (m − n) + fi ⇒ (spatial) n ⎪ ⎪ ⎪ ⎩ i=
  • 8. Chapter 9 Parallel Manipulators 9.2 Configuration Space and Singularities 8 Example: Planar mechanism & Delta manipulator Chapter Parallel a n = , fi = , m = d = ( − )+ = Manipulators Introduction Configuration Space and Singularities Singularity Classification b n = , fi = , m = d= ( − )+ =
  • 9. Chapter 9 Parallel Manipulators 9.2 Configuration Space and Singularities 9 Chapter c n = , fi = , m = d= ( − )+ ⋅ = Parallel Manipulators Introduction Configuration Space and Singularities Singularity Classification d n= × = , fi = , m = × + = d = ×( − )+ = − (?)
  • 10. Chapter 9 Parallel Manipulators 9.2 Configuration Space and Singularities 10 Definition: CS Singularity A point θ ∈ Q is a config. space singularity if Dθ H drops rank. Chapter Parallel Manipulators Review: Differential forms(independent of Introduction coordinates) Configuration n θ ∶ (θ , . . . , θ n ) ∈ E, h ∶ E ↦ R, dh = Space and ∂h ∗ Singularities dθ i ∈ Tθ E Singularity i= ∂θ i Classification dh ∶ Tθ E ↦ R, v ↦ dh(v) = d h(θ(t)) dt t= where θ( ) = θ, θ( ) = v ˙ dθ i ( ) = δ ij , dθ i ∧ dθ j = −dθ j ∧ dθ i ∂ ∂θ j dθ i ∧ dθ j ∶ Tθ E × Tθ E ↦ R (dθ i ∧ dθ j )(v, w) = dθ i (v)dθ j (w) − dθ i (w)dθ j (v)
  • 11. Chapter 9 Parallel Manipulators 9.2 Configuration Space and Singularities 11 Given h , h : Chapter ∂h ∂h ⋯ ∂h dh = ∂θ ∂θ ∂θ n ⋯ Parallel Manipulators ∂h ∂h ∂h ∂θ ∂θ ∂θ n × : Introduction Configuration Principal minors of Space and Singularities ( ⋅ − ⋅ )dθ ∧ dθ Singularity ∂h ∂h ∂h ∂h Classification ∂θ ∂θ ∂θ ∂θ ( ⋅ − ⋅ )dθ ∧ dθ ∂h ∂h ∂h ∂h ∂θ ∂θ ∂θ ∂θ us, dh ∧ dh = ( ⋅ − ⋅ )dθ i ∧ dθ j ∂h ∂h ∂h ∂h i<j ∂θ i ∂θ j ∂θ j ∂θ i
  • 12. Chapter 9 Parallel Manipulators 9.2 Configuration Space and Singularities 12 Chapter Definition: h and h are said to be linearly independent if dh (θ) and Parallel dh (θ) are linearly independent at θ ∈ E Manipulators Introduction Configuration Space and Singularities Property 3: h , h linearly independent ⇔ dh ∧ dh Singularity Classification θ ≠ Property 4: A set of functions hi , i = , . . . , n are linearly independent iff dh ∧ dh ∧ ⋯ ∧ dhm θ ≠
  • 13. Chapter 9 Parallel Manipulators 9.2 Configuration Space and Singularities 13 Example: 4-bar mechanism Chapter Parallel θ = (θ , θ , θ ) ∈ E Manipulators Introduction Loop equations: Configuration Space and Singularities H ∶E ↦ R Singularity Classification θ ↦ H(θ) = l sin θ + l sin θ − l sin θ h (θ) l cos θ + l cos θ − l cos θ − δ ≜ h (θ) CS Singularities: dh (θ) ∧ dh (θ) = l l sin(θ − θ )dθ ∧ dθ − l l sin(θ − θ )dθ ∧ dθ − l l sin(θ − θ )dθ ∧ dθ dh (θ) ∧ dh = ⇔ sin(θ i − θ j ) = , i < j
