SlideShare una empresa de Scribd logo
1 de 12
Descargar para leer sin conexión
INTRODUCTION TO
 MANUFACTURING EXECUTION
         SYSTEMS




MES CONFERENCE & EXPOSITION
           JUNE 4-6, 2001


      Baltimore, Maryland




           Michael McClellan
               President
       MES Solutions Incorporated
       Terrebonne, Oregon 97760
             541 548 6690
INTRODUCTION TO MANUFACTURING EXECUTION SYSTEMS
By Michael McClellan

About the Author


Mr. Michael McClellan is president of MES Solutions Incorporated, a company specializing in
consulting services aiding clients in the design and implementation of Manufacturing Execution
Systems. Prior to his current position Mr. McClellan was President of a major supplier of material
management and control systems. Before that he was a founder and President of Integrated
Production Systems, a company that pioneered the development and implementation of
computer systems for production execution. While at Integrated Production Systems he
published two papers and numerous articles on the subject of applying computer systems in
manufacturing operations and managed the company that developed and installed systems for
major clients.

Prior to forming Integrated Production Systems Mr. McClellan held officer level management
positions in companies providing equipment and control systems for production and material
management.

In addition to his work experience Mr. McClellan is a member of the Manufacturing Execution
Systems Association (MESA International), American Production and Inventory Control Society
(CPIM) and the Society of Manufacturing Engineers. He is a frequent speaker on MES, holds
one patent, and is the author of the recently published book, Applying Manufacturing Execution
Systems.

Mr. McClellan is interested in any comments and ideas regarding MES and can be reached by
telephone at 541 548 6690 or Fax at 541 548 6674 or by mail at P.O. Box 2148, Terrebonne,
Oregon 97760.




                                                2
INTRODUCTION TO MANUFACTURING EXECUTION SYSTEMS
By Michael McClellan


                                                                              Bridging the Gap
Applying information technology to assist in the execution of production, through on-line management of
the activities at the plant floor, has been a rapidly growing trend for a number of years. Planning systems
have been applied under a variety of titles, including Material Requirements Planning (MRP),
Manufacturing Resources Planning (MRPII), Enterprise Requirements Planning (ERP), and Manufacturing
Control Systems (MCS). Also in place for many years are modern control systems that manage or control a
machine’s functions such as PLCs used to run machine tools.

The MES system bridges the gap between the planning system and the controlling system using on-line
information to manage the current application of manufacturing resources: people, equipment and
inventory.

With direct electronic connections to the planning system and the equipment control systems, the MES is
the hub that collects and provides information and direction within the production activities. To support
on-line management decisions the MES usually includes direct connection to functions such as SPC, Time
& Attendance, Product Data Management, Maintenance Management, and any other similar tool.



                                                              A General Overview
Technology Evolves
The idea of using computers to manage manufacturing activities is not new. The concepts that allowed the
development of Materials Requirements Planning evolved from computer usage primarily within the
accounting departments (the main users of early computers) and were extensions of tools used for cost
accounting and inventory measurement. Even the systems used by manufacturing have been oriented
toward accounting and finance. This appears to be part of the reason for the distance between many
manufacturing professionals and true computer implementation on the manufacturing floor.

Many legitimate complaints are often stated about the computer systems used in manufacturing. For
example:
• The information is too old.
• I don’t have time to read such a big report.
• How much of this information applies to me.
• This information applies to accounting or MIS, not to manufacturing.
• All this is history. I need to make decisions based on what is happening now.

A new idea is evolving. In recent years a concept with many versions has been developed for
manufacturing managers—a real tool that helps manage the manufacturing floor, functions, resources, and
inventory and gives accounting and MIS all the information they require.

The best part is this idea is being built around the manufacturing world and requires no advanced
knowledge of computers. In most cases these systems run on smaller local computers and are fairly simple
to use.

Manufacturing Execution Systems
This concept has been around long enough to have a name: Manufacturing Execution Systems (MES).

As the name implies, MES is more than a planning tool like ERP or MRPII. MES is an on-line extension
of the planning system with an emphasis on execution or carrying out the plan.

