SlideShare a Scribd company logo
1 of 121
Download to read offline
Chapter 4 Manipulator Dynamics




                                                                                         1


Chapter               Lecture Notes for
 Manipulator
Dynamics
                 A Geometrical Introduction to
Introduction

Lagrange’s
                  Robotics and Manipulation
Equations

Dynamics of
Open-chain
                 Richard Murray and Zexiang Li and Shankar S. Sastry
Manipulators                         CRC Press
Coordinate
Invariant
Algorithms

Lagrange’s              Zexiang Li and Yuanqing Wu
Equations with
Constraints
                    ECE, Hong Kong University of Science & Technology


                                    June ,
Chapter 4 Manipulator Dynamics




                                                                                      2

                 Chapter Manipulator Dynamics
Chapter
 Manipulator
Dynamics
                  Introduction
Introduction

Lagrange’s
Equations         Lagrange’s Equations
Dynamics of
Open-chain
Manipulators
                  Dynamics of Open-chain Manipulators
Coordinate
Invariant
Algorithms

Lagrange’s
                  Coordinate Invariant Algorithms
Equations with
Constraints

                  Lagrange’s Equations with Constraints
Chapter 4 Manipulator Dynamics

                 4.1 Introduction
                                                                                            3
                  Definition: Dynamics
                  Physical laws governing the motions of bodies and aggregates of
Chapter
 Manipulator      bodies.
Dynamics

Introduction

Lagrange’s
Equations

Dynamics of
Open-chain
Manipulators

Coordinate
Invariant
Algorithms

Lagrange’s
Equations with
Constraints
Chapter 4 Manipulator Dynamics

                 4.1 Introduction
                                                                                              3
                  Definition: Dynamics
                  Physical laws governing the motions of bodies and aggregates of
Chapter
 Manipulator      bodies.
Dynamics

Introduction       ◻ A short history:
Lagrange’s
Equations
                             “Everything happens for a reason.”
Dynamics of
Open-chain                                                     Aristotle (384 BC - 322 BC)
Manipulators

Coordinate
Invariant
Algorithms

Lagrange’s
Equations with
Constraints
Chapter 4 Manipulator Dynamics

                 4.1 Introduction
                                                                                              3
                  Definition: Dynamics
                  Physical laws governing the motions of bodies and aggregates of
Chapter
 Manipulator      bodies.
Dynamics

Introduction       ◻ A short history:
Lagrange’s
Equations
                             “Everything happens for a reason.”
Dynamics of
Open-chain                                                     Aristotle (384 BC - 322 BC)
Manipulators

Coordinate
Invariant
Algorithms                   Experiments with cannon balls from the tower of Pisa.
Lagrange’s                                                           G. Galilei (1564 - 1642)
Equations with
Constraints
Chapter 4 Manipulator Dynamics

                 4.1 Introduction
                                                                                              3
                  Definition: Dynamics
                  Physical laws governing the motions of bodies and aggregates of
Chapter
 Manipulator      bodies.
Dynamics

Introduction       ◻ A short history:
Lagrange’s
Equations
                             “Everything happens for a reason.”
Dynamics of
Open-chain                                                     Aristotle (384 BC - 322 BC)
Manipulators

Coordinate
Invariant
Algorithms                   Experiments with cannon balls from the tower of Pisa.
Lagrange’s                                                           G. Galilei (1564 - 1642)
Equations with
Constraints


                             Laws of motion.
                                                                    I. Newton (1642 - 1726)

                                                                  (Continues next slide)
Chapter 4 Manipulator Dynamics

                 4.1 Introduction
                                                                                          4


Chapter
 Manipulator
                        Laws of motion from particles to rigid bodies.
Dynamics
                                                                L. Euler (1707 - 1783)
Introduction

Lagrange’s
Equations

Dynamics of
Open-chain
Manipulators

Coordinate
Invariant
Algorithms

Lagrange’s
Equations with
Constraints
Chapter 4 Manipulator Dynamics

                 4.1 Introduction
                                                                                           4


Chapter
 Manipulator
                        Laws of motion from particles to rigid bodies.
Dynamics
                                                                 L. Euler (1707 - 1783)
Introduction

Lagrange’s
Equations
                        Calculus of Variation and the Principles of least action.
Dynamics of
Open-chain                                                   J. Lagrange (1736 - 1813)
Manipulators

Coordinate
Invariant
Algorithms

Lagrange’s
Equations with
Constraints
Chapter 4 Manipulator Dynamics

                 4.1 Introduction
                                                                                           4


Chapter
 Manipulator
                        Laws of motion from particles to rigid bodies.
Dynamics
                                                                 L. Euler (1707 - 1783)
Introduction

Lagrange’s
Equations
                        Calculus of Variation and the Principles of least action.
Dynamics of
Open-chain                                                   J. Lagrange (1736 - 1813)
Manipulators

Coordinate
Invariant
Algorithms              Quaternions and Hamilton’s Principle.
Lagrange’s                                                  W. Hamilton (1805 - 1865)
Equations with
Constraints



                                                                  † End of Section †
Chapter 4 Manipulator Dynamics

                 4.2 Lagrange Equations
                                                                                    5
                   ◻ A simple example:
                  Newton’s Equation:               Lagrangian Equation:
                           m¨ = Fx
Chapter
 Manipulator                x
                           m¨ = Fy − mg
Dynamics

Introduction
                            y

                  Momentum: Px = m˙
Lagrange’s
Equations                         x
Dynamics of                        Py = m˙y
                          = Fx , dt Py = Fy − mg
Open-chain
                   d             d
Manipulators         P
                   dt x
Coordinate
Invariant            y
Algorithms

Lagrange’s                      Fy   F
Equations with
Constraints                 m        Fx


                                mg
                                          x
                             Figure 4.1
Chapter 4 Manipulator Dynamics

                 4.2 Lagrange Equations
                                                                                         5
                   ◻ A simple example:
                  Newton’s Equation:                   Lagrangian Equation:
                           m¨ = Fx
Chapter

                                                                   −  = Fx
 Manipulator                x                                d ∂L ∂L
                           m¨ = Fy − mg
Dynamics
                            y                                dt ∂˙ ∂x
                                                                 x
Introduction
                                                                   −  = Fy
                                                             d ∂L ∂L
                  Momentum: Px = m˙
Lagrange’s
Equations                         x                          dt ∂˙ ∂y
                                                                 y
Dynamics of                        Py = m˙y
                                                       Lagrangian function:
                          = Fx , dt Py = Fy − mg
Open-chain
                   d             d
Manipulators         P
                   dt x
Coordinate
Invariant            y
                                                   ⇔   L = T − V, Px =
                                                                          ∂L
                                                                             , Py =
                                                                                    ∂L
Algorithms                                                                ∂˙
                                                                           x        ∂˙
                                                                                     y
Lagrange’s                      Fy   F                 Kinetic energy:
Equations with
                            m        Fx
                                                            T = m(˙ + y )
Constraints
                                                                  x ˙
                                mg
                                          x            Potential energy:
                             Figure 4.1
                                                                 V = mgy
Chapter 4 Manipulator Dynamics

                 4.2 Lagrange’s Equations
                                                                                                 6
                     ◻ Generalization to multibody systems:
                                             qi , i = , . . . , n: generalized coordinates
Chapter                                      Kinetic energy:
 Manipulator
Dynamics         y
                                                                   T = T(q, q)
                                                                            ˙
Introduction                 m
                                     q
Lagrange’s
Equations
                                             Potential energy:

                                                                    V = V(q)
Dynamics of
Open-chain                   m
Manipulators
                                 q           Lagrangian:
Coordinate
Invariant

                                                           L(q, q) = T(q, q) − V(q)
Algorithms              m                                       ˙         ˙
Lagrange’s
                         q
                                             τ i , i = , . . . , n: external force on qi
Equations with
Constraints
                                         x   Lagrangian Equation:
                       Figure 4.2
                                                         d ∂L     ∂L
                                                                −    = τi , i = , . . . , n
                                                         dt ∂˙ i ∂qi
                                                             q
Chapter 4 Manipulator Dynamics

                 4.2 Lagrange’s Equations
                                                                                                        7
                    Example: Pendulum equation
                  Generalized coordinate:
                                          θ∈S
Chapter                                                                                y
 Manipulator
Dynamics
                  Kinematics:
                           x = l sin θ, y = −l cos θ
Introduction                                                                                       x
Lagrange’s                                                                                     l
                           x = l cos θ ⋅ θ, y = l sin θ ⋅ θ
Equations

Dynamics of                ˙             ˙ ˙              ˙                                θ
Open-chain
Manipulators
                  Kinetic energy:

Coordinate             T(θ, θ) = m(˙ + y ) = ml θ
                            ˙      x ˙          ˙
Invariant                                                                                   mg
Algorithms        Potential energy:
                                                                                  Figure 4.3
Lagrange’s
Equations with
                                V = mgl( − cos θ)
Constraints       Lagrangian function:
                    L = T − V = ml θ − mgl( − cos θ), ⇒
                                   ˙                               ∂L
                                                                    ˙
                                                                   ∂θ
                                                                        = ml θ,
                                                                             ˙    ∂L
                                                                                  ∂θ
                                                                                       = −mgl sin θ
                  Equation of motion:
                            d ∂L
                                 ˙
                            dt ∂ θ
                                     −   ∂L
                                         ∂θ
                                              = τ ⇒ ml θ + mgl sin θ = τ
                                                       ¨
Chapter 4 Manipulator Dynamics

                 4.2 Lagrange’s Equations
                                                                                                   8
                    Example: A spherical pendulum
                  Generalized coordinate:

                                            ⎡ l sin θ cos ϕ   ⎤
Chapter
 Manipulator
                                            ⎢                 ⎥
Dynamics                          r(θ, ϕ) = ⎢ l sin θ sin ϕ
                                            ⎢ −l cos θ
                                                              ⎥
                                                              ⎥
                                            ⎣                 ⎦
Introduction

Lagrange’s        Kinetic energy:
Equations

Dynamics of
Open-chain              T=    m ˙
                                r      =   ml (θ + ( − cos θ)ϕ )
                                               ˙             ˙
Manipulators
                                                                                   θ
Coordinate
Invariant
                  Potential energy:
Algorithms

Lagrange’s                              V = −mgl cos θ
Equations with
Constraints
                  Lagrangian function:
                                                                                  ϕ        mg

                      L(q, q) =
                           ˙       ml (θ + ( − cos θ)ϕ ) + mgl cos θ
                                       ˙             ˙
                                                                              Figure 4.4

                                                                         (continues next slide)
Chapter 4 Manipulator Dynamics

                 4.2 Lagrange’s Equations
                                                                                                   9
                        ⎧d
                        ⎪      ∂L   d
                        ⎪
                        ⎪
                        ⎪ dt      = (ml θ) = ml θ,
                                            ˙        ¨
                        ⎪       ˙
                        ⎨      ∂θ dt
                        ⎪
Chapter
                        ⎪
                        ⎪      ∂L
 Manipulator
                        ⎪
                        ⎪         = ml sin θ cos θ ϕ − mgl sin θ
                                                   ˙
Dynamics                ⎩      ∂θ
                        ⎧
                        ⎪d     ∂L   d
                        ⎪
Introduction
                        ⎪
                        ⎪ dt      = (ml sin θ ϕ) = ml sin θ ϕ + ml sin θ cos θ θ ϕ,
                                                   ˙             ¨             ˙˙
                        ⎪
                        ⎪       ˙
                               ∂ϕ dt
                        ⎨
Lagrange’s
Equations
                        ⎪
                        ⎪
                        ⎪      ∂L
                        ⎪
                        ⎪         =
Dynamics of             ⎪
                        ⎩      ∂ϕ
Open-chain
Manipulators
                        ml                 ¨       −ml sθ cθ ϕ˙
Coordinate
                                ml sθ
                                           θ
                                           ¨   +             ˙˙    +   mglsθ   =
Invariant                                  ϕ        ml sθ cθ θ ϕ
Algorithms

Lagrange’s
Equations with
Constraints
Chapter 4 Manipulator Dynamics

                 4.2 Lagrange’s Equations
                                                                                                 10
                   ◻ Kinetic energy of a rigid body:
Chapter
 Manipulator                                               r
Dynamics                                                              B
Introduction

Lagrange’s
                                              ra
Equations
                                 A                  gab
Dynamics of
Open-chain
Manipulators

Coordinate                                     Figure 4.5
Invariant
Algorithms                    Volume occupied by the body:        V
Lagrange’s
Equations with                                 Mass density:      ρ(r)
                                                                  m=      ∫
Constraints
                                                          Mass:                   ρ(r)dV
                                                                              V
                                                   Mass center:   r≜
                                                                          m   ∫   V
                                                                                      ρ(r)rdV

                        Relative to frame at the mass center:     r=
                                                                              (Continues next slide)
Chapter 4 Manipulator Dynamics

                 4.2 Lagrange’s Equations
                                                                                                   11
                 Kinetic energy (In A-frame):

                   T=         ρ(r) p + Rr dV =                         + pT Rr + Rr )dV
Chapter
 Manipulator
Dynamics                 ∫V
                                   ˙ ˙               ∫   V
                                                                   ˙
                                                             ρ(r)( p     ˙ ˙     ˙

                     = m p      + pT R   ∫   ρ(r)rdV +       ∫
Introduction
                         ˙        ˙ ˙                                  ˙
                                                                  ρ(r) Rr dV
Lagrange’s                               V                    V
Equations
                                             =
Dynamics of
Open-chain
Manipulators

Coordinate
Invariant
Algorithms

Lagrange’s
Equations with
Constraints
Chapter 4 Manipulator Dynamics

                 4.2 Lagrange’s Equations
                                                                                                        11
                 Kinetic energy (In A-frame):

                   T=             ρ(r) p + Rr dV =                          + pT Rr + Rr )dV
Chapter
 Manipulator
Dynamics                     ∫V
                                       ˙ ˙                ∫   V
                                                                        ˙
                                                                  ρ(r)( p     ˙ ˙     ˙

                        = m p       + pT R    ∫   ρ(r)rdV +       ∫
Introduction
                            ˙         ˙ ˙                                   ˙
                                                                       ρ(r) Rr dV
Lagrange’s                                    V                    V
Equations
                                                  =
Dynamics of
Open-chain
Manipulators

Coordinate
Invariant
Algorithms              ∫
                        V
                                 ˙
                            ρ(r) Rr dV

                    =       ∫ ρ(r) R Rr dV = ∫ ρ(r) ωr dV = ∫ ρ(r) ˆω dV
Lagrange’s
                                     ˙T
Equations with                                      ˆ              r
Constraints

                    =       ∫ ρ(r)(−ω ˆ ω)dV = ω − ∫ ρ(r)ˆ dV ω ≜ ω Iω
                                       r  T              T
                                                         r                                  T



                                                                            (Continues next slide)
Chapter 4 Manipulator Dynamics

                 4.2 Lagrange’s Equations
                                                                                                12

                                                ⎡ Ixx Ixy Ixz                ⎤
                 where
                                                ⎢                            ⎥
                               I = − ρ(r)ˆ dV ≜ ⎢ Ixy Iyy Iyz                ⎥
Chapter