  • 14. Chapter 9 Parallel Manipulators 9.2 Configuration Space and Singularities 14 Assume: l − l > l , l > l Singularities Parameter Relation Parameter Value Chapter p = ( , , π) l +l +l ≜ δ δ=δ p =( , , ) l +l −l ≜ δ Parallel Manipulators δ=δ Introduction p = ( , π, π) l −l +l ≜ δ δ=δ Configuration p = ( , π, ) l −l −l ≜ δ δ=δ Space and Singularities Case 1 Case 2 Singularity l1 l2 l3 l1 l2 Classification 1 2 3 2 1 3 3 l3 4 Case 3 Case 4 l2 l1 l1 1 2 1 3 2 3 1 l3 l2 2 l3
  • 15. Chapter 9 Parallel Manipulators 9.2 Configuration Space and Singularities 15 Example: SNU manipulator gi (θ i ) = eξi, θ i, ⋯eξi, gi ( ), i = , , Chapter ˆ ˆ θ i, Parallel (gi− dgi )∧ = Manipulators Introduction Ad ˆ ξ i,j θ i,j ˆ ξi,j dθ i,j e ⋯e ξ i, θ i, gi ( ) Configuration j= ∈ se ( ) ∶ Maurer-Cartan form ∗ Space and Singularities Singularity Classification V= Ad−ξˆi,j θ i,j ˆ ˙ ξi,j θ i,j j= e ⋯e ξ i, θ i, gi ( ) = Ji (θ i )θ i , i = , , ˙
  • 16. Chapter 9 Parallel Manipulators 9.2 Configuration Space and Singularities 16 Chapter Parallel Loop constraint: Manipulators Introduction Configuration Space and g (θ ) = g (θ ) = g (θ ) ω θ, (g − dg )∧ − (g − dg )∧ J dθ − J dθ Singularities ωθ = ≜ (g − dg )∧ − (g − dg )∧ = J dθ − J dθ Singularity Classification ω θ, ω θ, ∧ ⋯ ∧ ω θ, = , at home con g.
  • 17. Chapter 9 Parallel Manipulators 9.2 Configuration Space and Singularities 17 ◻ Relation between Q and δ: Q = h− ( ): A -dimensional torus ˜ Chapter Parallel Morse function: h ∶ Q ↦ R ∶ θ ↦ h (δ) Manipulators Introduction ˜ ˜ Configuration Space and = l c + l c − l c , Q = h− (δ) ˜ Singularities ˜ Definition: q ∈ Q is a critical Singularity Classification ˜ if ∀v ∈ Tp Q, ⟨dh , v⟩ q point of h ˜ ˜ = . δ = h (q) is called a critical ˜ value. As Q = h− ( ), ⟨dh , v⟩ = ˜ ⇒ dh ∧ dh q = ⇒ q is a CS Singularity.
  • 18. Chapter 9 Parallel Manipulators 9.2 Configuration Space and Singularities 18 ◻ Morse Theory: Let a < b and Qa = h− (−∞, a] = {q ∈ Q h (q) ≤ a} contains no ¯ ˜ ˜ Chapter Parallel ˜ ˜ ˜ ˜ critical points of h , then Qa is diffeomorphic to Qb . (Qa is a Manipulators deformation retract of Q ˜ b ) ⇒ δ should be lie in [a, b] Introduction Configuration If Dq h (q) is non-degenerate, then q is an isolated critical point. ˜ Parameterize Q by (θ , θ ) Space and Singularities ˜ Singularity Classification ⇒ θ = θ (θ , θ ), ∂θ ∂h ∂h =− ,i = , ∂θ i ∂θ i ∂θ ⎡ ∂h ⎤ ⎢ ∂θ ⎥ ˜ ˜ ∂ h h (θ , θ ) = h (θ , θ , θ (θ , θ )) ⇒ D h = ⎢ ∂ h ⎢ ⎥ ⎥ ˜ ˜ ∂θ ∂θ ⎢ ∂θ ∂θ ⎥ ˜ ˜ ⎣ ⎦ ∂ h ∂θ ⎡ ⎤ ⎢ −l c − l s s + l c ⎥ ⎢ ⎥ ll cc =⎢ ⎥ c l c l c ⎢ ⎥ ⎢ ⎥ ll cc l c −l c − l s s + l c ⎣ l c c ⎦