Execution means:
• Making products.                                 • Turning machines on and off.
• Making and measuring parts.                      • Moving inventory to and from WorkStations.


                                                    3
INTRODUCTION TO MANUFACTURING EXECUTION SYSTEMS
By Michael McClellan

•      Changing order priorities.                   • Setting and reading measuring controls.
•      Assigning and reassigning personnel.         • Changing order priorities.
•      Assigning and reassigning inventory.         • Scheduling and rescheduling equipment.

Manufacturing Execution Tool
The MES is a manufacturing tool designed and built for manufacturing. Most manufacturing companies
use a planning process (MRPII/ERP or equivalent) to determine what products are to be manufactured.
Once that plan has been developed, there must be a translation of the plan that deals with real resources that
are currently available. What is necessary is a method to take input from the planning system and translate
that plan into a language that fits the plant floor and the resources required to execute the plan—a major
role for the MES.

                                                             What MES Can Do For You
MESA International has conducted studies of companies using MES and offers the following benefits as
reported by system users:

•    Reduces manufacturing cycle time.                          •   Reduces or eliminates data entry time.
•    Reduces work-in-process inventory.                         •   Reduces lead times.
•    Reduces paperwork between shifts.                          •   Improves product quality.
•    Eliminates lost paperwork/blueprints.                      •   Empowers plant operations people.
•    Improves customer service.                                 •   Responds to unanticipated events.

The potential gain by implementing MES addresses the need for immediate, current, on-line information
that allows users or the MES computer system to make the best informed decisions regarding the
application of inventory, plant resources, and people. Some examples include:

1.  Engineering wants to locate all current work orders for a given product to determine the effect of an
    immediate engineering change order.
2. Some purchased material that is specific to a given customer’s order currently in process has arrived as
    a partial shipment, 72% complete. Where is the order and what is the appropriate response?
3. A customer requires specific operator information including operator, date, and ambient conditions to
    be supplied with each item produced.
4. A process critical to production needs preventative maintenance. How are the current orders to be
    scheduled?
5. The president of a high-volume customer has just called and needs to know by tomorrow if he can
    double the quantity on the current order in house without affecting the delivery schedule.
6. There are 26 work orders totaling 443 hours of work for a specific routing location. What is the
    optimum sequence for these work orders and what factors should be considered?
7. A new quality assurance system has been installed that can receive and analyze data from the plant
    floor and provide current on-line results to the workstation operator.
8. Operator time is charged to each order and collected as the order passes through production through
    the use of a time card data collection system using bar code readers and menus.
9. Inventory can be retrieved from storage and sent to a specific workstation matching the production
    schedule.
10. The shift supervisor is considering replacing a part on a production machine and needs to know if the
    part is in stock and how long the maintenance work will take.
11. Information regarding inbound inventory can be gained by a through a communication link with the
    vendor’s MES computer.
12. A sales representative is at a customer’s office and needs to know where their order is in the
    production process.




                                                      4
INTRODUCTION TO MANUFACTURING EXECUTION SYSTEMS
By Michael McClellan


______________________________________CORE FUNCTIONS
The following is an overview of the core functions of the MES:

Planning System Interface
The MES should be directly coupled to the planning system to accept work orders and all other input and to
provide upload information as necessary. The communications should be two way so the MES can keep
the planning system properly informed about plant activities such as labor data, inventory changes, and
work order progress. Other methods of data entry and reporting can easily be accommodated, and in some
cases, such as more continuous process, production orders may not be used at all.

Work Orders
The MES accepts the Work Order through automatic or manual entry. It manages changes on orders,
establishes and changes schedules, and maintains a prioritized sequenced plan.

Releasing orders to production and establishing a current order priority list based on your sequencing rules
is a normal part of MES. Frequently changes must be made to released orders. Within MES, order
modifications such as these examples can be done easily:
• Enter schedule changes.
• Mark for material shortage.
• Enter quantity changes.
• Place on hold.
• Split orders or combine orders.

The Work Order management function
maintains a constant real time view of the
work orders in the current backlog and
the status of each order.