                                        ∫       ⎢                            ⎥
 Manipulator
                                            r
                                                ⎢ Ixz Iyz Izz                ⎥
Dynamics

Introduction                                    ⎣                            ⎦
Lagrange’s
                 is the Inertia tensor with
Equations

Dynamics of
Open-chain
                     Ixx =   ∫ ρ(r)(y       + z )dxdydz,   Ixy = −   ∫ ρ(r)xydxdydz
Manipulators

Coordinate            T= m p
                           ˙         + (ωb )T Iωb = m RT p
                                                         ˙           + (ωb )T Iωb
Invariant
Algorithms

Lagrange’s               = (V b )T      mI
                                                  I   Vb
Equations with
Constraints
                                             Mb

                 M b : Generalized inertia matrix in B-frame.
Chapter 4 Manipulator Dynamics

                 4.2 Lagrange’s Equations
                                                                                                                                13
                   Example:                            Mb              for a rectangular object

                   ρ=
Chapter                   m                                                                                      z
 Manipulator
Dynamics                 lωh
Introduction     Ixx =   ∫     ρ(y + z )dxdydz                                                                             y
                           V
Lagrange’s                         h           ω           l                                               x
                                                                                               h
                    =ρ                                         (y + z )dxdydz
Equations

Dynamics of                  ∫ ∫ ∫
                               −   h
                                           −   ω
                                                       −   l
                                                                                                                            l
Open-chain
                                                                                                          w
                    =ρ                 (lω h + lωh ) =                           (ω + h )
Manipulators                                                                 m
Coordinate                                                                                               Figure 4.6
Invariant
                                                                         h    ω     l

                 Ixy = −               ρxydV = −ρ
Algorithms

Lagrange’s
Equations with
                             ∫ V
                                                                       ∫ ∫ ∫
                                                                        −h   −ω    −l
                                                                                        xydxdydz
Constraints                                                        l
                                       h           ω

                    = −ρ                                                dydz =
                                                       y
                                 ∫ ∫
                                   −h          −ω
                                                               x
                                                                   −l

                                                                                                   (Continues next slide)
Chapter 4 Manipulator Dynamics

                 4.2 Lagrange’s Equations
                                                                                             14
                    ⎡       (w + h )                             ⎤
                    ⎢                                            ⎥
                        m
                    ⎢                                            ⎥ b
                  I=⎢                      (l + h )              ⎥,M =     mI
                                                                                      I
                    ⎢                                            ⎥
                                       m                                        ×
                    ⎢                                   (w + l ) ⎥
Chapter

                    ⎣                                            ⎦
 Manipulator
                                                      m
Dynamics

Introduction

Lagrange’s
Equations

Dynamics of
Open-chain
Manipulators

Coordinate
Invariant
Algorithms

Lagrange’s
Equations with
Constraints
Chapter 4 Manipulator Dynamics

                 4.2 Lagrange’s Equations
                                                                                                   14
                    ⎡       (w + h )                             ⎤
                    ⎢                                            ⎥
                        m
                    ⎢                                            ⎥ b
                  I=⎢                      (l + h )              ⎥,M =        mI
                                                                                       I
                    ⎢                                            ⎥
                                       m                                           ×
                    ⎢                                   (w + l ) ⎥
Chapter

                    ⎣                                            ⎦
 Manipulator
                                                      m
Dynamics


                   ◻ M b under change of frames:
Introduction

Lagrange’s
Equations

Dynamics of             V = g− ⋅ g , T = V T Mb V
                        ˆ        ˙                                            g            g (t)
Open-chain

                        V = Adg V
Manipulators

Coordinate

                        T = (Adg V )T M b (Adg V )
Invariant
Algorithms                                                            g (t)
                                                                                           g
Lagrange’s

                            = V T AdT M b Adg V ≜ V T M b V
Equations with
Constraints                         g
                                                                              Figure 4.7
                                  M b = AdT M b Adg
                                          g
Chapter 4 Manipulator Dynamics

                 4.2 Lagrange’s Equations
                                                          15
                   Example: Dynamics of a -dof planar robot

                       ⎡ Ixxi                 ⎤
Chapter

                       ⎢                      ⎥
 Manipulator

                  Ii = ⎢        Iyyi          ⎥,i = ,
                       ⎢                      ⎥
Dynamics

Introduction
                       ⎣               Izzi   ⎦
                                                                               l2

                                                                                r 2 θ2
Lagrange’s
Equations



                   T(θ, θ) = m v         + ωT I ω
Dynamics of
                                                                 l1
Open-chain
Manipulators
                        ˙                               y
                                                            r1
                                                                      θ1

                          + m v          + ω I ω
Coordinate
Invariant                                       T            x
Algorithms
                                                                  Figure 4.8
Lagrange’s
Equations with
Constraints


                   ω =             ω =
                         ˙
                         θ                    θ +θ
                                              ˙ ˙
                                                            (Continues next slide)
Chapter 4 Manipulator Dynamics

                 4.2 Lagrange’s Equations
                                                                                          16

                         xi
Chapter
                  Pi =   yi     ∶ Mass center
                  γi ∶ Distance from joint i to mass center
 Manipulator
Dynamics

Introduction

Lagrange’s
Equations
                  Change of Coordinates:
                                               ⎧ x = −r s θ
                                               ⎪˙
                                        x =rc  ⎪
Dynamics of
                                                           ˙
                                              ⇒⎨
Open-chain


                                        y =rs  ⎪y =r c θ
Manipulators

Coordinate                                     ⎪˙
                                               ⎩
                                                         ˙
Invariant

                                             ⎧ x = −(l s + r s )θ − r s θ
Algorithms

                          x =l c +r c        ⎪˙
                                             ⎪                   ˙       ˙
                                            ⇒⎨
Lagrange’s

                              y =l s +r s    ⎪ y = (l c + r c )θ + r c θ
                                             ⎪˙
Equations with

                                             ⎩
Constraints                                                    ˙       ˙

                                                           (Continues next slide)
Chapter 4 Manipulator Dynamics

                 4.2 Lagrange’s Equations
                                                                                        17
                  Kinetic energy:

Chapter
 Manipulator
                  T(θ, θ) = m (x + y ) + Iz θ + m (x + y ) + Iz (θ + θ )
                       ˙       ˙ ˙          ˙      ˙ ˙           ˙   ˙

                                     α + βc     δ + βc
Dynamics

                        = [θ θ ]
                                                            ˙
                                                            θ
                                     δ + βc
Introduction               ˙ ˙
Lagrange’s
                                                   δ        ˙
                                                            θ
Equations
                                            M(θ)
Dynamics of
Open-chain

                                α = Iz + Iz + m r + m (l + r ),
Manipulators



                                β = m l r , δ = Iz + m r , L = T
Coordinate
Invariant
Algorithms

Lagrange’s
Equations with    Equation of motion:
Constraints

                                −βs θ    −βs (θ + θ )
                            +                                      =
                        ¨
                        θ            ˙        ˙ ˙           ˙
                                                            θ            τ
                 M(θ)   ¨           ˙                       ˙            τ
                        θ        βs θ                       θ

                                                             † End of Section †
Chapter 4 Manipulator Dynamics

                 4.3 Dynamics of Open-chain Manipulators
                                                          18
                   ◻ Dynamics of an open-chain manipulator:
Chapter            Definition:
                   Li : frame at mass center of link i, gsli (θ) = e ξ                 ⋯e ξ i θ i gsli (o)
 Manipulator                                                         ˆ             θ          ˆ
Dynamics
                                                     θ1
Introduction
                                                                   θ2                    θ3
                                                                             l1                l2
Lagrange’s
                                                                        L2                    L3
Equations

Dynamics of                                              r1                       r2
Open-chain                                  l0
                                                     L1
Manipulators
                                                              r0
Coordinate                                           S
Invariant
Algorithms
                                                                    Figure 4.9
Lagrange’s

                                                                                      ⎡ θ             ⎤
Equations with
                                                                                      ⎢               ⎥
Constraints                                                                              ˙
                                                                                      ⎢               ⎥
                                                                                      ⎢ ˙             ⎥
                                                                                      ⎢               ⎥
                                   Vsli = Jsli (θ)θ = [ξ † ξ † ⋯ ξ †
                                    b      b
                                                                                  ⋯ ] ⎢ ˙θ i          ⎥ = Ji (θ)θ
                                                                                      ⎢ θ i+          ⎥
                                                  ˙                                                             ˙
                                                                                      ⎢               ⎥
                                                                   i
                                                                                      ⎢               ⎥
                                                                                      ⎢ ˙             ⎥
                                                                                      ⎣ θn            ⎦
                                                                                                       (Continues next slide)
Chapter 4 Manipulator Dynamics

                 4.3 Dynamics of Open-chain Manipulators
                                                                                                                               19

                                             ξ † = Ad− (e ξ j+           ⋯e ξ i θ i gsli ( ))ξ j , j ≤ i
                                                              ˆ   θ j+       ˆ
                                               j

                                     Ti (θ, θ) =        (Vsli )T Mib Vsli =       θ T JiT (θ)Mib Ji (θ)θ
Chapter                                     ˙             b           b           ˙                    ˙
 Manipulator
Dynamics
                                                    n
Introduction                              T(θ) =         Ti (θ, θ) =
                                                                ˙          θ T M(θ)θ,
                                                                           ˙       ˙
                                                   i=
Lagrange’s
                                                                                       n
                                                         JiT (θ)Mib Ji (θ) =                 Mij (θ)θ i θ j
Equations
                                          M(θ) =                                                    ˙ ˙
Dynamics of                                         i                                i,j=
Open-chain
Manipulators
                 hi (θ): Height of Li ,    Vi (θ) = mi ghi (θ),           V(θ) =            mi ghi (θ)
Coordinate
                                                                                     i=
Invariant
Algorithms       Lagrange’s Equation:
Lagrange’s
                                          d ∂L     ∂L
                                                 −     = τ i , i = , . . . , n,
Equations with                                ˙
                                          dt ∂θ i ∂θ i
Constraints
                                                 d ∂L      d ⎛n        ˙⎞
                                                                                            n
                                                                                                     ¨     ˙ ˙
                                                                   Mij θ j =                     Mij θ j + Mij θ j
                                                           dt ⎝ j=        ⎠
                                                         =
                                                     ˙
                                                 dt ∂θ i                                    j=

                                                                                                         (Continues next slide)
Chapter 4 Manipulator Dynamics

                 4.3 Dynamics of Open-chain Manipulators
                                                                                                                              20
                              ∂L             n   ∂Mkj            ∂V                                 ∂Mij ˙
                                   =                     ˙ ˙
                                                         θk θj −      ,            ˙
                                                                                   Mij =                 θk
                              ∂θ i       j,k=    ∂θ i            ∂θ i                          k    ∂θ k
Chapter
 Manipulator                            n                 n       ∂Mij ˙ ˙             ∂Mkj
                                   ⇒             ¨                                                 ˙ ˙     ∂V
Dynamics                                     Mij θ j +                 θj θk −                     θk θj +      = τi
                                        j=               j,k=     ∂θ k                  ∂θ i               ∂θ i
Introduction
                                        n                 n
                                   ⇒
Lagrange’s                                       ¨                   ˙ ˙         ∂V
                                             Mij θ j +          Γijk θ k θ j +        = τi
Equations
                                        j=               j,k=                    ∂θ i
Dynamics of
Open-chain
                                             ∂Mij        ∂Mik ∂Mkj
                               Γijk ≜               +          −
Manipulators                                  ∂θ k        ∂θ j   ∂θ i
Coordinate            ˙ ˙
                      θ i ⋅ θ j , i ≠ j ∶ Coriolis term,                   ˙
                                                                           θ i : Centrifugal term
Invariant
Algorithms

Lagrange’s
Equations with
Constraints
Chapter 4 Manipulator Dynamics

                 4.3 Dynamics of Open-chain Manipulators
                                                                                                                                   20
                                  ∂L              n   ∂Mkj            ∂V                                 ∂Mij ˙
                                       =                      ˙ ˙
                                                              θk θj −      ,            ˙
                                                                                        Mij =                 θk
                                  ∂θ i        j,k=    ∂θ i            ∂θ i                          k    ∂θ k
Chapter
 Manipulator                                 n                 n       ∂Mij ˙ ˙             ∂Mkj
                                       ⇒              ¨                                                 ˙ ˙     ∂V
Dynamics                                          Mij θ j +                 θj θk −                     θk θj +      = τi
                                             j=               j,k=     ∂θ k                  ∂θ i               ∂θ i
Introduction
                                             n                 n
                                       ⇒
Lagrange’s                                            ¨                   ˙ ˙         ∂V
                                                  Mij θ j +          Γijk θ k θ j +        = τi
Equations
                                             j=               j,k=                    ∂θ i
Dynamics of
Open-chain
                                                  ∂Mij        ∂Mik ∂Mkj
                                   Γijk ≜                 +         −
Manipulators                                      ∂θ k         ∂θ j   ∂θ i
Coordinate                ˙ ˙
                          θ i ⋅ θ j , i ≠ j ∶ Coriolis term,                     ˙
                                                                                 θ i : Centrifugal term
Invariant
Algorithms
                                         n                    n      ∂Mij        ∂Mik ∂Mkj ˙
Lagrange’s
Equations with
                 Define: Cij (θ, θ) =
                                ˙                 ˙
                                             Γijk θ k =                      +         −      θk
                                        k=                    k=      ∂θ k        ∂θ j   ∂θ i
Constraints


                                              ⇒ M(θ)θ + C(θ, θ)θ + N(θ) = τ
                                                    ¨        ˙ ˙
Chapter 4 Manipulator Dynamics

                 4.3 Dynamics of Open-chain Manipulators
                                                                                                   21


Chapter
 Manipulator     Property 1:
                      M(θ) = M T (θ), θ T M(θ)θ ≥ , θ T M(θ)θ =   ⇔θ=
Dynamics                              ˙       ˙     ˙       ˙      ˙
Introduction          ˙ − C ∈ ℝn×n is skew symmetric
                      M
Lagrange’s
Equations

Dynamics of
Open-chain
Manipulators

Coordinate
Invariant
Algorithms

Lagrange’s
Equations with
Constraints
Chapter 4 Manipulator Dynamics

                 4.3 Dynamics of Open-chain Manipulators
                                                                                                            21


Chapter
 Manipulator     Property 1:
                       M(θ) = M T (θ), θ T M(θ)θ ≥ , θ T M(θ)θ =           ⇔θ=
Dynamics                               ˙       ˙     ˙       ˙              ˙
Introduction           ˙ − C ∈ ℝn×n is skew symmetric
                       M
Lagrange’s
Equations        Proof :

                                (M − C)ij = Mij − Cij (θ)
Dynamics of
Open-chain                       ˙          ˙
Manipulators
                                               n    ∂Mij ˙    ∂Mij ˙    ∂Mik ˙     ∂Mkj
Coordinate                                 =             θk −      θk −       θk +       ˙
                                                                                         θk
Invariant                                      k=   ∂θ k      ∂θ k       ∂θ j       ∂θ i
Algorithms
                                               n    ∂Mkj        ∂Mik ˙
Lagrange’s                                 =               ˙
                                                           θk −       θk
Equations with                                 k=   ∂θ i         ∂θ j
Constraints
                 Switching i and j shows (M − C)T = −(M − C)
                                          ˙           ˙
Chapter 4 Manipulator Dynamics