  • 19. Chapter 9 Parallel Manipulators 9.3 Singularity Classification 19 Chapter ◻ Configuration space versus geometric Parallel parameter δ: Manipulators Introduction Parameter Value Description of Q Morse Index Configuration δ=δ a single point Mi = δ ∈ (δ , δ ) Space and Singularities Unit circle δ=δ Figure Mi = δ ∈ (δ , δ ) Singularity Classification Two separate circles δ=δ Figure Mi = δ ∈ (δ , δ ) Unit circle δ=δ A single point Mi = δ ∈ ( , δ ), (δ , ∞) Empty set
  • 20. Chapter 9 Parallel Manipulators 9.3 Singularity Classification 20 ◻ Parametrization Singularity: Consider Chapter H ∶ R ↦ R ∶ (x , x , x ) ↦ x + x + x − Q = H − ( ) ∶ unit sphere Parallel Manipulators Local coordinates: ψ (x) Introduction ψ∶Q↦R ∶x↦ x ψ (x) Configuration = x Tp ψ drops rank on Q ⇔ ∃v ∈ Tp Q s.t. ⟨dψ i , v⟩ = Space and Singularities Singularity However, ⟨dH, v⟩ = ⇒ dψ , dψ , dH are linearly dependent. Classification ⇒ dH ∧ dψ ∧ dψ = =( dx ) ∧ dx ∧ dx ∂H ∂H ∂H dx + dx + ∂x ∂x ∂x ∂H = dx ∧ dx ∧ dx = x dx ∧ dx ∧ dx ∂x ⇒ x = , Points of the equator are P-singularity.
  • 21. Chapter 9 Parallel Manipulators 9.3 Singularity Classification 21 Alternatively, p ∈ Q is a P-singularity iff ∂xp of (∗) drops rank ∂H (∗) ∂H ∂H Chapter dxa + xp = ∂xa ∂xp where xa = (x , x ), xp = x . Parallel Manipulators Implicit Function Theorem ⇒ ∃ψ ∶ R ↦ R s.t. xp = ψ(xa ). Introduction Configuration Property 5: Let ψi ∶ E ↦ R be a set of local coordinate Space and Singularities Singularity functions on Q. A point p ∈ Q is a P-singularity iff Classification dh ∧ ⋯ ∧ dhm ∧ dψ ∧ ⋯ ∧ dψn−m p = Actuator Singularity: ψ ∶ (θ , . . . , θ n ) ↦ θ a dh ∧ ⋯ ∧ dhm ∧ dθ a, ∧ ⋯ ∧ dθ a,n−m p = End-e ector Singularity: ψ ∶ Q ↦ SE( ) ∶ θ ↦ x dh ∧ ⋯ ∧ dhm ∧ dx ∧ ⋯ ∧ dxn−m p =
  • 22. Chapter 9 Parallel Manipulators 9.3 Singularity Classification 22 ◻ Irregular P-singularity: If p ∈ Q is also a CS-singularity, then Chapter Parallel Manipulators dh ∧ ⋯ ∧ dhm ∧ dψ ∧ ⋯ ∧ dψn−m p = Introduction Configuration Space and holds automatically. Q is not a manifold, Singularities gains dimension by or more, thus: Singularity Classification Nominally actuated ⇒ under-actuated ◻ Redundant actuation: S = U(x ,x ) ∪ U(x ,x ) ∪ U(x ,x ) P-Singularity: {x = } ∩ {x = } ∩ {x = } = ∅
  • 23. Chapter 9 Parallel Manipulators 9.3 Singularity Classification 23 ◻ Singularity classification: A-singularity of redundantly actuated manipulator Chapter l redundant actuators: θ a = (θ a, , . . . , θ a,n−m+l ) ∈ Rn−m+l , l > Parallel Manipulators Introduction p ∈ Q: A-singularity if Configuration Space and Singularities dh ∧⋯∧dhm ∧dθ a,i ∧⋯∧dθ a,in−m p = , ≤ i ≤ ⋯ ≤ in−m ≤ n−m+l Singularity Classification E ect: eliminate A-singularity 2 l2 Act or uat s l2 l1 l3 2 l3 c l1 1 3 1 c 3 Eliminate A-singularity by 3 Eliminate A-singularity by 1