Work Stations
This part of the system is responsible for
implementing the direction of the Work
Order plan and the logical configuration
of the WorkStations. The planning, scheduling, and loading of each operational Work Station is done here,
providing the current and total shop load by operation using routing data and time standards. Based on this
plan, the system will request and manage delivery of inventory, tooling, and data in response to the Bill of
Material requirements and will issue and execute commands to move the required items to the planned
WorkStation. The MES can and should include the direct control interface and connection with each
WorkStation.

Inventory Tracking and Management
While the planning system has the aggregate data on inventory, the detail can easily reside at the local
level—the MES. “Dock To Stock” operations are accomplished here with regular updates to the planning
system. A current map of all inventory and storage locations, including WIP, is maintained.




                                                      5
INTRODUCTION TO MANUFACTURING EXECUTION SYSTEMS
By Michael McClellan

Material Movement
Another major area of MES system contribution is the movement of inventory or information to the needed
location on the plant floor. This portion of the system controls material movement in the plant, in manual
or automatic systems, by issuing requests for a manual move (printing move tickets) or issuing commands
to material handling system control PLCs, such as ASRS, AGVS, conveyor systems, carrousels, robots, etc.
The commands can be as simple as “move this item from this location to that location.”

Data Collection
This part of the MES system is the eyes and ears for management and gathers information so the system
can remain current. Through various kinds of sensing devices and control interfaces, data from the floor
operations can be collected, collated, and dispersed on whatever basis is desired. This is the primary
method for all personnel to communicate with the MES, either through information input/output by system
operators or recognition of events electronically. Direct connections with PLCs to download and/or collect
information are also part of this function area.

Exception Management
The most custom portion of the MES is addressing how a company responds to plan exceptions. What
happens when a WorkStation is suddenly down, or when material is not available, or when a Work Order
becomes “hot”? The MES should be able to take these changes in stride and respond with alternative
actions.


Our process began with a planned or sequenced list of Work Orders, methods to schedule those Work
Orders into Work Stations, control of inventory assignment, and management of material movement.
Along with data collection to keep the system current and a way to handle exceptions, we have the ability
to execute the manufacturing plan—truly a   Manufacturing Execution System.




                                                     6
INTRODUCTION TO MANUFACTURING EXECUTION SYSTEMS
By Michael McClellan


                                                                            Support Functions
Other components of Manufacturing Execution Systems act as Support functions. These are programs or
software packages that support manufacturing but are not part of the planning process or the device control
system. The most popular applications are listed here, but there are others, and more will be developed in
the future.

•   Statistical Process Control
•   Maintenance Management
•   Time and Attendance
•   Product Data Management
•   Process Data/Performance Analysis
•   Supplier Management
•   Genealogy/Product Traceability
•   Laboratory Information Management
•   Quality Assurance




                                                     7
INTRODUCTION TO MANUFACTURING EXECUTION SYSTEMS
By Michael McClellan


                                 Manufacturing Execution System




                                  8
INTRODUCTION TO MANUFACTURING EXECUTION SYSTEMS
By Michael McClellan


 ____________________________________Agile Manufacturing
Agile Manufacturing is the ability to efficiently and competitively make “one of many” instead of “many of
one.” The idea is similar to “a lot size of one” with a greater intensity and focus on timeliness, allowing
insertion of the “one” into the production plan as necessary to meet customer requirements—usually sooner
rather than later.

This can be effective only with a detailed understanding of the current situation and a control system that
allows immediate change of resource assignment. If your largest customer requires a change to an order,
do you know the effect and can you respond to the request? With a properly designed MES system, the
information necessary to view all the options is readily available.

              _____                                                      Application Examples
Planning System Data Exchange
A major role of the MES is to collect, collate, and upload data to the planning level system. It would be
difficult to describe each possible scenario since there are many existing and available varieties of planning
system installations and products. Each system interface must stand on its own depending on the input and
output requirements.

These requirements can best be established in a meeting with the planning system vendor, the users, and the
MES provider. This meeting should be held early in the system design process to determine the feasibility
of the interface.

Receiving Within MES

Receiving can be treated as another group of work stations with processing routings established by reading
the incoming bar code label (either PO number or part number). This displays a screen to the receiving
personnel for appropriate data entry and establishes the routing for this specific receipt.