                 4.3 Dynamics of Open-chain Manipulators
                                                         22
                   Example: Planar 2-DoF Robot (continued)
Chapter
 Manipulator           m (θ) = α + β cos θ , m      =δ
                       m (θ) = m (θ) = δ + β cos θ
Dynamics

Introduction
                      c (θ, θ) = −β sin θ ⋅ θ , c (θ, θ) = −β sin θ (θ + θ )
                            ˙               ˙         ˙              ˙   ˙
Lagrange’s
Equations             c (θ, θ) = β sin θ ⋅ θ , c (θ, θ) =
                            ˙              ˙         ˙
Dynamics of
Open-chain

                                   (                        )=
Manipulators                         ∂M      ∂M    ∂M           ∂M
                           Γ   =           +     −                   =
Coordinate                            ∂θ      ∂θ    ∂θ           ∂θ
Invariant
                                   (                        )=
Algorithms                           ∂M      ∂M    ∂M           ∂M
                           Γ   =           +     −                   = −β sin θ
Lagrange’s
                                      ∂θ      ∂θ    ∂θ           ∂θ

                                   (                        )=
Equations with                       ∂M      ∂M    ∂M           ∂M
Constraints                Γ   =           +     −                   = −β sin θ
                                      ∂θ      ∂θ    ∂θ           ∂θ

                                   (                        )=
                                     ∂M      ∂M    ∂M          ∂M       ∂M
                           Γ   =           +     −                  −          = −β sin θ
                                      ∂θ      ∂θ     ∂θ         ∂θ       ∂θ

                                                                           (Continues next slide)
Chapter 4 Manipulator Dynamics

                 4.3 Dynamics of Open-chain Manipulators
                                                                                                     23


                              (                      )=
                                ∂M     ∂M      ∂M        ∂M         ∂M
Chapter               Γ   =           +      −                  −         = β sin θ
 Manipulator                     ∂θ     ∂θ      ∂θ        ∂θ         ∂θ
Dynamics
                              (                      )=
                                ∂M     ∂M      ∂M           ∂M
                      Γ   =          +       −                    =
Introduction                     ∂θ     ∂θ      ∂θ           ∂θ

                              (                      )=
Lagrange’s                      ∂M     ∂M      ∂M           ∂M
Equations             Γ   =          +       −                    =
                                 ∂θ     ∂θ      ∂θ           ∂θ
Dynamics of
                              (                       )=
Open-chain
                                ∂M     ∂M       ∂M          ∂M
                      Γ   =          +       −                    =
Manipulators                     ∂θ     ∂θ       ∂θ          ∂θ
Coordinate                    − β sin θ ⋅ θ˙              ˙
                                               −β sin θ ⋅ θ
Invariant
                    ˙
                    M− C=
                              −β sin θ ⋅ θ˙
Algorithms

Lagrange’s
                          −
                                          ˙
                              − β sin θ ⋅ θ    − β sin θ (θ + θ )
                                                          ˙   ˙
Equations with                           ˙
                               β sin θ ⋅ θ
Constraints
                                                    β sin θ ( θ + θ )
                                                                           ⇐ skew-symmetric
                                                              ˙   ˙
                              −β sin θ ( θ + θ )
                          =              ˙   ˙
Chapter 4 Manipulator Dynamics

                 4.3 Dynamics of Open-chain Manipulators
                                                                                                                           24
                    Example: Dynamics of a -dof robot
                           ⎡   ⎤      ⎡        ⎤     ⎡           ⎤
                           ⎢   ⎥      ⎢        ⎥     ⎢ −l        ⎥
                                                                              θ1
                           ⎢   ⎥      ⎢        ⎥     ⎢           ⎥
                           ⎢   ⎥      ⎢        ⎥     ⎢ l         ⎥
                                          −l                                                θ2                  θ3
                      ξ =⎢     ⎥,ξ = ⎢         ⎥,ξ = ⎢ −         ⎥
Chapter                                                                                               l1              l2
                           ⎢   ⎥      ⎢        ⎥     ⎢           ⎥
 Manipulator
                           ⎢   ⎥      ⎢        ⎥     ⎢           ⎥
                                          −                                                      L2                  L3

                           ⎢   ⎥      ⎢        ⎥     ⎢           ⎥
Dynamics
                           ⎣   ⎦      ⎣        ⎦     ⎣           ⎦                r1                       r2
                           ⎡              ⎤
Introduction
                           ⎢ I            ⎥
                                                                     l0

                 gsl ( ) = ⎢              ⎥,
                                                                              L1

                           ⎢              ⎥
Lagrange’s
                           ⎢      r       ⎥
Equations                                                                              r0
                           ⎣              ⎦                                   S
Dynamics of
                           ⎡              ⎤
                           ⎢              ⎥
                 gsl ( ) = ⎢ I            ⎥,
Open-chain                        r
                           ⎢              ⎥                                                  Figure 4.9
                           ⎢              ⎥
Manipulators                      l
                           ⎣              ⎦
                           ⎡                   ⎤
Coordinate
                           ⎢                   ⎥
Invariant
Algorithms
                 gsl ( ) = ⎢ I
                           ⎢
                                  l +r         ⎥
                                               ⎥
                           ⎢        l          ⎥
Lagrange’s                 ⎣                   ⎦
                           ⎡ mi                                           ⎤
Equations with
                           ⎢                                              ⎥
                           ⎢                                              ⎥
Constraints
                                  mi
                           ⎢                                              ⎥
                      Mi = ⎢                                              ⎥
                                          mi
                           ⎢                       Ix i                   ⎥
                           ⎢                              Iy i            ⎥
                           ⎢                                              ⎥
                           ⎢                                     Iz i     ⎥
                           ⎣                                              ⎦

                                                                                            (Continues next slide)
Chapter 4 Manipulator Dynamics

                 4.3 Dynamics of Open-chain Manipulators
                                                                                                       25

                               mi : The mass of the object
Chapter                     Ix i : The moment of inertia about the x axis
 Manipulator
Dynamics

Introduction                Γ     = (Iy − Iz − m r )c s + (Iy − Iz )c s     − t(l s + r s )
Lagrange’s                  Γ     = (Iy − Iz )c s   − tr s
Equations

Dynamics of
                            Γ     = (Iy − Iz − m r )c s + (Iy − Iz )c s     − t(l s + r s )
Open-chain                  Γ     = (Iy − Iz )c s   − tr s
Manipulators

Coordinate
                            Γ     = (Iz − Iy + m r )c s + (Iz − Iy )c s     + t(l s + r s )
Invariant                  Γ      = −l m r s
Algorithms
                           Γ      = −l m r s
Lagrange’s
Equations with             Γ      = −l m r s
                                  = (Iz − Iy )c s
Constraints
                            Γ                       + tr s
                           Γ      =lm r s

                  where t = m (l c + r c ).
                                                                             (Continues next slide)
Chapter 4 Manipulator Dynamics

                 4.3 Dynamics of Open-chain Manipulators
                                                                                                26
                                        , V(θ) = m gh (θ) + m gh (θ) + m gh (θ)
                             ˙       ∂V
                        N(θ, θ) =
                                     ∂θ
                         gsli (θ) = e ξ     ⋯e ξ i θ i gsli ( ) ⇒
Chapter                               ˆ θ       ˆ
 Manipulator
Dynamics
                          h (θ) = r , h (θ) = l − r sin θ, h (θ)
Introduction
                                              = l − l sin θ − r sin(θ + θ )
                                             ⎡              ⎤
                                             ⎢              ⎥
Lagrange’s
                                             ⎢              ⎥
                                             ⎢              ⎥
Equations
                               J = Jsl (θ) = ⎢
                                    b
                                                            ⎥
                                             ⎢              ⎥
                                             ⎢              ⎥
Dynamics of
                                             ⎢              ⎥
Open-chain
Manipulators                                 ⎣              ⎦
                                             ⎡ −r c              ⎤
                                             ⎢                   ⎥
                                             ⎢                   ⎥
Coordinate
Invariant
                                             ⎢                   ⎥
                               J = Jsl (θ) = ⎢
                                    b                    −r      ⎥
                                             ⎢                   ⎥
Algorithms
                                             ⎢ −s                ⎥
                                                         −
                                             ⎢ c                 ⎥
                                             ⎣                   ⎦
Lagrange’s
Equations with
                                             ⎡ −l c − r c                      ⎤
                                             ⎢                                 ⎥
Constraints
                                             ⎢                                 ⎥
                                             ⎢                                 ⎥
                                                                   ls
                               J = Jsl (θ) = ⎢
                                    b                          −r − l c        ⎥
                                             ⎢                                 ⎥
                                                                          −r
                                             ⎢                                 ⎥
                                                                   −       −
                                             ⎢                                 ⎥
                                             ⎣                                 ⎦
                                                    −s
                                                     c

                                                                       (Continues next slide)
Chapter 4 Manipulator Dynamics

                 4.3 Dynamics of Open-chain Manipulators
                                                                                                                  27

                                    M          M         M
Chapter               M(θ) =        M          M         M       = JT M J + JT M J + JT M J
 Manipulator                        M          M         M
                                                                            + m r c + m (l c + r c )
Dynamics
                        M = Iy s + Iy s               + Iz + Iz c + Iz c
Introduction
                        M =M =M =M =
Lagrange’s
Equations               M    = Ix + Ix + m l + M r + m r + m l r c
Dynamics of             M    = Ix + m r + m l r c
Open-chain
Manipulators            M    = Ix + m r + m l r c
Coordinate              M    = Ix + m r
Invariant
Algorithms                          n                    n   ∂Mij       ∂Mik ∂Mkj
Lagrange’s           Cij (θ, θ) =
                             ˙                ˙
                                         Γijk θ k =                 +         −        ˙
                                                                                       θk
Equations with                      k=                  k=   ∂θ k        ∂θ j   ∂θ i
Constraints
Chapter 4 Manipulator Dynamics

                 4.3 Dynamics of Open-chain Manipulators
                                                                                                                  28
                   ◻   Additional Properties of the dynamics in terms of POE:
                                         ⎧Ad−
                  Define:
                                         ⎪
                                         ⎪
                                         ⎪ e ξ j+ θ j+ ⋯e ξ i θ i i > j
Chapter
                                         ⎪
                                         ⎪
 Manipulator                                  ˆ           ˆ
                                   Aij = ⎨I
                                         ⎪
Dynamics
                                         ⎪
                                                                  i=j
                                         ⎪
                                         ⎪
                                         ⎪
                                         ⎩
Introduction                                                      i<j
Lagrange’s
Equations
                               Ji (θ) = Adg − ( ) [Ai ξ ⋯Aii ξ i ⋯ ]
                                            sl i

Dynamics of
Open-chain
                                 Mi′ = AdT−
                                         g
                                                       Mi Adg −         ( intertia of ith link in S)
                                            sl i ( )         sl i ( )
Manipulators

Coordinate
Invariant
Algorithms

Lagrange’s
Equations with
Constraints
Chapter 4 Manipulator Dynamics

                 4.3 Dynamics of Open-chain Manipulators
                                                                                                                                      28
                   ◻      Additional Properties of the dynamics in terms of POE:
                                                   ⎧Ad−
                  Define:
                                                   ⎪
                                                   ⎪
                                                   ⎪ e ξ j+ θ j+ ⋯e ξ i θ i i > j
Chapter
                                                   ⎪
                                                   ⎪
 Manipulator                                            ˆ           ˆ
                                             Aij = ⎨I
                                                   ⎪
Dynamics
                                                   ⎪
                                                                            i=j
                                                   ⎪
                                                   ⎪
                                                   ⎪
                                                   ⎩
Introduction                                                                i<j
Lagrange’s
Equations
                                         Ji (θ) = Adg − ( ) [Ai ξ ⋯Aii ξ i ⋯ ]
                                                           sl i

Dynamics of
Open-chain
                                                Mi′ = AdT−
                                                        g
                                                                      Mi Adg −         ( intertia of ith link in S)
                                                           sl i ( )         sl i ( )
Manipulators

Coordinate
Invariant        Property 2:
Algorithms                              n                                                    n   ∂Mij         ∂Mik ∂Mkj
Lagrange’s
                     Mij (θ) =                    ξ iT AT Ml′ Alj ξ j , Cij (θ, θ) =
                                                        li
                                                                                ˙                         +         −            ˙
                                                                                                                                 θk
Equations with                    l=max(i,j)                                                k=    ∂θ k         ∂θ j   ∂θ i
Constraints       where
                          ∂Mij              n
                                  =                  [Ak− ,i ξ i , ξ k ]T AT Ml′ Alj ξ j + ξ iT AT Ml′ Alk [Ak− ,j ξ j , ξ k ]
                                                                           lk                    li
                           ∂θ k       l=max(i,j)


                                                                                                          † End of Section †
Chapter 4 Manipulator Dynamics

                 4.4 Coordinate Invariant Algorithms
                                                                                                 29
                   ◻  Newton-Euler equations in spatial frame:
                  Newton’s Equation:
                                         f s = (mp) = mp
Chapter                                       d
 Manipulator                                     ˙      ¨
Dynamics                                      dt
Introduction      Spatial angular momentum:
Lagrange’s
Equations
                                  I s ⋅ ω s = R(I ⋅ ω b ) = R ⋅ I ⋅ RT ⋅ω s
                                                                Is
Dynamics of
Open-chain
Manipulators

Coordinate
Invariant
Algorithms
                                                           r
                                                                      T
Lagrange’s
Equations with
Constraints
                                                                                 f
                                 S
                                                  g ∶ (R, p)
                                                 Figure 4.10         (Continues next slide)
Chapter 4 Manipulator Dynamics

                 4.4 Coordinate Invariant Algorithms
                                                                                                        30

                        τs =    (I ω ) = (RIRT ω s ) = I s ω s + RIRT ω s + RI RT ω s
                             d s s        d
                                                                ˙ ˙                     ˙
                            dt            dt
                          = I s ω s + RRT I s ω s − RIRT ω s ω s = I s ω s + ω s × (I s ω s )
Chapter
 Manipulator
                                ˙     ˙                  ˆ             ˙
Dynamics

Introduction                            ωs
                                        ˆ

Lagrange’s
Equations
                   ◻ Transform equations to body frame:
                           (mp) =       mRvb = mRvb + mR˙ b , RT f s = mRT Rvb + m˙ b
Dynamics of             d          d               ˙                         ˙
Open-chain                   ˙                              v                     v
Manipulators            dt         dt
Coordinate                 ⇒ f b = mω b × vb + m˙ b ,
                                                 v
Invariant

                             τ b = RT τ s = RT (RIω b ) = I ω b + ω b × Iω b
Algorithms                                    d
                                                            ˙
Lagrange’s                                    dt
Equations with
Constraints
                    ⇒     mI             vb
                                         ˙    +    ω b × mvb      =    fb      = Fb               (∗)
                                    I    ωb
                                         ˙         ω b × Iω b          τb
                               Mb        Vb