  • 24. Chapter 9 Parallel Manipulators 9.3 Singularity Classification 24 ◻ Stratified structure of A-singularities : Chapter Parallel Singular set Qs ⊂ Q: all A-singularities Manipulators Introduction Qs = {p ∈ Q dh ∧ ⋯ ∧ dhm ∧ dθ a,i ∧ ⋯ ∧ dθ a,in−m p = , dh ∧ ⋯ ∧ dhm p ≠ , ≤ i < ⋯ < in−m ≤ n − m + } Configuration Space and Singularities Singularity Classification Annihilation space Tp V = {v ∈ Tp Q ⟨v, dθ a,j ⟩ = ⟨v, dhi ⟩ = , , i = , ⋯, m, j = , ⋯, n − m + l} Degree of de ciency: d = dim(Tp V) d ≤ d = min(n − m, m − l)
  • 25. Chapter 9 Parallel Manipulators 9.3 Singularity Classification 25 Strati ed structure Chapter Qsk = {p ∈ Qs dim(Tp V) = k}, k = , ⋯, kmax Parallel Manipulators kmax kmax Introduction ∆sk = Tp V, Qs = Qsk , ∆s = ∆sk p∈Qsk k= k= Configuration Space and Singularities Definition: Singularity p ∈ Qsk is a first-order singularity iff there does not exist v ∈ ∆sk Classification that is also tangent to Qsk .Otherwise, p is a second-order singularity. Definition: A second-order singularity p ∈ Qsk is degenerate iff ∃ constant rank k (k < k) sub-distribution ∆sk ⊂ ∆sk s.t. ¯ ∆sk (p) ⊂ Tp Qsk , ¯ ∆sk (p) is involutive. ¯
  • 26. Chapter 9 Parallel Manipulators 9.3 Singularity Classification 26 Chapter Parallel Manipulators Introduction Configuration Space and Singularities Singularity Classification
  • 27. Chapter 9 Parallel Manipulators 9.3 Singularity Classification 27 ◻ Degeneracy of P-singularity: Chapter Parallel Degenerate: allow continuous motion with xed parameters Manipulators Non-degenerate: allow instantaneous motion with xed Introduction parameters Configuration Space and Singularities Singularity Classification Fig. 19. Nondegenerate P-singularity. Fig. 20. Degenerate P-singularity.
  • 28. Chapter 9 Parallel Manipulators 9.3 Singularity Classification 28 ◻ Conditions for degenerate A-singularity: Chapter Basis of ∆sk : Parallel ∆sk = span{Y}, Y = {Y , ⋯, Yk } Manipulators Introduction Configuration Space and Annihilation vector: Singularities Singularity ˙ θa Classification vs = ˙ = ˙ θp = Y α ∈ ∆sk , α ∈ Rk θp θ s ∈ Qsk : degenerate A-singularity i hi (θ s + εvs ) − hi (θ s ) = , i = , ⋯, m Conditions on coe cients of Taylor series (Y α, Y α) = α T Y T ∂ hi ∂ hi Y α = , ⋯, i = , ⋯, m ∂θ θ s ∂θ θ s
  • 29. Chapter 9 Parallel Manipulators 9.3 Singularity Classification 29 ◻ Classification diagram: Chapter Parallel Manipulators Introduction Configuration Space and Singularities Singularity Classification Fig. 15. A hierarchic diagram of singularities, A-sing.: actuator singularity. E-sing.: end-effector singularity. P-sing.: parametrization singularity. N. Degenerate: Nondegenerate.