At this point, the material begins its tracking within the inventory function and is directed through quality
assurance processing steps. The material may be sent to a buffer storage area for later retrieval and
assignment to a specific processing work station or sent immediately to the appropriate work station.
Following the incoming processing steps, the material can be put into inventory for assignment to
production orders or, upon failure to pass incoming processing, is sent to the appropriate Work Station for
disposition. Disposition decisions are made and executed with status inputs to the MES and uploaded to
the purchasing and inventory modules of the planning system.

Timed Operation Routing Step
The MES can automatically perform timed operations as part of the routing used in WorkStation
scheduling. An example of a timed operation might be a “burn in” operation where the product is removed
from a Work Station, sent to storage, and retrieved automatically after the timed function is complete.

Work Scheduling or Sequencing
A very obvious question that should be asked frequently in manufacturing management is “What is the
schedule of work to be performed?” Though it may seem obvious or intuitive, the area of schedule
development probably offers the best opportunity for improving the resource management process. The
issue here is not to determine production quantities (presumably, that was determined by the planning
system), but rather how to rank a given list of tasks based on the resources (people, equipment, and
inventory) currently available.




                                                      9
INTRODUCTION TO MANUFACTURING EXECUTION SYSTEMS
By Michael McClellan


                                                                          System Requirements
MES projects have developed on a somewhat piecemeal basis, but as the concept grows, the need for
broader system design considerations for all software and hardware is increasingly obvious. Major system
revisions as well as all new systems should be designed to include:

Full Integration
All systems must be able to exchange information and not be excluded from the overall system process.
The concept of the information warehouse where each computerized activity draws from and delivers data
to the system is becoming increasingly important.

Scalability To Future Needs
The design of the software and hardware must allow upward scalability to meet the increasing needs of
your company as growth and change occurs.

Compatibility With Existing Systems
Ideally, an MES system should be incorporated into the existing systems. However, this may not be
economically feasible with systems using older software.

Broad System Access
Information is the tool that gives users access to what is going on. It will be increasingly more important to
broaden the audience of information users. Do not be overly restrictive.

Security
While broad access is a cornerstone, so too is the requirement of adequate security, primarily to ensure data
integrity

The Ability To Upgrade Hardware
The system must allow hardware and technology changes to be made easily without disruption.

Easily Added Functionality Changes
New and better ideas will be obvious after the MES is in operation. As continuous improvement
opportunities present themselves, the system must incorporate these changes with little cost or
inconvenience.



                    ___________________________System Risk
Some MES projects fail—not because of computer or software malfunction but most frequently, from poor
definition. Other reasons include:
• Extensive custom software
• Customer delays and changes.
• Too much reliance on the vendor.
• Choice of product or product vendor did not fit the needs.

Be Risk Averse



                                                     10
INTRODUCTION TO MANUFACTURING EXECUTION SYSTEMS
By Michael McClellan

We recommend that buyers adopt a strategy of being risk     averse—that is to avoid the risk of system
failure.

Accept Responsibility For Your System

The most important aspect of being risk averse is to accept system responsibility—define in detail what
you want the system to do. This requires more up-front work but the payoff will be very rewarding.

As you define what you want the system to do for you, you must think through how you want to manage
your business—a responsibility that should not be transferred to a vendor.

System Requirements Definition and Functional Design Specification
The System Requirements Definition should provide the definition and analysis of the current problems
and opportunities, the objectives and goals of the system, and the expected results of the project.

•   Identify the fundamental problem or problems the system is to address (the “as is”).
•   List specific needs the solution must satisfy related to functions and tasks (the “to be”).
•   Describe the physical system environment, the expected users and their computer skill level.
•   Indicate any hardware and software preferences or needs.
•   Describe the minimal quality, performance, security, and support requirements.
•   Describe any compatibility and legacy system migration needs.
•   Describe the system support requirements.

Taking the requirements on step further, the Functional Design Specification (usually done by the vendor
and reviewed by the buyer) describes in detail what the system will look like to the user. This includes
each screen, data field, and key stroke definition along with all interfaces to external participants or data
points.

•   Identify all data input and output points with the data characteristics.
•   Layout each screen or man/machine interface with exact definitions for each keystroke.
•   Identify and describe any and all expert rules.