                                                                         (Continues next slide)
Chapter 4 Manipulator Dynamics

                 4.4 Coordinate Invariant Algorithms
                                                                                                    31
                 Define:
                             [ , ] ∶ se( ) × se( ) ↦ se( ), [ ξ , ξ ] ≜ ξ ξ − ξ ξ
                                                              ˆ ˆ       ˆˆ ˆ ˆ
Chapter
 Manipulator     if
                                        [ξ , ξ ] =    ωi
                                                      ˆ    vi   ,i = ,
Dynamics                                 ˆ ˆ
Introduction
                 then
                                ξ=    (ω × ω )∧       ω v −ω v       = ad ξ i ⋅ ξ
Lagrange’s
Equations                       ˆ                     ˆ    ˆ
Dynamics of
Open-chain       where
                                             ad ξ =    ω
                                                       ˆ    v
                                                            ˆ
Manipulators

Coordinate                                                 ωˆ
Invariant
Algorithms
                 It is straightforward computation to see that:
Lagrange’s                            (∗) ⇔ M b V b − adT b M b V b = F b
                                                ˙       V
Equations with
Constraints
                  Property 3:

                           Adg [ ξ , ξ ] = [Adg ξ , Adg ξ ] ⇒ Adg ad ξ = adAd g ξ Adg
                                 ˆ ˆ            ˆ       ˆ            ˆ          ˆ
Chapter 4 Manipulator Dynamics

                 4.4 Coordinate Invariant Algorithms
                                                                                                   32
                   ◻   Coordinate invariance of Newton-Euler equations:

Chapter

                     M V − adT M V = F
 Manipulator
Dynamics                ˙     V
                     ⎧V = Adg V ,
                                                                                   r   g

                     ⎪
                     ⎪
Introduction
                                                                        g                      B
                     ⎨            ⇒
                     ⎪ F = AdT− F
Lagrange’s

                     ⎪
                     ⎩
Equations
                             g

                   F = (AdT )− F = (Ad− )T F
Dynamics of
Open-chain                                                                  g
Manipulators               g          g                     A
Coordinate        M    = Ad−T M Ad−
                           g      g                                     Figure 4.11
Invariant

                       ⇒ Adg M Ad−
                             −T
                                          Adg V − ad(Ad g
                                                    T             −T
                                                                        Ad− Adg V = Ad−T F
Algorithms
                                              ˙
                                    g                       V ) Adg M
                                                            ˙             g           g
Lagrange’s
Equations with

                                      = Adg adV Ad− by Property 3, we have
Constraints
                   Since adAd g   V               g

                                              M V − adT M V = F
                                                ˙     V
Chapter 4 Manipulator Dynamics

                 4.4 Coordinate Invariant Algorithms
                                                                                                                    33


Chapter
 Manipulator                                                          C2            C3
Dynamics
                                                        C1
Introduction
                                                l0
Lagrange’s                                                    l1             l2
Equations                                               C0

Dynamics of
Open-chain                                                   Figure 4.12
Manipulators
                    Ci :     Frame fixed to link i, located along the ith axis
Coordinate
Invariant           Fi :     Generalized force link i − exerting on link i, expressed in Ci
Algorithms          τi :     Joint torque of link i
Lagrange’s
                 gi− ,i :    Transformation of Ci relative to Ci−
                                          gi− ,i (θ i ) = e ξ i θ i ⋅ gi− ,i ( ) = gi− ,i ( )e ξ i θ i
                                                            ˆ′                                 ˆ
Equations with
Constraints                           ′       th
                 ξ i = Adg − ( ) ⋅ ξ i :     i axis in Ci frame.
                                   ⎧⎡      ⎤
                           i− ,i
                                   ⎪⎢
                                   ⎪⎢
                                   ⎪       ⎥
                                   ⎪ z ⎥∶
                                   ⎪⎢
                                   ⎪       ⎥
                                   ⎪
                                                       Revolute joint.
                             ξ i = ⎨⎣
                                         i ⎦
                                    ⎡ z ⎤
                                   ⎪⎢ i ⎥
                                   ⎪
                                   ⎪⎢
                                   ⎪
                                   ⎪⎢      ⎥∶
                                   ⎪
                                   ⎪       ⎥           Prismatic joint.
                                   ⎩⎣      ⎦
Chapter 4 Manipulator Dynamics

                 4.4 Coordinate Invariant Algorithms
                                                                                                                34


Chapter                                              ⇒ gi− ,i ⋅ gi− ,i = ξ i ⋅ θ i
                                                        −
                                                                ˙        ˆ ˙
 Manipulator
Dynamics
                 Mi : Moment of inertia in Ci
                                 −mi ˆi
                 Mi =
Introduction
                         mi I        r                        mi :     Mass of link i
Lagrange’s
                         mi ˆi Ii − mi ˆi
                            r          r                      Ii :     inertia tensor
                 gi = gi− gi− ,i
Equations

Dynamics of

                  Vi = gi− ⋅ gi = gi− ,i Vi− gi− ,i + ξ i θ i
Open-chain
Manipulators      ˆ          ˙     −     ˆ            ˆ˙
                  Vi = Ad − Vi− + ξ i θ i  ˙
Coordinate
Invariant                   gi−   ,i
Algorithms

Lagrange’s        Vi = gi− ,i Vi− gi− ,i + gi− ,i Vi− gi− ,i + gi− ,i Vi− gi− ,i + ξ i θ i
                  ˙ ˙− ˆ
                  ˆ                            −   ˆ ˙             −   ˙
                                                                       ˆ               ˆ¨
                     = −˙i− ,i gi− ,i gi− ,i Vi− gi− ,i + gi− ,i Vi− gi− ,i gi− ,i gi− ,i
Equations with
Constraints              g−            −     ˆ             −     ˆ           −
                                                                                   ˙
                     + gi− ,i Vi− gi− ,i + ξ i θ i
                        −     ˙
                              ˆ            ˆ¨
                                                                                     (Continues next slide)
Chapter 4 Manipulator Dynamics

                 4.4 Coordinate Invariant Algorithms
                                                                                                                   35

                         = − ξ i θ i (Adg − Vi− )∧ + (Adg − Vi− )∧ ξ i θ i + (Adg − Vi− )∧ + ξ i θ i
                             ˆ˙                                    ˆ˙               ˙        ˆ¨
                                      i− ,i                      i− ,i                   i− ,i
Chapter                  ⇒ Vi = ξ i θ i + Adg − Vi− − ad ξ
                           ˙        ¨           ˙                    ˙ (Adg − Vi−   )
 Manipulator                                    i− ,i              i θi     i− ,i
Dynamics

Introduction       ◻ Forward Recursion (kinematics):
                                     ⎧ init. ∶ V = , V = g (gravity vector)
                                     ⎪
                                     ⎪
Lagrange’s
                                     ⎪
                                                          ˙
                                     ⎪
                                     ⎪
                                     ⎪
Equations
                                     ⎪
                                     ⎪g
                                     ⎪ i− ,i = gi− ,i ( )e ξ i θ i
                                     ⎪
                                     ⎪
                                                            ˆ
Dynamics of
                                     ⎨
                                     ⎪ Vi = Ad − Vi− + ξ i θ i
Open-chain
Manipulators                         ⎪
                                     ⎪
                                     ⎪
                                                                     ˙
                                     ⎪
                                     ⎪
                                     ⎪
                                                  g i− ,i
                                     ⎪ ˙
                                     ⎪ V = ξ θ + Ad − V − ad (Ad − V )
                                     ⎪
                                     ⎪
Coordinate
                                     ⎩
Invariant                                  i
                                                 ¨
                                                i i                ˙
                                                            g i− ,i i−    ˙
                                                                       ξi θ i g i− ,i i−
Algorithms

Lagrange’s
Equations with
Constraints
                   ◻ Backward Recursion (inverse dynamics):
                  Fn+ : End-effector wrench, gn,n+ : transform from tool frame to Cn

                                              Fi = AdT−
                                                     g
                                                                ⋅ Fi+ + Mi Vi − adT i ⋅ Mi Vi
                                                                           ˙      V
                                                         i,i+

                                              τ i = ξ iT ⋅ Fi
Chapter 4 Manipulator Dynamics

                 4.4 Coordinate Invariant Algorithms
                                                                                                   36


Chapter
 Manipulator                   V = Adg −, ⋅ V + ξ θ
                                                  ˙

                               Fn = AdTn,n+ ⋅ Fn+ + Mn Vn − adT n ⋅ (Mn Vn )
Dynamics
                                      g−
                                                       ˙      V
Introduction

Lagrange’s
Equations
                 Define:
                                             ⎡ θ ⎤
                                             ⎢ ˙ ⎥
                                           ˙=⎢    ⎥ ∈ ℝn , ξ =
Dynamics of
                          V                                         ξ
                   V=           ∈ℝ        ,θ ⎢    ⎥                       ⋱            ∈ℝ
Open-chain                           n×                                                      n×n
                                             ⎢ θn ⎥
Manipulators
                          Vn                 ⎣    ⎦
                                               ˙                                ξn
                                                                 ⎡ Adg −      ⎤
Coordinate

                                                                 ⎢            ⎥
Invariant
                          F                        τ             ⎢            ⎥
                   F=          ∈ℝ         ,τ =          ∈ ℝ ,P = ⎢            ⎥∈ℝ
Algorithms                                                              ,

                                                                 ⎢            ⎥
                                     n×                    n                          n×

                                                                 ⎢            ⎥
Lagrange’s
                          Fn                       τn
                                                                 ⎣            ⎦
Equations with
Constraints

                   Pt = [ ⋯    Adgn,n+ ] ∈ ℝ
                                  −
                                                 × n
Chapter 4 Manipulator Dynamics

                 4.4 Coordinate Invariant Algorithms
                                                                                                                 37

                                                              ˙
                                            V = Adg − ⋅ V + ξ θ
                                                         ,
Chapter
 Manipulator                                                ˙
                                            V − Adg − V = ξ θ
Dynamics                                                 ,

Introduction
                                            Vn − Adg −                     ˙
                                                                 Vn− = ξ n θ n
Lagrange’s
                                                         n− ,n
Equations
                                 ⎡                                             ⎤
                                 ⎢ −Ad −                                       ⎥⎡ V        ⎤
                                     I                 ⋯
                                 ⎢                                             ⎥⎢ V        ⎥
Dynamics of
                                ⇒⎢                                             ⎥⎢          ⎥
                                                I       ⋱
                                 ⎢                                             ⎥⎢          ⎥
Open-chain                             g,
                                 ⎢              ⋱       ⋱                      ⎥⎢          ⎥
                                 ⎢                                           I ⎥ ⎣ Vn      ⎦
Manipulators
                                 ⎣                                             ⎦
                                                     −Adg −
Coordinate                                                       n− ,n
Invariant                                                                             V
Algorithms                                          G−
                                 ⎡ Adg −    ⎤   ⎡ ξ                                   ⎤⎡        ⎤
                                 ⎢          ⎥   ⎢                                     ⎥⎢        ⎥
                                                                                           ˙
                                                                                      ⎥⎢        ⎥
                                                                                           θ
                                 ⎢          ⎥   ⎢
Lagrange’s
                                =⎢          ⎥V +⎢                                     ⎥⎢        ⎥
                                                                                      ⎥⎢        ⎥
                                        ,
                                                                  ξ                        ˙
                                                                                           θ
                                 ⎢          ⎥   ⎢
Equations with

                                 ⎢          ⎥   ⎢                                     ⎥⎢        ⎥
                                                                             ⋱
                                                                                      ⎦⎢        ⎥
Constraints
                                 ⎣          ⎦   ⎣                                ξn    ⎣   ˙
                                                                                           θn   ⎦
                                        P                                ξ                 ˙
                                                                                           θ

                                    ˙
                 Thus V = GP V + Gξ θ
Chapter 4 Manipulator Dynamics

                 4.4 Coordinate Invariant Algorithms
                                                                                                      38

                 where
                              ⎡ I                          ⋯               ⎤
Chapter
                              ⎢ Ad −                       ⋯               ⎥
                              ⎢                                            ⎥
 Manipulator

                              ⎢                                            ⎥
Dynamics                                       I
                          G = ⎢ Adg −,                                     ⎥∈ℝ
                                  g,
Introduction
                              ⎢              Adg −,    I   ⋱               ⎥
                                                                                       n× n
                              ⎢                        ⋱                   ⎥
                              ⎢                            I               ⎥
                              ⎢ Adg −                  ⋯ Adgn− ,n        I ⎥
Lagrange’s

                              ⎣              Adg −,n                       ⎦
Equations                                                   −
                                     ,n
Dynamics of
Open-chain
Manipulators

Coordinate
Invariant
Algorithms                                V = ξ θ + Adg −, V − ad ξ θ (Adg −, V )
                                          ˙     ¨          ˙        ˙

Lagrange’s
Equations with
                             V − Adg −, V = ξ θ − ad ξ
                             ˙          ˙     ¨               ˙
                                                              θ   (Adg −, V )
                         Vn − Adgn− ,n Vn−    = ξ n θ n − ad ξ n θ n (Adgn− ,n Vn− )
Constraints
                         ˙       −     ˙            ¨            ˙       −



                                                                          (Continues next slide)
Chapter 4 Manipulator Dynamics

                 4.4 Coordinate Invariant Algorithms
                                                                                                           39

                     ⎡ I          ⋯         ⎤ ⎡ V ⎤ ⎡Ad −            ⎤   ⎡ξ       ⎤ ⎡θ ⎤
                     ⎢                      ⎥⎢ ˙ ⎥ ⎢ g ,             ⎥   ⎢        ⎥⎢¨ ⎥
                                                                                     ¨
                     ⎢−Adg −, I   ⋱         ⎥ ⎢V ⎥ ⎢                 ⎥˙  ⎢ ξ      ⎥ ⎢θ ⎥
                     ⎢                      ⎥⎢ ˙ ⎥ = ⎢               ⎥V +⎢          ⎢ ⎥+
                     ⎢        ⋱ ⋱           ⎥⎢ ⎥ ⎢                   ⎥   ⎢   ⋱ ⎥⎢ ⎥
                                                                                  ⎥⎢ ⎥
Chapter

                     ⎢          −Adgn− ,n I ⎥ ⎢Vn ⎥ ⎢                ⎥   ⎢
                     ⎢                      ⎥⎣˙ ⎦ ⎣                           ξ n ⎥ ⎢θ n ⎥
 Manipulator

                     ⎣                      ⎦                        ⎦   ⎣        ⎦⎣¨ ⎦
Dynamics                            −
Introduction
                              G−                                P                   ξ
                     ⎡−ad ξ θ               ⋯             ⎤ ⎡Ad −
Lagrange’s

                     ⎢                                    ⎥⎢ g ,    ⎤
                                                                    ⎥
Equations

                     ⎢        −ad ξ         ⋱             ⎥⎢        ⎥
                            ˙
                     ⎢                                    ⎥⎢        ⎥V +
                     ⎢                                    ⎥⎢
Dynamics of

                                ⋱           ⋱                       ⎥
                                       ˙
                                       θ
                     ⎢                                    ⎥
                                              −ad ξ n θ n ⎥ ⎢       ⎥
Open-chain

                     ⎢          ⋯                     ˙ ⎦⎣          ⎦
Manipulators

Coordinate           ⎣
Invariant
Algorithms                         ad ξ θ
                                        ˙

                     ⎡−ad ξ θ               ⋯             ⎤⎡           ⋯        ⎤ ⎡V ⎤
                     ⎢                                    ⎥⎢                    ⎥⎢ ⎥
Lagrange’s
                     ⎢        −ad ξ         ⋱             ⎥ ⎢Adg −,    ⋱        ⎥ ⎢V ⎥
                            ˙
                     ⎢                                    ⎥⎢
Equations with

                     ⎢                                    ⎥⎢        ⋱ ⋱         ⎥⎢ ⎥
                                ⋱           ⋱                                   ⎥⎢ ⎥
Constraints                            ˙
                                       θ
                     ⎢                                    ⎥
                     ⎢
                     ⎣          ⋯             −ad ξ n θ n ⎥ ⎢
                                                      ˙ ⎦⎣           Adgn− ,n
                                                                        −       ⎥ ⎣Vn ⎦
                                                                                ⎦
                                                                     Γ
                                                                                (Continues next slide)
Chapter 4 Manipulator Dynamics

                 4.4 Coordinate Invariant Algorithms
                                                                                                  40


Chapter
                 Thus
                           V = G ⋅ ξ θ + G ⋅ P V + G ⋅ ad ξ θ P V + G ⋅ ad ξ θ ΓV
 Manipulator
Dynamics                   ˙         ¨         ˙            ˙                ˙
Introduction

Lagrange’s
                 Finally the backward recursion:

                             Fn = AdT− Fn+ + Mn Vn − adT n ⋅ (Mn Vn )
Equations

Dynamics of                         g
                                                ˙      V
                                      n,n+

                           Fn− =                Fn + Mn− Vn− − adT n− ⋅ (Mn− Vn− )
Open-chain
Manipulators
                                   AdT−
                                     gn−
                                                         ˙       V
                                           ,n
Coordinate
Invariant
Algorithms

Lagrange’s                   F = AdT− F + M V − adT (M V )
                                   g
                                            ˙     V
                                      ,
Equations with
Constraints
                                                                      (Continues next slide)
Chapter 4 Manipulator Dynamics

                 4.4 Coordinate Invariant Algorithms
                                                                                 41
                  ⎡ I−AdT−           ⎤
                  ⎢                  ⎥ ⎡ F ⎤ ⎡M     ⎤ ⎡V ⎤ ⎡        ⎤
                  ⎢                  ⎥ ⎢F ⎥ ⎢ M     ⎥ ⎢V ⎥ ⎢        ⎥
                                                        ˙
                       I ⋱                          ⎥⎢ ˙ ⎥ +⎢       ⎥
                        g,
                  ⎢
                 ⇒⎢                  ⎥⎢ ⎥ = ⎢
                  ⎢
                                     ⎥⎢ ⎥ ⎢
                       ⋱ ⋱−Adg − ⎥ ⎢ ⎥ ⎢        ⋱ ⎥ ⎢ ⎥ ⎢ T ⎥ Fn+ +
                                                      ⎢ ⎥ ⎢         ⎥
                                                 Mn ⎥ ⎢V ⎥ ⎢Adgn,n+ ⎥
Chapter
                              T
                  ⎢            n− ,n ⎥ ⎣F n ⎦ ⎣     ⎦ ⎣ ˙ n⎦ ⎣
 Manipulator
Dynamics
                  ⎣    ⋯     I       ⎦
                                                               −
                                                                    ⎦
Introduction
                                               M
                                                               PT
                 ⎡−adT         ⎤
Lagrange’s                                                      t

                 ⎢             ⎥ M
                 ⎢             ⎥
Equations
                                          V
                 ⎢     ⋱           ⋱
                     V

                 ⎢          T ⎥
                         −adVn ⎥
Dynamics of

                 ⎣             ⎦
Open-chain                           Mn   Vn
Manipulators

Coordinate            ad T
Invariant                V
Algorithms

Lagrange’s
Equations with
Constraints
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4

More Related Content

What's hot

Firk essential physics [yale 2000] 4 ah
Firk   essential physics [yale 2000] 4 ahFirk   essential physics [yale 2000] 4 ah
Firk essential physics [yale 2000] 4 ahZulham Mustamin
 
Time dependent perturbations
Time dependent perturbationsTime dependent perturbations
Time dependent perturbationsZahid Mehmood
 
Schrodinger equation and its applications: Chapter 2
Schrodinger equation and its applications: Chapter 2Schrodinger equation and its applications: Chapter 2
Schrodinger equation and its applications: Chapter 2Dr.Pankaj Khirade
 
Time Independent Perturbation Theory, 1st order correction, 2nd order correction
Time Independent Perturbation Theory, 1st order correction, 2nd order correctionTime Independent Perturbation Theory, 1st order correction, 2nd order correction
Time Independent Perturbation Theory, 1st order correction, 2nd order correctionJames Salveo Olarve
 
Kane’s Method for Robotic Arm Dynamics: a Novel Approach
Kane’s Method for Robotic Arm Dynamics: a Novel ApproachKane’s Method for Robotic Arm Dynamics: a Novel Approach
Kane’s Method for Robotic Arm Dynamics: a Novel ApproachIOSR Journals
 
Kane/DeAlbert dynamics for multibody system
Kane/DeAlbert dynamics for multibody system Kane/DeAlbert dynamics for multibody system
Kane/DeAlbert dynamics for multibody system Tadele Belay
 
Multi-particle Entanglement in Quantum States and Evolutions
Multi-particle Entanglement in Quantum States and EvolutionsMulti-particle Entanglement in Quantum States and Evolutions
Multi-particle Entanglement in Quantum States and EvolutionsMatthew Leifer
 
A Route to Chaos for the Physical Double Pendulum by
A Route to Chaos for the Physical Double Pendulum by A Route to Chaos for the Physical Double Pendulum by
A Route to Chaos for the Physical Double Pendulum by Daniel Berkowitz
 
Postulates of quantum mechanics & operators
Postulates of quantum mechanics & operatorsPostulates of quantum mechanics & operators
Postulates of quantum mechanics & operatorsGiri dharan
 
Postulates of quantum mechanics
Postulates of quantum mechanics Postulates of quantum mechanics
Postulates of quantum mechanics Student
 
The wkb approximation
The wkb approximationThe wkb approximation
The wkb approximationZahid Mehmood
 
Chemical Dynamics Lecture5 Wk2
Chemical Dynamics Lecture5 Wk2Chemical Dynamics Lecture5 Wk2
Chemical Dynamics Lecture5 Wk2abuuthman
 
Time Dependent Perturbation Theory
Time Dependent Perturbation TheoryTime Dependent Perturbation Theory
Time Dependent Perturbation TheoryJames Salveo Olarve
 

What's hot (20)

Firk essential physics [yale 2000] 4 ah
Firk   essential physics [yale 2000] 4 ahFirk   essential physics [yale 2000] 4 ah
Firk essential physics [yale 2000] 4 ah
 
Oscillation ppt
Oscillation ppt Oscillation ppt
Oscillation ppt
 
Time dependent perturbations
Time dependent perturbationsTime dependent perturbations
Time dependent perturbations
 
Schrodinger equation and its applications: Chapter 2
Schrodinger equation and its applications: Chapter 2Schrodinger equation and its applications: Chapter 2
Schrodinger equation and its applications: Chapter 2
 
Time Independent Perturbation Theory, 1st order correction, 2nd order correction
Time Independent Perturbation Theory, 1st order correction, 2nd order correctionTime Independent Perturbation Theory, 1st order correction, 2nd order correction
Time Independent Perturbation Theory, 1st order correction, 2nd order correction
 
Kane’s Method for Robotic Arm Dynamics: a Novel Approach
Kane’s Method for Robotic Arm Dynamics: a Novel ApproachKane’s Method for Robotic Arm Dynamics: a Novel Approach
Kane’s Method for Robotic Arm Dynamics: a Novel Approach
 
Kane/DeAlbert dynamics for multibody system
Kane/DeAlbert dynamics for multibody system Kane/DeAlbert dynamics for multibody system
Kane/DeAlbert dynamics for multibody system
 
Multi-particle Entanglement in Quantum States and Evolutions
Multi-particle Entanglement in Quantum States and EvolutionsMulti-particle Entanglement in Quantum States and Evolutions
Multi-particle Entanglement in Quantum States and Evolutions
 
A Route to Chaos for the Physical Double Pendulum by
A Route to Chaos for the Physical Double Pendulum by A Route to Chaos for the Physical Double Pendulum by
A Route to Chaos for the Physical Double Pendulum by
 
Postulates of quantum mechanics & operators
Postulates of quantum mechanics & operatorsPostulates of quantum mechanics & operators
Postulates of quantum mechanics & operators
 
Physics
PhysicsPhysics
Physics
 
Postulates of quantum mechanics
Postulates of quantum mechanics Postulates of quantum mechanics
Postulates of quantum mechanics
 
The wkb approximation
The wkb approximationThe wkb approximation
The wkb approximation
 
Lagrange's theorem
Lagrange's theoremLagrange's theorem
Lagrange's theorem
 
Chemical Dynamics Lecture5 Wk2
Chemical Dynamics Lecture5 Wk2Chemical Dynamics Lecture5 Wk2
Chemical Dynamics Lecture5 Wk2
 
Essentialphysics1
Essentialphysics1Essentialphysics1
Essentialphysics1
 
Time Dependent Perturbation Theory
Time Dependent Perturbation TheoryTime Dependent Perturbation Theory
Time Dependent Perturbation Theory
 
1 introduction
1 introduction1 introduction
1 introduction
 
Real Time Spectroscopy
Real Time SpectroscopyReal Time Spectroscopy
Real Time Spectroscopy
 
Quantum
QuantumQuantum
Quantum
 

More from ATC, ECE, Hong Kong University of Science and Technology (8)

[Download] rev chapter-9-june26th
[Download] rev chapter-9-june26th[Download] rev chapter-9-june26th
[Download] rev chapter-9-june26th
 
[Download] rev chapter-7-june26th
[Download] rev chapter-7-june26th[Download] rev chapter-7-june26th
[Download] rev chapter-7-june26th
 
[Download] rev chapter-8-june26th
[Download] rev chapter-8-june26th[Download] rev chapter-8-june26th
[Download] rev chapter-8-june26th
 
[Download] rev chapter-6-june26th
[Download] rev chapter-6-june26th[Download] rev chapter-6-june26th
[Download] rev chapter-6-june26th
 
[Download] rev chapter-5-june26th
[Download] rev chapter-5-june26th[Download] rev chapter-5-june26th
[Download] rev chapter-5-june26th
 
[Download] rev chapter-1-july3rd
[Download] rev chapter-1-july3rd[Download] rev chapter-1-july3rd
[Download] rev chapter-1-july3rd
 
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
 
[Download] Rev-Chapter-2
[Download] Rev-Chapter-2[Download] Rev-Chapter-2
[Download] Rev-Chapter-2
 

Recently uploaded

Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
 
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...Pooja Nehwal
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxShobhayan Kirtania
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 

Recently uploaded (20)

Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptx
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 