This effort may seem exhaustive and too detailed but these definitions and decisions must be made either
by the vendor or by you, the buyer. If you do not understand, in detail how the system will function you
will have left important decisions on how your company is run up to the vendor.




                                      Can you take that risk?




                                                      11
INTRODUCTION TO MANUFACTURING EXECUTION SYSTEMS
By Michael McClellan


_____________________________________________A New Approach
This paper has been presented at earlier forums and is a shortened version of the book,
Applying Manufacturing Execution Systems. The information presented in both of these
has been a useful definition of what a using company might envision their functional
system requirements to be. There have been few, if any, vendors that could provide a
complete set of the listed functions as outlined and even fewer that could accomplish a
system with fully or even partially integrated functions. This is changing.

There is a new approach to the manufacturing environment that provides much easier
integration between applications and takes into account the realization that existing plant
methods and systems cannot be simply discarded and replaced. This view includes a
fundamental change to the historical hierarchy of the three tiered systems by
consolidating the controls level with the execution level.

It has been long established that planning systems (ERP) fall in the category of decision
support systems while plant environment applications are most often on-line transaction
processing systems. This natural categorization provides a simple dividing line (never an
absolute) between these systems and might even suggest that controls and execution
could be combined, which is what is beginning to occur in the market.

ERP vendors have long taken a system approach that centers on an overall framework
that integrates application modules to provide a global answer to those issues such as
financial, personnel, and planning, etc. This idea has now come to the area of plant
applications even while recognizing the differences of system implementations where an
open environment is an absolute must. This is where legacy systems and new
applications from one or more vendors must be easily integrated into a holistic
manufacturing system. This new approach of combining the controls system
functionality with the execution system applications is often referred to as the Enterprise
Production System.

This change has been in process for some time but has been accelerating with the firm
establishment of software standards in manufacturing such as Microsoft DNA. With
systems following common standards, the ability to integrate functions has become much
easier, less costly, and faster to implement. Stay tuned. The plant system world is
going to get a lot more interesting and more satisfying very fast.

Portions of this paper were presented at National Manufacturing Week, Chicago, Illinois,
and are reissued with their permission.

McClellan, Michael, Applying Manufacturing Execution Systems, St. Lucie Press, Boca
Raton, Fl, 1997

MESA International, The Benefits of MES: A Report From The Field, MESA
International, Pittsburgh, PA

Cube Technology Inc, The Open Control System, Cube Technology Inc, Milford, MA.


                                             12

Más contenido relacionado

La actualidad más candente

Out-of-the-box MES \ MOM solution
Out-of-the-box MES \ MOM solutionOut-of-the-box MES \ MOM solution
Out-of-the-box MES \ MOM solutionShashiAgasthya
 
Siemens and MES (Manufacturing Execution System)
Siemens and MES (Manufacturing Execution System)Siemens and MES (Manufacturing Execution System)
Siemens and MES (Manufacturing Execution System)Vera Leonik-Shilyaeva
 
Manufacturing Execution System
Manufacturing Execution SystemManufacturing Execution System
Manufacturing Execution SystemAnand Subramaniam
 
Manufacturing Execution Systems
Manufacturing Execution SystemsManufacturing Execution Systems
Manufacturing Execution Systemsvinodpandeyaxcend
 
PharmaSuite manufacturing execution system (MES) software, the new EBR solution
PharmaSuite manufacturing execution system (MES) software, the new EBR solutionPharmaSuite manufacturing execution system (MES) software, the new EBR solution
PharmaSuite manufacturing execution system (MES) software, the new EBR solutionXavier Solà
 
MES - Preparation is the key to success
MES - Preparation is the key to success MES - Preparation is the key to success
MES - Preparation is the key to success NNE
 
Has MES Reached Maturity in the Pharmaceutical & Medical Devices Industry...?
Has MES Reached Maturity in the Pharmaceutical & Medical Devices Industry...? Has MES Reached Maturity in the Pharmaceutical & Medical Devices Industry...?
Has MES Reached Maturity in the Pharmaceutical & Medical Devices Industry...? Chary Kandukuri
 