[Download] Rev-Chapter-4

  • 1. Chapter 4 Manipulator Dynamics 1 Chapter Lecture Notes for Manipulator Dynamics A Geometrical Introduction to Introduction Lagrange’s Robotics and Manipulation Equations Dynamics of Open-chain Richard Murray and Zexiang Li and Shankar S. Sastry Manipulators CRC Press Coordinate Invariant Algorithms Lagrange’s Zexiang Li and Yuanqing Wu Equations with Constraints ECE, Hong Kong University of Science & Technology June ,
  • 2. Chapter 4 Manipulator Dynamics 2 Chapter Manipulator Dynamics Chapter Manipulator Dynamics Introduction Introduction Lagrange’s Equations Lagrange’s Equations Dynamics of Open-chain Manipulators Dynamics of Open-chain Manipulators Coordinate Invariant Algorithms Lagrange’s Coordinate Invariant Algorithms Equations with Constraints Lagrange’s Equations with Constraints
  • 3. Chapter 4 Manipulator Dynamics 4.1 Introduction 3 Definition: Dynamics Physical laws governing the motions of bodies and aggregates of Chapter Manipulator bodies. Dynamics Introduction Lagrange’s Equations Dynamics of Open-chain Manipulators Coordinate Invariant Algorithms Lagrange’s Equations with Constraints
  • 4. Chapter 4 Manipulator Dynamics 4.1 Introduction 3 Definition: Dynamics Physical laws governing the motions of bodies and aggregates of Chapter Manipulator bodies. Dynamics Introduction ◻ A short history: Lagrange’s Equations “Everything happens for a reason.” Dynamics of Open-chain Aristotle (384 BC - 322 BC) Manipulators Coordinate Invariant Algorithms Lagrange’s Equations with Constraints
  • 5. Chapter 4 Manipulator Dynamics 4.1 Introduction 3 Definition: Dynamics Physical laws governing the motions of bodies and aggregates of Chapter Manipulator bodies. Dynamics Introduction ◻ A short history: Lagrange’s Equations “Everything happens for a reason.” Dynamics of Open-chain Aristotle (384 BC - 322 BC) Manipulators Coordinate Invariant Algorithms Experiments with cannon balls from the tower of Pisa. Lagrange’s G. Galilei (1564 - 1642) Equations with Constraints
  • 6. Chapter 4 Manipulator Dynamics 4.1 Introduction 3 Definition: Dynamics Physical laws governing the motions of bodies and aggregates of Chapter Manipulator bodies. Dynamics Introduction ◻ A short history: Lagrange’s Equations “Everything happens for a reason.” Dynamics of Open-chain Aristotle (384 BC - 322 BC) Manipulators Coordinate Invariant Algorithms Experiments with cannon balls from the tower of Pisa. Lagrange’s G. Galilei (1564 - 1642) Equations with Constraints Laws of motion. I. Newton (1642 - 1726) (Continues next slide)
  • 7. Chapter 4 Manipulator Dynamics 4.1 Introduction 4 Chapter Manipulator Laws of motion from particles to rigid bodies. Dynamics L. Euler (1707 - 1783) Introduction Lagrange’s Equations Dynamics of Open-chain Manipulators Coordinate Invariant Algorithms Lagrange’s Equations with Constraints
  • 8. Chapter 4 Manipulator Dynamics 4.1 Introduction 4 Chapter Manipulator Laws of motion from particles to rigid bodies. Dynamics L. Euler (1707 - 1783) Introduction Lagrange’s Equations Calculus of Variation and the Principles of least action. Dynamics of Open-chain J. Lagrange (1736 - 1813) Manipulators Coordinate Invariant Algorithms Lagrange’s Equations with Constraints
  • 9. Chapter 4 Manipulator Dynamics 4.1 Introduction 4 Chapter Manipulator Laws of motion from particles to rigid bodies. Dynamics L. Euler (1707 - 1783) Introduction Lagrange’s Equations Calculus of Variation and the Principles of least action. Dynamics of Open-chain J. Lagrange (1736 - 1813) Manipulators Coordinate Invariant Algorithms Quaternions and Hamilton’s Principle. Lagrange’s W. Hamilton (1805 - 1865) Equations with Constraints † End of Section †
  • 10. Chapter 4 Manipulator Dynamics 4.2 Lagrange Equations 5 ◻ A simple example: Newton’s Equation: Lagrangian Equation: m¨ = Fx Chapter Manipulator x m¨ = Fy − mg Dynamics Introduction y Momentum: Px = m˙ Lagrange’s Equations x Dynamics of Py = m˙y = Fx , dt Py = Fy − mg Open-chain d d Manipulators P dt x Coordinate Invariant y Algorithms Lagrange’s Fy F Equations with Constraints m Fx mg x Figure 4.1
  • 11. Chapter 4 Manipulator Dynamics 4.2 Lagrange Equations 5 ◻ A simple example: Newton’s Equation: Lagrangian Equation: m¨ = Fx Chapter − = Fx Manipulator x d ∂L ∂L m¨ = Fy − mg Dynamics y dt ∂˙ ∂x x Introduction − = Fy d ∂L ∂L Momentum: Px = m˙ Lagrange’s Equations x dt ∂˙ ∂y y Dynamics of Py = m˙y Lagrangian function: = Fx , dt Py = Fy − mg Open-chain d d Manipulators P dt x Coordinate Invariant y ⇔ L = T − V, Px = ∂L , Py = ∂L Algorithms ∂˙ x ∂˙ y Lagrange’s Fy F Kinetic energy: Equations with m Fx T = m(˙ + y ) Constraints x ˙ mg x Potential energy: Figure 4.1 V = mgy
  • 12. Chapter 4 Manipulator Dynamics 4.2 Lagrange’s Equations 6 ◻ Generalization to multibody systems: qi , i = , . . . , n: generalized coordinates Chapter Kinetic energy: Manipulator Dynamics y T = T(q, q) ˙ Introduction m q Lagrange’s Equations Potential energy: V = V(q) Dynamics of Open-chain m Manipulators q Lagrangian: Coordinate Invariant L(q, q) = T(q, q) − V(q) Algorithms m ˙ ˙ Lagrange’s q τ i , i = , . . . , n: external force on qi Equations with Constraints x Lagrangian Equation: Figure 4.2 d ∂L ∂L − = τi , i = , . . . , n dt ∂˙ i ∂qi q
  • 13. Chapter 4 Manipulator Dynamics 4.2 Lagrange’s Equations 7 Example: Pendulum equation Generalized coordinate: θ∈S Chapter y Manipulator Dynamics Kinematics: x = l sin θ, y = −l cos θ Introduction x Lagrange’s l x = l cos θ ⋅ θ, y = l sin θ ⋅ θ Equations Dynamics of ˙ ˙ ˙ ˙ θ Open-chain Manipulators Kinetic energy: Coordinate T(θ, θ) = m(˙ + y ) = ml θ ˙ x ˙ ˙ Invariant mg Algorithms Potential energy: Figure 4.3 Lagrange’s Equations with V = mgl( − cos θ) Constraints Lagrangian function: L = T − V = ml θ − mgl( − cos θ), ⇒ ˙ ∂L ˙ ∂θ = ml θ, ˙ ∂L ∂θ = −mgl sin θ Equation of motion: d ∂L ˙ dt ∂ θ − ∂L ∂θ = τ ⇒ ml θ + mgl sin θ = τ ¨
  • 14. Chapter 4 Manipulator Dynamics 4.2 Lagrange’s Equations 8 Example: A spherical pendulum Generalized coordinate: ⎡ l sin θ cos ϕ ⎤ Chapter Manipulator ⎢ ⎥ Dynamics r(θ, ϕ) = ⎢ l sin θ sin ϕ ⎢ −l cos θ ⎥ ⎥ ⎣ ⎦ Introduction Lagrange’s Kinetic energy: Equations Dynamics of Open-chain T= m ˙ r = ml (θ + ( − cos θ)ϕ ) ˙ ˙ Manipulators θ Coordinate Invariant Potential energy: Algorithms Lagrange’s V = −mgl cos θ Equations with Constraints Lagrangian function: ϕ mg L(q, q) = ˙ ml (θ + ( − cos θ)ϕ ) + mgl cos θ ˙ ˙ Figure 4.4 (continues next slide)
  • 15. Chapter 4 Manipulator Dynamics 4.2 Lagrange’s Equations 9 ⎧d ⎪ ∂L d ⎪ ⎪ ⎪ dt = (ml θ) = ml θ, ˙ ¨ ⎪ ˙ ⎨ ∂θ dt ⎪ Chapter ⎪ ⎪ ∂L Manipulator ⎪ ⎪ = ml sin θ cos θ ϕ − mgl sin θ ˙ Dynamics ⎩ ∂θ ⎧ ⎪d ∂L d ⎪ Introduction ⎪ ⎪ dt = (ml sin θ ϕ) = ml sin θ ϕ + ml sin θ cos θ θ ϕ, ˙ ¨ ˙˙ ⎪ ⎪ ˙ ∂ϕ dt ⎨ Lagrange’s Equations ⎪ ⎪ ⎪ ∂L ⎪ ⎪ = Dynamics of ⎪ ⎩ ∂ϕ Open-chain Manipulators ml ¨ −ml sθ cθ ϕ˙ Coordinate ml sθ θ ¨ + ˙˙ + mglsθ = Invariant ϕ ml sθ cθ θ ϕ Algorithms Lagrange’s Equations with Constraints
  • 16. Chapter 4 Manipulator Dynamics 4.2 Lagrange’s Equations 10 ◻ Kinetic energy of a rigid body: Chapter Manipulator r Dynamics B Introduction Lagrange’s ra Equations A gab Dynamics of Open-chain Manipulators Coordinate Figure 4.5 Invariant Algorithms Volume occupied by the body: V Lagrange’s Equations with Mass density: ρ(r) m= ∫ Constraints Mass: ρ(r)dV V Mass center: r≜ m ∫ V ρ(r)rdV Relative to frame at the mass center: r= (Continues next slide)
  • 17. Chapter 4 Manipulator Dynamics 4.2 Lagrange’s Equations 11 Kinetic energy (In A-frame): T= ρ(r) p + Rr dV = + pT Rr + Rr )dV Chapter Manipulator Dynamics ∫V ˙ ˙ ∫ V ˙ ρ(r)( p ˙ ˙ ˙ = m p + pT R ∫ ρ(r)rdV + ∫ Introduction ˙ ˙ ˙ ˙ ρ(r) Rr dV Lagrange’s V V Equations = Dynamics of Open-chain Manipulators Coordinate Invariant Algorithms Lagrange’s Equations with Constraints
  • 18. Chapter 4 Manipulator Dynamics 4.2 Lagrange’s Equations 11 Kinetic energy (In A-frame): T= ρ(r) p + Rr dV = + pT Rr + Rr )dV Chapter Manipulator Dynamics ∫V ˙ ˙ ∫ V ˙ ρ(r)( p ˙ ˙ ˙ = m p + pT R ∫ ρ(r)rdV + ∫ Introduction ˙ ˙ ˙ ˙ ρ(r) Rr dV Lagrange’s V V Equations = Dynamics of Open-chain Manipulators Coordinate Invariant Algorithms ∫ V ˙ ρ(r) Rr dV = ∫ ρ(r) R Rr dV = ∫ ρ(r) ωr dV = ∫ ρ(r) ˆω dV Lagrange’s ˙T Equations with ˆ r Constraints = ∫ ρ(r)(−ω ˆ ω)dV = ω − ∫ ρ(r)ˆ dV ω ≜ ω Iω r T T r T (Continues next slide)
  • 19. Chapter 4 Manipulator Dynamics 4.2 Lagrange’s Equations 12 ⎡ Ixx Ixy Ixz ⎤ where ⎢ ⎥ I = − ρ(r)ˆ dV ≜ ⎢ Ixy Iyy Iyz ⎥ Chapter ∫ ⎢ ⎥ Manipulator r ⎢ Ixz Iyz Izz ⎥ Dynamics Introduction ⎣ ⎦ Lagrange’s is the Inertia tensor with Equations Dynamics of Open-chain Ixx = ∫ ρ(r)(y + z )dxdydz, Ixy = − ∫ ρ(r)xydxdydz Manipulators Coordinate T= m p ˙ + (ωb )T Iωb = m RT p ˙ + (ωb )T Iωb Invariant Algorithms Lagrange’s = (V b )T mI I Vb Equations with Constraints Mb M b : Generalized inertia matrix in B-frame.
  • 20. Chapter 4 Manipulator Dynamics 4.2 Lagrange’s Equations 13 Example: Mb for a rectangular object ρ= Chapter m z Manipulator Dynamics lωh Introduction Ixx = ∫ ρ(y + z )dxdydz y V Lagrange’s h ω l x h =ρ (y + z )dxdydz Equations Dynamics of ∫ ∫ ∫ − h − ω − l l Open-chain w =ρ (lω h + lωh ) = (ω + h ) Manipulators m Coordinate Figure 4.6 Invariant h ω l Ixy = − ρxydV = −ρ Algorithms Lagrange’s Equations with ∫ V ∫ ∫ ∫ −h −ω −l xydxdydz Constraints l h ω = −ρ dydz = y ∫ ∫ −h −ω x −l (Continues next slide)
  • 21. Chapter 4 Manipulator Dynamics 4.2 Lagrange’s Equations 14 ⎡ (w + h ) ⎤ ⎢ ⎥ m ⎢ ⎥ b I=⎢ (l + h ) ⎥,M = mI I ⎢ ⎥ m × ⎢ (w + l ) ⎥ Chapter ⎣ ⎦ Manipulator m Dynamics Introduction Lagrange’s Equations Dynamics of Open-chain Manipulators Coordinate Invariant Algorithms Lagrange’s Equations with Constraints
  • 22. Chapter 4 Manipulator Dynamics 4.2 Lagrange’s Equations 14 ⎡ (w + h ) ⎤ ⎢ ⎥ m ⎢ ⎥ b I=⎢ (l + h ) ⎥,M = mI I ⎢ ⎥ m × ⎢ (w + l ) ⎥ Chapter ⎣ ⎦ Manipulator m Dynamics ◻ M b under change of frames: Introduction Lagrange’s Equations Dynamics of V = g− ⋅ g , T = V T Mb V ˆ ˙ g g (t) Open-chain V = Adg V Manipulators Coordinate T = (Adg V )T M b (Adg V ) Invariant Algorithms g (t) g Lagrange’s = V T AdT M b Adg V ≜ V T M b V Equations with Constraints g Figure 4.7 M b = AdT M b Adg g
  • 23. Chapter 4 Manipulator Dynamics 4.2 Lagrange’s Equations 15 Example: Dynamics of a -dof planar robot ⎡ Ixxi ⎤ Chapter ⎢ ⎥ Manipulator Ii = ⎢ Iyyi ⎥,i = , ⎢ ⎥ Dynamics Introduction ⎣ Izzi ⎦ l2 r 2 θ2 Lagrange’s Equations T(θ, θ) = m v + ωT I ω Dynamics of l1 Open-chain Manipulators ˙ y r1 θ1 + m v + ω I ω Coordinate Invariant T x Algorithms Figure 4.8 Lagrange’s Equations with Constraints ω = ω = ˙ θ θ +θ ˙ ˙ (Continues next slide)
  • 24. Chapter 4 Manipulator Dynamics 4.2 Lagrange’s Equations 16 xi Chapter Pi = yi ∶ Mass center γi ∶ Distance from joint i to mass center Manipulator Dynamics Introduction Lagrange’s Equations Change of Coordinates: ⎧ x = −r s θ ⎪˙ x =rc ⎪ Dynamics of ˙ ⇒⎨ Open-chain y =rs ⎪y =r c θ Manipulators Coordinate ⎪˙ ⎩ ˙ Invariant ⎧ x = −(l s + r s )θ − r s θ Algorithms x =l c +r c ⎪˙ ⎪ ˙ ˙ ⇒⎨ Lagrange’s y =l s +r s ⎪ y = (l c + r c )θ + r c θ ⎪˙ Equations with ⎩ Constraints ˙ ˙ (Continues next slide)
  • 25. Chapter 4 Manipulator Dynamics 4.2 Lagrange’s Equations 17 Kinetic energy: Chapter Manipulator T(θ, θ) = m (x + y ) + Iz θ + m (x + y ) + Iz (θ + θ ) ˙ ˙ ˙ ˙ ˙ ˙ ˙ ˙ α + βc δ + βc Dynamics = [θ θ ] ˙ θ δ + βc Introduction ˙ ˙ Lagrange’s δ ˙ θ Equations M(θ) Dynamics of Open-chain α = Iz + Iz + m r + m (l + r ), Manipulators β = m l r , δ = Iz + m r , L = T Coordinate Invariant Algorithms Lagrange’s Equations with Equation of motion: Constraints −βs θ −βs (θ + θ ) + = ¨ θ ˙ ˙ ˙ ˙ θ τ M(θ) ¨ ˙ ˙ τ θ βs θ θ † End of Section †
  • 26. Chapter 4 Manipulator Dynamics 4.3 Dynamics of Open-chain Manipulators 18 ◻ Dynamics of an open-chain manipulator: Chapter Definition: Li : frame at mass center of link i, gsli (θ) = e ξ ⋯e ξ i θ i gsli (o) Manipulator ˆ θ ˆ Dynamics θ1 Introduction θ2 θ3 l1 l2 Lagrange’s L2 L3 Equations Dynamics of r1 r2 Open-chain l0 L1 Manipulators r0 Coordinate S Invariant Algorithms Figure 4.9 Lagrange’s ⎡ θ ⎤ Equations with ⎢ ⎥ Constraints ˙ ⎢ ⎥ ⎢ ˙ ⎥ ⎢ ⎥ Vsli = Jsli (θ)θ = [ξ † ξ † ⋯ ξ † b b ⋯ ] ⎢ ˙θ i ⎥ = Ji (θ)θ ⎢ θ i+ ⎥ ˙ ˙ ⎢ ⎥ i ⎢ ⎥ ⎢ ˙ ⎥ ⎣ θn ⎦ (Continues next slide)
  • 27. Chapter 4 Manipulator Dynamics 4.3 Dynamics of Open-chain Manipulators 19 ξ † = Ad− (e ξ j+ ⋯e ξ i θ i gsli ( ))ξ j , j ≤ i ˆ θ j+ ˆ j Ti (θ, θ) = (Vsli )T Mib Vsli = θ T JiT (θ)Mib Ji (θ)θ Chapter ˙ b b ˙ ˙ Manipulator Dynamics n Introduction T(θ) = Ti (θ, θ) = ˙ θ T M(θ)θ, ˙ ˙ i= Lagrange’s n JiT (θ)Mib Ji (θ) = Mij (θ)θ i θ j Equations M(θ) = ˙ ˙ Dynamics of i i,j= Open-chain Manipulators hi (θ): Height of Li , Vi (θ) = mi ghi (θ), V(θ) = mi ghi (θ) Coordinate i= Invariant Algorithms Lagrange’s Equation: Lagrange’s d ∂L ∂L − = τ i , i = , . . . , n, Equations with ˙ dt ∂θ i ∂θ i Constraints d ∂L d ⎛n ˙⎞ n ¨ ˙ ˙ Mij θ j = Mij θ j + Mij θ j dt ⎝ j= ⎠ = ˙ dt ∂θ i j= (Continues next slide)
  • 28. Chapter 4 Manipulator Dynamics 4.3 Dynamics of Open-chain Manipulators 20 ∂L n ∂Mkj ∂V ∂Mij ˙ = ˙ ˙ θk θj − , ˙ Mij = θk ∂θ i j,k= ∂θ i ∂θ i k ∂θ k Chapter Manipulator n n ∂Mij ˙ ˙ ∂Mkj ⇒ ¨ ˙ ˙ ∂V Dynamics Mij θ j + θj θk − θk θj + = τi j= j,k= ∂θ k ∂θ i ∂θ i Introduction n n ⇒ Lagrange’s ¨ ˙ ˙ ∂V Mij θ j + Γijk θ k θ j + = τi Equations j= j,k= ∂θ i Dynamics of Open-chain ∂Mij ∂Mik ∂Mkj Γijk ≜ + − Manipulators ∂θ k ∂θ j ∂θ i Coordinate ˙ ˙ θ i ⋅ θ j , i ≠ j ∶ Coriolis term, ˙ θ i : Centrifugal term Invariant Algorithms Lagrange’s Equations with Constraints
  • 29. Chapter 4 Manipulator Dynamics 4.3 Dynamics of Open-chain Manipulators 20 ∂L n ∂Mkj ∂V ∂Mij ˙ = ˙ ˙ θk θj − , ˙ Mij = θk ∂θ i j,k= ∂θ i ∂θ i k ∂θ k Chapter Manipulator n n ∂Mij ˙ ˙ ∂Mkj ⇒ ¨ ˙ ˙ ∂V Dynamics Mij θ j + θj θk − θk θj + = τi j= j,k= ∂θ k ∂θ i ∂θ i Introduction n n ⇒ Lagrange’s ¨ ˙ ˙ ∂V Mij θ j + Γijk θ k θ j + = τi Equations j= j,k= ∂θ i Dynamics of Open-chain ∂Mij ∂Mik ∂Mkj Γijk ≜ + − Manipulators ∂θ k ∂θ j ∂θ i Coordinate ˙ ˙ θ i ⋅ θ j , i ≠ j ∶ Coriolis term, ˙ θ i : Centrifugal term Invariant Algorithms n n ∂Mij ∂Mik ∂Mkj ˙ Lagrange’s Equations with Define: Cij (θ, θ) = ˙ ˙ Γijk θ k = + − θk k= k= ∂θ k ∂θ j ∂θ i Constraints ⇒ M(θ)θ + C(θ, θ)θ + N(θ) = τ ¨ ˙ ˙
  • 30. Chapter 4 Manipulator Dynamics 4.3 Dynamics of Open-chain Manipulators 21 Chapter Manipulator Property 1: M(θ) = M T (θ), θ T M(θ)θ ≥ , θ T M(θ)θ = ⇔θ= Dynamics ˙ ˙ ˙ ˙ ˙ Introduction ˙ − C ∈ ℝn×n is skew symmetric M Lagrange’s Equations Dynamics of Open-chain Manipulators Coordinate Invariant Algorithms Lagrange’s Equations with Constraints
  • 31. Chapter 4 Manipulator Dynamics 4.3 Dynamics of Open-chain Manipulators 21 Chapter Manipulator Property 1: M(θ) = M T (θ), θ T M(θ)θ ≥ , θ T M(θ)θ = ⇔θ= Dynamics ˙ ˙ ˙ ˙ ˙ Introduction ˙ − C ∈ ℝn×n is skew symmetric M Lagrange’s Equations Proof : (M − C)ij = Mij − Cij (θ) Dynamics of Open-chain ˙ ˙ Manipulators n ∂Mij ˙ ∂Mij ˙ ∂Mik ˙ ∂Mkj Coordinate = θk − θk − θk + ˙ θk Invariant k= ∂θ k ∂θ k ∂θ j ∂θ i Algorithms n ∂Mkj ∂Mik ˙ Lagrange’s = ˙ θk − θk Equations with k= ∂θ i ∂θ j Constraints Switching i and j shows (M − C)T = −(M − C) ˙ ˙
  • 32. Chapter 4 Manipulator Dynamics 4.3 Dynamics of Open-chain Manipulators 22 Example: Planar 2-DoF Robot (continued) Chapter Manipulator m (θ) = α + β cos θ , m =δ m (θ) = m (θ) = δ + β cos θ Dynamics Introduction c (θ, θ) = −β sin θ ⋅ θ , c (θ, θ) = −β sin θ (θ + θ ) ˙ ˙ ˙ ˙ ˙ Lagrange’s Equations c (θ, θ) = β sin θ ⋅ θ , c (θ, θ) = ˙ ˙ ˙ Dynamics of Open-chain ( )= Manipulators ∂M ∂M ∂M ∂M Γ = + − = Coordinate ∂θ ∂θ ∂θ ∂θ Invariant ( )= Algorithms ∂M ∂M ∂M ∂M Γ = + − = −β sin θ Lagrange’s ∂θ ∂θ ∂θ ∂θ ( )= Equations with ∂M ∂M ∂M ∂M Constraints Γ = + − = −β sin θ ∂θ ∂θ ∂θ ∂θ ( )= ∂M ∂M ∂M ∂M ∂M Γ = + − − = −β sin θ ∂θ ∂θ ∂θ ∂θ ∂θ (Continues next slide)
  • 33. Chapter 4 Manipulator Dynamics 4.3 Dynamics of Open-chain Manipulators 23 ( )= ∂M ∂M ∂M ∂M ∂M Chapter Γ = + − − = β sin θ Manipulator ∂θ ∂θ ∂θ ∂θ ∂θ Dynamics ( )= ∂M ∂M ∂M ∂M Γ = + − = Introduction ∂θ ∂θ ∂θ ∂θ ( )= Lagrange’s ∂M ∂M ∂M ∂M Equations Γ = + − = ∂θ ∂θ ∂θ ∂θ Dynamics of ( )= Open-chain ∂M ∂M ∂M ∂M Γ = + − = Manipulators ∂θ ∂θ ∂θ ∂θ Coordinate − β sin θ ⋅ θ˙ ˙ −β sin θ ⋅ θ Invariant ˙ M− C= −β sin θ ⋅ θ˙ Algorithms Lagrange’s − ˙ − β sin θ ⋅ θ − β sin θ (θ + θ ) ˙ ˙ Equations with ˙ β sin θ ⋅ θ Constraints β sin θ ( θ + θ ) ⇐ skew-symmetric ˙ ˙ −β sin θ ( θ + θ ) = ˙ ˙
  • 34. Chapter 4 Manipulator Dynamics 4.3 Dynamics of Open-chain Manipulators 24 Example: Dynamics of a -dof robot ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ −l ⎥ θ1 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ l ⎥ −l θ2 θ3 ξ =⎢ ⎥,ξ = ⎢ ⎥,ξ = ⎢ − ⎥ Chapter l1 l2 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ Manipulator ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ − L2 L3 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ Dynamics ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ r1 r2 ⎡ ⎤ Introduction ⎢ I ⎥ l0 gsl ( ) = ⎢ ⎥, L1 ⎢ ⎥ Lagrange’s ⎢ r ⎥ Equations r0 ⎣ ⎦ S Dynamics of ⎡ ⎤ ⎢ ⎥ gsl ( ) = ⎢ I ⎥, Open-chain r ⎢ ⎥ Figure 4.9 ⎢ ⎥ Manipulators l ⎣ ⎦ ⎡ ⎤ Coordinate ⎢ ⎥ Invariant Algorithms gsl ( ) = ⎢ I ⎢ l +r ⎥ ⎥ ⎢ l ⎥ Lagrange’s ⎣ ⎦ ⎡ mi ⎤ Equations with ⎢ ⎥ ⎢ ⎥ Constraints mi ⎢ ⎥ Mi = ⎢ ⎥ mi ⎢ Ix i ⎥ ⎢ Iy i ⎥ ⎢ ⎥ ⎢ Iz i ⎥ ⎣ ⎦ (Continues next slide)
  • 35. Chapter 4 Manipulator Dynamics 4.3 Dynamics of Open-chain Manipulators 25 mi : The mass of the object Chapter Ix i : The moment of inertia about the x axis Manipulator Dynamics Introduction Γ = (Iy − Iz − m r )c s + (Iy − Iz )c s − t(l s + r s ) Lagrange’s Γ = (Iy − Iz )c s − tr s Equations Dynamics of Γ = (Iy − Iz − m r )c s + (Iy − Iz )c s − t(l s + r s ) Open-chain Γ = (Iy − Iz )c s − tr s Manipulators Coordinate Γ = (Iz − Iy + m r )c s + (Iz − Iy )c s + t(l s + r s ) Invariant Γ = −l m r s Algorithms Γ = −l m r s Lagrange’s Equations with Γ = −l m r s = (Iz − Iy )c s Constraints Γ + tr s Γ =lm r s where t = m (l c + r c ). (Continues next slide)
  • 36. Chapter 4 Manipulator Dynamics 4.3 Dynamics of Open-chain Manipulators 26 , V(θ) = m gh (θ) + m gh (θ) + m gh (θ) ˙ ∂V N(θ, θ) = ∂θ gsli (θ) = e ξ ⋯e ξ i θ i gsli ( ) ⇒ Chapter ˆ θ ˆ Manipulator Dynamics h (θ) = r , h (θ) = l − r sin θ, h (θ) Introduction = l − l sin θ − r sin(θ + θ ) ⎡ ⎤ ⎢ ⎥ Lagrange’s ⎢ ⎥ ⎢ ⎥ Equations J = Jsl (θ) = ⎢ b ⎥ ⎢ ⎥ ⎢ ⎥ Dynamics of ⎢ ⎥ Open-chain Manipulators ⎣ ⎦ ⎡ −r c ⎤ ⎢ ⎥ ⎢ ⎥ Coordinate Invariant ⎢ ⎥ J = Jsl (θ) = ⎢ b −r ⎥ ⎢ ⎥ Algorithms ⎢ −s ⎥ − ⎢ c ⎥ ⎣ ⎦ Lagrange’s Equations with ⎡ −l c − r c ⎤ ⎢ ⎥ Constraints ⎢ ⎥ ⎢ ⎥ ls J = Jsl (θ) = ⎢ b −r − l c ⎥ ⎢ ⎥ −r ⎢ ⎥ − − ⎢ ⎥ ⎣ ⎦ −s c (Continues next slide)
  • 37. Chapter 4 Manipulator Dynamics 4.3 Dynamics of Open-chain Manipulators 27 M M M Chapter M(θ) = M M M = JT M J + JT M J + JT M J Manipulator M M M + m r c + m (l c + r c ) Dynamics M = Iy s + Iy s + Iz + Iz c + Iz c Introduction M =M =M =M = Lagrange’s Equations M = Ix + Ix + m l + M r + m r + m l r c Dynamics of M = Ix + m r + m l r c Open-chain Manipulators M = Ix + m r + m l r c Coordinate M = Ix + m r Invariant Algorithms n n ∂Mij ∂Mik ∂Mkj Lagrange’s Cij (θ, θ) = ˙ ˙ Γijk θ k = + − ˙ θk Equations with k= k= ∂θ k ∂θ j ∂θ i Constraints