Electronic Batch Manufacturing records and MES in Pharmaceutical
Electronic Batch Manufacturing records and MES in PharmaceuticalElectronic Batch Manufacturing records and MES in Pharmaceutical
Electronic Batch Manufacturing records and MES in PharmaceuticalNilay Sharma
 
2018 ISPE Tieghi OT/ICS CyberSecurity per Pharma 4.0
2018 ISPE Tieghi OT/ICS CyberSecurity per Pharma 4.02018 ISPE Tieghi OT/ICS CyberSecurity per Pharma 4.0
2018 ISPE Tieghi OT/ICS CyberSecurity per Pharma 4.0Enzo M. Tieghi
 
Electronic batch manufacturing record
Electronic batch manufacturing recordElectronic batch manufacturing record
Electronic batch manufacturing recordRatan Agarwal
 
Enterprise Resource Planning
Enterprise Resource PlanningEnterprise Resource Planning
Enterprise Resource PlanningMayank Kashyap
 
Industry 4.0 : Digital Reinvention in Manufacturing Industry
Industry 4.0 : Digital Reinvention in Manufacturing IndustryIndustry 4.0 : Digital Reinvention in Manufacturing Industry
Industry 4.0 : Digital Reinvention in Manufacturing IndustryEthan Chee
 
Enterprise resource planning
Enterprise resource planningEnterprise resource planning
Enterprise resource planningAakashTiwari43
 
Presentation on erp by Khurram Waseem Khan mba 2nd semester hu
Presentation on erp by Khurram Waseem Khan mba 2nd semester   huPresentation on erp by Khurram Waseem Khan mba 2nd semester   hu
Presentation on erp by Khurram Waseem Khan mba 2nd semester hukhurram wasim khan
 
Introduction to Enterprise Resource Planning
Introduction to Enterprise Resource PlanningIntroduction to Enterprise Resource Planning
Introduction to Enterprise Resource Planningcommandeleven
 
Strategic BOM Management
Strategic BOM ManagementStrategic BOM Management
Strategic BOM ManagementAras
 

La actualidad más candente (20)

Out-of-the-box MES \ MOM solution
Out-of-the-box MES \ MOM solutionOut-of-the-box MES \ MOM solution
Out-of-the-box MES \ MOM solution
 
Siemens and MES (Manufacturing Execution System)
Siemens and MES (Manufacturing Execution System)Siemens and MES (Manufacturing Execution System)
Siemens and MES (Manufacturing Execution System)
 
Manufacturing Execution System
Manufacturing Execution SystemManufacturing Execution System
Manufacturing Execution System
 
Manufacturing Execution Systems
Manufacturing Execution SystemsManufacturing Execution Systems
Manufacturing Execution Systems
 
PharmaSuite manufacturing execution system (MES) software, the new EBR solution
PharmaSuite manufacturing execution system (MES) software, the new EBR solutionPharmaSuite manufacturing execution system (MES) software, the new EBR solution
PharmaSuite manufacturing execution system (MES) software, the new EBR solution
 
MES - Preparation is the key to success
MES - Preparation is the key to success MES - Preparation is the key to success
MES - Preparation is the key to success
 
Has MES Reached Maturity in the Pharmaceutical & Medical Devices Industry...?
Has MES Reached Maturity in the Pharmaceutical & Medical Devices Industry...? Has MES Reached Maturity in the Pharmaceutical & Medical Devices Industry...?
Has MES Reached Maturity in the Pharmaceutical & Medical Devices Industry...?
 