  • 38. Chapter 4 Manipulator Dynamics 4.3 Dynamics of Open-chain Manipulators 28 ◻ Additional Properties of the dynamics in terms of POE: ⎧Ad− Define: ⎪ ⎪ ⎪ e ξ j+ θ j+ ⋯e ξ i θ i i > j Chapter ⎪ ⎪ Manipulator ˆ ˆ Aij = ⎨I ⎪ Dynamics ⎪ i=j ⎪ ⎪ ⎪ ⎩ Introduction i<j Lagrange’s Equations Ji (θ) = Adg − ( ) [Ai ξ ⋯Aii ξ i ⋯ ] sl i Dynamics of Open-chain Mi′ = AdT− g Mi Adg − ( intertia of ith link in S) sl i ( ) sl i ( ) Manipulators Coordinate Invariant Algorithms Lagrange’s Equations with Constraints
  • 39. Chapter 4 Manipulator Dynamics 4.3 Dynamics of Open-chain Manipulators 28 ◻ Additional Properties of the dynamics in terms of POE: ⎧Ad− Define: ⎪ ⎪ ⎪ e ξ j+ θ j+ ⋯e ξ i θ i i > j Chapter ⎪ ⎪ Manipulator ˆ ˆ Aij = ⎨I ⎪ Dynamics ⎪ i=j ⎪ ⎪ ⎪ ⎩ Introduction i<j Lagrange’s Equations Ji (θ) = Adg − ( ) [Ai ξ ⋯Aii ξ i ⋯ ] sl i Dynamics of Open-chain Mi′ = AdT− g Mi Adg − ( intertia of ith link in S) sl i ( ) sl i ( ) Manipulators Coordinate Invariant Property 2: Algorithms n n ∂Mij ∂Mik ∂Mkj Lagrange’s Mij (θ) = ξ iT AT Ml′ Alj ξ j , Cij (θ, θ) = li ˙ + − ˙ θk Equations with l=max(i,j) k= ∂θ k ∂θ j ∂θ i Constraints where ∂Mij n = [Ak− ,i ξ i , ξ k ]T AT Ml′ Alj ξ j + ξ iT AT Ml′ Alk [Ak− ,j ξ j , ξ k ] lk li ∂θ k l=max(i,j) † End of Section †
  • 40. Chapter 4 Manipulator Dynamics 4.4 Coordinate Invariant Algorithms 29 ◻ Newton-Euler equations in spatial frame: Newton’s Equation: f s = (mp) = mp Chapter d Manipulator ˙ ¨ Dynamics dt Introduction Spatial angular momentum: Lagrange’s Equations I s ⋅ ω s = R(I ⋅ ω b ) = R ⋅ I ⋅ RT ⋅ω s Is Dynamics of Open-chain Manipulators Coordinate Invariant Algorithms r T Lagrange’s Equations with Constraints f S g ∶ (R, p) Figure 4.10 (Continues next slide)
  • 41. Chapter 4 Manipulator Dynamics 4.4 Coordinate Invariant Algorithms 30 τs = (I ω ) = (RIRT ω s ) = I s ω s + RIRT ω s + RI RT ω s d s s d ˙ ˙ ˙ dt dt = I s ω s + RRT I s ω s − RIRT ω s ω s = I s ω s + ω s × (I s ω s ) Chapter Manipulator ˙ ˙ ˆ ˙ Dynamics Introduction ωs ˆ Lagrange’s Equations ◻ Transform equations to body frame: (mp) = mRvb = mRvb + mR˙ b , RT f s = mRT Rvb + m˙ b Dynamics of d d ˙ ˙ Open-chain ˙ v v Manipulators dt dt Coordinate ⇒ f b = mω b × vb + m˙ b , v Invariant τ b = RT τ s = RT (RIω b ) = I ω b + ω b × Iω b Algorithms d ˙ Lagrange’s dt Equations with Constraints ⇒ mI vb ˙ + ω b × mvb = fb = Fb (∗) I ωb ˙ ω b × Iω b τb Mb Vb (Continues next slide)
  • 42. Chapter 4 Manipulator Dynamics 4.4 Coordinate Invariant Algorithms 31 Define: [ , ] ∶ se( ) × se( ) ↦ se( ), [ ξ , ξ ] ≜ ξ ξ − ξ ξ ˆ ˆ ˆˆ ˆ ˆ Chapter Manipulator if [ξ , ξ ] = ωi ˆ vi ,i = , Dynamics ˆ ˆ Introduction then ξ= (ω × ω )∧ ω v −ω v = ad ξ i ⋅ ξ Lagrange’s Equations ˆ ˆ ˆ Dynamics of Open-chain where ad ξ = ω ˆ v ˆ Manipulators Coordinate ωˆ Invariant Algorithms It is straightforward computation to see that: Lagrange’s (∗) ⇔ M b V b − adT b M b V b = F b ˙ V Equations with Constraints Property 3: Adg [ ξ , ξ ] = [Adg ξ , Adg ξ ] ⇒ Adg ad ξ = adAd g ξ Adg ˆ ˆ ˆ ˆ ˆ ˆ
  • 43. Chapter 4 Manipulator Dynamics 4.4 Coordinate Invariant Algorithms 32 ◻ Coordinate invariance of Newton-Euler equations: Chapter M V − adT M V = F Manipulator Dynamics ˙ V ⎧V = Adg V , r g ⎪ ⎪ Introduction g B ⎨ ⇒ ⎪ F = AdT− F Lagrange’s ⎪ ⎩ Equations g F = (AdT )− F = (Ad− )T F Dynamics of Open-chain g Manipulators g g A Coordinate M = Ad−T M Ad− g g Figure 4.11 Invariant ⇒ Adg M Ad− −T Adg V − ad(Ad g T −T Ad− Adg V = Ad−T F Algorithms ˙ g V ) Adg M ˙ g g Lagrange’s Equations with = Adg adV Ad− by Property 3, we have Constraints Since adAd g V g M V − adT M V = F ˙ V
  • 44. Chapter 4 Manipulator Dynamics 4.4 Coordinate Invariant Algorithms 33 Chapter Manipulator C2 C3 Dynamics C1 Introduction l0 Lagrange’s l1 l2 Equations C0 Dynamics of Open-chain Figure 4.12 Manipulators Ci : Frame fixed to link i, located along the ith axis Coordinate Invariant Fi : Generalized force link i − exerting on link i, expressed in Ci Algorithms τi : Joint torque of link i Lagrange’s gi− ,i : Transformation of Ci relative to Ci− gi− ,i (θ i ) = e ξ i θ i ⋅ gi− ,i ( ) = gi− ,i ( )e ξ i θ i ˆ′ ˆ Equations with Constraints ′ th ξ i = Adg − ( ) ⋅ ξ i : i axis in Ci frame. ⎧⎡ ⎤ i− ,i ⎪⎢ ⎪⎢ ⎪ ⎥ ⎪ z ⎥∶ ⎪⎢ ⎪ ⎥ ⎪ Revolute joint. ξ i = ⎨⎣ i ⎦ ⎡ z ⎤ ⎪⎢ i ⎥ ⎪ ⎪⎢ ⎪ ⎪⎢ ⎥∶ ⎪ ⎪ ⎥ Prismatic joint. ⎩⎣ ⎦
  • 45. Chapter 4 Manipulator Dynamics 4.4 Coordinate Invariant Algorithms 34 Chapter ⇒ gi− ,i ⋅ gi− ,i = ξ i ⋅ θ i − ˙ ˆ ˙ Manipulator Dynamics Mi : Moment of inertia in Ci −mi ˆi Mi = Introduction mi I r mi : Mass of link i Lagrange’s mi ˆi Ii − mi ˆi r r Ii : inertia tensor gi = gi− gi− ,i Equations Dynamics of Vi = gi− ⋅ gi = gi− ,i Vi− gi− ,i + ξ i θ i Open-chain Manipulators ˆ ˙ − ˆ ˆ˙ Vi = Ad − Vi− + ξ i θ i ˙ Coordinate Invariant gi− ,i Algorithms Lagrange’s Vi = gi− ,i Vi− gi− ,i + gi− ,i Vi− gi− ,i + gi− ,i Vi− gi− ,i + ξ i θ i ˙ ˙− ˆ ˆ − ˆ ˙ − ˙ ˆ ˆ¨ = −˙i− ,i gi− ,i gi− ,i Vi− gi− ,i + gi− ,i Vi− gi− ,i gi− ,i gi− ,i Equations with Constraints g− − ˆ − ˆ − ˙ + gi− ,i Vi− gi− ,i + ξ i θ i − ˙ ˆ ˆ¨ (Continues next slide)
  • 46. Chapter 4 Manipulator Dynamics 4.4 Coordinate Invariant Algorithms 35 = − ξ i θ i (Adg − Vi− )∧ + (Adg − Vi− )∧ ξ i θ i + (Adg − Vi− )∧ + ξ i θ i ˆ˙ ˆ˙ ˙ ˆ¨ i− ,i i− ,i i− ,i Chapter ⇒ Vi = ξ i θ i + Adg − Vi− − ad ξ ˙ ¨ ˙ ˙ (Adg − Vi− ) Manipulator i− ,i i θi i− ,i Dynamics Introduction ◻ Forward Recursion (kinematics): ⎧ init. ∶ V = , V = g (gravity vector) ⎪ ⎪ Lagrange’s ⎪ ˙ ⎪ ⎪ ⎪ Equations ⎪ ⎪g ⎪ i− ,i = gi− ,i ( )e ξ i θ i ⎪ ⎪ ˆ Dynamics of ⎨ ⎪ Vi = Ad − Vi− + ξ i θ i Open-chain Manipulators ⎪ ⎪ ⎪ ˙ ⎪ ⎪ ⎪ g i− ,i ⎪ ˙ ⎪ V = ξ θ + Ad − V − ad (Ad − V ) ⎪ ⎪ Coordinate ⎩ Invariant i ¨ i i ˙ g i− ,i i− ˙ ξi θ i g i− ,i i− Algorithms Lagrange’s Equations with Constraints ◻ Backward Recursion (inverse dynamics): Fn+ : End-effector wrench, gn,n+ : transform from tool frame to Cn Fi = AdT− g ⋅ Fi+ + Mi Vi − adT i ⋅ Mi Vi ˙ V i,i+ τ i = ξ iT ⋅ Fi
  • 47. Chapter 4 Manipulator Dynamics 4.4 Coordinate Invariant Algorithms 36 Chapter Manipulator V = Adg −, ⋅ V + ξ θ ˙ Fn = AdTn,n+ ⋅ Fn+ + Mn Vn − adT n ⋅ (Mn Vn ) Dynamics g− ˙ V Introduction Lagrange’s Equations Define: ⎡ θ ⎤ ⎢ ˙ ⎥ ˙=⎢ ⎥ ∈ ℝn , ξ = Dynamics of V ξ V= ∈ℝ ,θ ⎢ ⎥ ⋱ ∈ℝ Open-chain n× n×n ⎢ θn ⎥ Manipulators Vn ⎣ ⎦ ˙ ξn ⎡ Adg − ⎤ Coordinate ⎢ ⎥ Invariant F τ ⎢ ⎥ F= ∈ℝ ,τ = ∈ ℝ ,P = ⎢ ⎥∈ℝ Algorithms , ⎢ ⎥ n× n n× ⎢ ⎥ Lagrange’s Fn τn ⎣ ⎦ Equations with Constraints Pt = [ ⋯ Adgn,n+ ] ∈ ℝ − × n
  • 48. Chapter 4 Manipulator Dynamics 4.4 Coordinate Invariant Algorithms 37 ˙ V = Adg − ⋅ V + ξ θ , Chapter Manipulator ˙ V − Adg − V = ξ θ Dynamics , Introduction Vn − Adg − ˙ Vn− = ξ n θ n Lagrange’s n− ,n Equations ⎡ ⎤ ⎢ −Ad − ⎥⎡ V ⎤ I ⋯ ⎢ ⎥⎢ V ⎥ Dynamics of ⇒⎢ ⎥⎢ ⎥ I ⋱ ⎢ ⎥⎢ ⎥ Open-chain g, ⎢ ⋱ ⋱ ⎥⎢ ⎥ ⎢ I ⎥ ⎣ Vn ⎦ Manipulators ⎣ ⎦ −Adg − Coordinate n− ,n Invariant V Algorithms G− ⎡ Adg − ⎤ ⎡ ξ ⎤⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ˙ ⎥⎢ ⎥ θ ⎢ ⎥ ⎢ Lagrange’s =⎢ ⎥V +⎢ ⎥⎢ ⎥ ⎥⎢ ⎥ , ξ ˙ θ ⎢ ⎥ ⎢ Equations with ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⋱ ⎦⎢ ⎥ Constraints ⎣ ⎦ ⎣ ξn ⎣ ˙ θn ⎦ P ξ ˙ θ ˙ Thus V = GP V + Gξ θ
  • 49. Chapter 4 Manipulator Dynamics 4.4 Coordinate Invariant Algorithms 38 where ⎡ I ⋯ ⎤ Chapter ⎢ Ad − ⋯ ⎥ ⎢ ⎥ Manipulator ⎢ ⎥ Dynamics I G = ⎢ Adg −, ⎥∈ℝ g, Introduction ⎢ Adg −, I ⋱ ⎥ n× n ⎢ ⋱ ⎥ ⎢ I ⎥ ⎢ Adg − ⋯ Adgn− ,n I ⎥ Lagrange’s ⎣ Adg −,n ⎦ Equations − ,n Dynamics of Open-chain Manipulators Coordinate Invariant Algorithms V = ξ θ + Adg −, V − ad ξ θ (Adg −, V ) ˙ ¨ ˙ ˙ Lagrange’s Equations with V − Adg −, V = ξ θ − ad ξ ˙ ˙ ¨ ˙ θ (Adg −, V ) Vn − Adgn− ,n Vn− = ξ n θ n − ad ξ n θ n (Adgn− ,n Vn− ) Constraints ˙ − ˙ ¨ ˙ − (Continues next slide)
  • 50. Chapter 4 Manipulator Dynamics 4.4 Coordinate Invariant Algorithms 39 ⎡ I ⋯ ⎤ ⎡ V ⎤ ⎡Ad − ⎤ ⎡ξ ⎤ ⎡θ ⎤ ⎢ ⎥⎢ ˙ ⎥ ⎢ g , ⎥ ⎢ ⎥⎢¨ ⎥ ¨ ⎢−Adg −, I ⋱ ⎥ ⎢V ⎥ ⎢ ⎥˙ ⎢ ξ ⎥ ⎢θ ⎥ ⎢ ⎥⎢ ˙ ⎥ = ⎢ ⎥V +⎢ ⎢ ⎥+ ⎢ ⋱ ⋱ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⋱ ⎥⎢ ⎥ ⎥⎢ ⎥ Chapter ⎢ −Adgn− ,n I ⎥ ⎢Vn ⎥ ⎢ ⎥ ⎢ ⎢ ⎥⎣˙ ⎦ ⎣ ξ n ⎥ ⎢θ n ⎥ Manipulator ⎣ ⎦ ⎦ ⎣ ⎦⎣¨ ⎦ Dynamics − Introduction G− P ξ ⎡−ad ξ θ ⋯ ⎤ ⎡Ad − Lagrange’s ⎢ ⎥⎢ g , ⎤ ⎥ Equations ⎢ −ad ξ ⋱ ⎥⎢ ⎥ ˙ ⎢ ⎥⎢ ⎥V + ⎢ ⎥⎢ Dynamics of ⋱ ⋱ ⎥ ˙ θ ⎢ ⎥ −ad ξ n θ n ⎥ ⎢ ⎥ Open-chain ⎢ ⋯ ˙ ⎦⎣ ⎦ Manipulators Coordinate ⎣ Invariant Algorithms ad ξ θ ˙ ⎡−ad ξ θ ⋯ ⎤⎡ ⋯ ⎤ ⎡V ⎤ ⎢ ⎥⎢ ⎥⎢ ⎥ Lagrange’s ⎢ −ad ξ ⋱ ⎥ ⎢Adg −, ⋱ ⎥ ⎢V ⎥ ˙ ⎢ ⎥⎢ Equations with ⎢ ⎥⎢ ⋱ ⋱ ⎥⎢ ⎥ ⋱ ⋱ ⎥⎢ ⎥ Constraints ˙ θ ⎢ ⎥ ⎢ ⎣ ⋯ −ad ξ n θ n ⎥ ⎢ ˙ ⎦⎣ Adgn− ,n − ⎥ ⎣Vn ⎦ ⎦ Γ (Continues next slide)
  • 51. Chapter 4 Manipulator Dynamics 4.4 Coordinate Invariant Algorithms 40 Chapter Thus V = G ⋅ ξ θ + G ⋅ P V + G ⋅ ad ξ θ P V + G ⋅ ad ξ θ ΓV Manipulator Dynamics ˙ ¨ ˙ ˙ ˙ Introduction Lagrange’s Finally the backward recursion: Fn = AdT− Fn+ + Mn Vn − adT n ⋅ (Mn Vn ) Equations Dynamics of g ˙ V n,n+ Fn− = Fn + Mn− Vn− − adT n− ⋅ (Mn− Vn− ) Open-chain Manipulators AdT− gn− ˙ V ,n Coordinate Invariant Algorithms Lagrange’s F = AdT− F + M V − adT (M V ) g ˙ V , Equations with Constraints (Continues next slide)
  • 52. Chapter 4 Manipulator Dynamics 4.4 Coordinate Invariant Algorithms 41 ⎡ I−AdT− ⎤ ⎢ ⎥ ⎡ F ⎤ ⎡M ⎤ ⎡V ⎤ ⎡ ⎤ ⎢ ⎥ ⎢F ⎥ ⎢ M ⎥ ⎢V ⎥ ⎢ ⎥ ˙ I ⋱ ⎥⎢ ˙ ⎥ +⎢ ⎥ g, ⎢ ⇒⎢ ⎥⎢ ⎥ = ⎢ ⎢ ⎥⎢ ⎥ ⎢ ⋱ ⋱−Adg − ⎥ ⎢ ⎥ ⎢ ⋱ ⎥ ⎢ ⎥ ⎢ T ⎥ Fn+ + ⎢ ⎥ ⎢ ⎥ Mn ⎥ ⎢V ⎥ ⎢Adgn,n+ ⎥ Chapter T ⎢ n− ,n ⎥ ⎣F n ⎦ ⎣ ⎦ ⎣ ˙ n⎦ ⎣ Manipulator Dynamics ⎣ ⋯ I ⎦ − ⎦ Introduction M PT ⎡−adT ⎤ Lagrange’s t ⎢ ⎥ M ⎢ ⎥ Equations V ⎢ ⋱ ⋱ V ⎢ T ⎥ −adVn ⎥ Dynamics of ⎣ ⎦ Open-chain Mn Vn Manipulators Coordinate ad T Invariant V Algorithms Lagrange’s Equations with Constraints