ISA-95.pptx
ISA-95.pptxISA-95.pptx
ISA-95.pptx
 
Electronic Batch Manufacturing records and MES in Pharmaceutical
Electronic Batch Manufacturing records and MES in PharmaceuticalElectronic Batch Manufacturing records and MES in Pharmaceutical
Electronic Batch Manufacturing records and MES in Pharmaceutical
 
2018 ISPE Tieghi OT/ICS CyberSecurity per Pharma 4.0
2018 ISPE Tieghi OT/ICS CyberSecurity per Pharma 4.02018 ISPE Tieghi OT/ICS CyberSecurity per Pharma 4.0
2018 ISPE Tieghi OT/ICS CyberSecurity per Pharma 4.0
 
Electronic batch manufacturing record
Electronic batch manufacturing recordElectronic batch manufacturing record
Electronic batch manufacturing record
 
Presentación ISA 95
Presentación ISA 95 Presentación ISA 95
Presentación ISA 95
 
Enterprise Resource Planning
Enterprise Resource PlanningEnterprise Resource Planning
Enterprise Resource Planning
 
Industry 4.0 : Digital Reinvention in Manufacturing Industry
Industry 4.0 : Digital Reinvention in Manufacturing IndustryIndustry 4.0 : Digital Reinvention in Manufacturing Industry
Industry 4.0 : Digital Reinvention in Manufacturing Industry
 
Enterprise resource planning
Enterprise resource planningEnterprise resource planning
Enterprise resource planning
 
Industry 4.0
Industry 4.0Industry 4.0
Industry 4.0
 
Presentation on erp by Khurram Waseem Khan mba 2nd semester hu
Presentation on erp by Khurram Waseem Khan mba 2nd semester   huPresentation on erp by Khurram Waseem Khan mba 2nd semester   hu
Presentation on erp by Khurram Waseem Khan mba 2nd semester hu
 
Introduction to Enterprise Resource Planning
Introduction to Enterprise Resource PlanningIntroduction to Enterprise Resource Planning
Introduction to Enterprise Resource Planning
 
Presentation on ERP
Presentation on ERPPresentation on ERP
Presentation on ERP
 
Strategic BOM Management
Strategic BOM ManagementStrategic BOM Management
Strategic BOM Management
 

Similar a Introduction to Manufacturing Execution Systems Conference

Case Study U.S. Strollers
Case Study U.S. StrollersCase Study U.S. Strollers
Case Study U.S. StrollersTiffany Graham
 
Process control systems with a plc 1.0.2
Process control systems with a plc 1.0.2Process control systems with a plc 1.0.2
Process control systems with a plc 1.0.2Akbar Pamungkas
 
Making Sense of Implementation Madness through Technical Innovation - Joan Mc...
Making Sense of Implementation Madness through Technical Innovation - Joan Mc...Making Sense of Implementation Madness through Technical Innovation - Joan Mc...
Making Sense of Implementation Madness through Technical Innovation - Joan Mc...Healthcare Network marcus evans
 
Synopsis on inventory_management_system
Synopsis on inventory_management_systemSynopsis on inventory_management_system
Synopsis on inventory_management_systemDivya Baghel
 
RECENT TRAINDS IN ADVANCED MANUFACTURING SYSTEM
RECENT TRAINDS IN ADVANCED MANUFACTURING SYSTEMRECENT TRAINDS IN ADVANCED MANUFACTURING SYSTEM
RECENT TRAINDS IN ADVANCED MANUFACTURING SYSTEMakshay ghanwat
 
bba full notes.pdf
bba full notes.pdfbba full notes.pdf
bba full notes.pdfssuser30da23
 
BBA PRODUCTION MANAGEMENT
BBA PRODUCTION MANAGEMENT BBA PRODUCTION MANAGEMENT
BBA PRODUCTION MANAGEMENT Vandan Kashyap
 
5 improving facility planning with decision technology systems
5   improving facility planning with decision technology systems5   improving facility planning with decision technology systems
5 improving facility planning with decision technology systemsQuốc Lê
 
How to Implement a Manufacturing System
How to Implement a Manufacturing SystemHow to Implement a Manufacturing System
How to Implement a Manufacturing SystemSania Baker
 
MS VIII UNIT MATERIAL : CONTEMPORARY ISSUES OF MANAGEMENT
MS VIII UNIT MATERIAL : CONTEMPORARY ISSUES OF MANAGEMENTMS VIII UNIT MATERIAL : CONTEMPORARY ISSUES OF MANAGEMENT
MS VIII UNIT MATERIAL : CONTEMPORARY ISSUES OF MANAGEMENTDr. Durgaprasad Navulla
 
Section 1 PROJECT INTRODUCTION .docx
Section 1  PROJECT INTRODUCTION                                  .docxSection 1  PROJECT INTRODUCTION                                  .docx
Section 1 PROJECT INTRODUCTION .docxrtodd280
 
IMPROVEMENT OF MANUFACTURING PROCESS PLANNING USING OF WEB BASED SYSTEM IN A ...
IMPROVEMENT OF MANUFACTURING PROCESS PLANNING USING OF WEB BASED SYSTEM IN A ...IMPROVEMENT OF MANUFACTURING PROCESS PLANNING USING OF WEB BASED SYSTEM IN A ...
IMPROVEMENT OF MANUFACTURING PROCESS PLANNING USING OF WEB BASED SYSTEM IN A ...RamamSingh
 
Leveraging Your CMMS - From Selection to Daily Use
Leveraging Your CMMS - From Selection to Daily UseLeveraging Your CMMS - From Selection to Daily Use
Leveraging Your CMMS - From Selection to Daily Usejohnnyg14
 
Designing, implementation, evolution and execution of an intelligent manufact...
Designing, implementation, evolution and execution of an intelligent manufact...Designing, implementation, evolution and execution of an intelligent manufact...
Designing, implementation, evolution and execution of an intelligent manufact...ijmech
 
A Real-Time Information System For Multivariate Statistical Process Control
A Real-Time Information System For Multivariate Statistical Process ControlA Real-Time Information System For Multivariate Statistical Process Control
A Real-Time Information System For Multivariate Statistical Process ControlAngie Miller
 
production operation management
production operation managementproduction operation management
production operation managementdhiraj jain
 

Similar a Introduction to Manufacturing Execution Systems Conference (20)

Case Study U.S. Strollers
Case Study U.S. StrollersCase Study U.S. Strollers
Case Study U.S. Strollers
 
Process control systems with a plc 1.0.2
Process control systems with a plc 1.0.2Process control systems with a plc 1.0.2
Process control systems with a plc 1.0.2
 
Making Sense of Implementation Madness through Technical Innovation - Joan Mc...
Making Sense of Implementation Madness through Technical Innovation - Joan Mc...Making Sense of Implementation Madness through Technical Innovation - Joan Mc...
Making Sense of Implementation Madness through Technical Innovation - Joan Mc...
 
Synopsis on inventory_management_system
Synopsis on inventory_management_systemSynopsis on inventory_management_system
Synopsis on inventory_management_system
 
RECENT TRAINDS IN ADVANCED MANUFACTURING SYSTEM
RECENT TRAINDS IN ADVANCED MANUFACTURING SYSTEMRECENT TRAINDS IN ADVANCED MANUFACTURING SYSTEM
RECENT TRAINDS IN ADVANCED MANUFACTURING SYSTEM
 
bba full notes.pdf
bba full notes.pdfbba full notes.pdf
bba full notes.pdf
 
BBA PRODUCTION MANAGEMENT
BBA PRODUCTION MANAGEMENT BBA PRODUCTION MANAGEMENT
BBA PRODUCTION MANAGEMENT
 
Mfg process management
Mfg process managementMfg process management
Mfg process management
 
5 improving facility planning with decision technology systems
5   improving facility planning with decision technology systems5   improving facility planning with decision technology systems
5 improving facility planning with decision technology systems
 
CIM Introduction|Mechanical |Harin Prajapati|GTU
CIM Introduction|Mechanical |Harin Prajapati|GTU  CIM Introduction|Mechanical |Harin Prajapati|GTU
CIM Introduction|Mechanical |Harin Prajapati|GTU
 
Sad
SadSad
Sad
 
How to Implement a Manufacturing System
How to Implement a Manufacturing SystemHow to Implement a Manufacturing System
How to Implement a Manufacturing System
 
MS VIII UNIT MATERIAL : CONTEMPORARY ISSUES OF MANAGEMENT
MS VIII UNIT MATERIAL : CONTEMPORARY ISSUES OF MANAGEMENTMS VIII UNIT MATERIAL : CONTEMPORARY ISSUES OF MANAGEMENT
MS VIII UNIT MATERIAL : CONTEMPORARY ISSUES OF MANAGEMENT
 
S430199101
S430199101S430199101
S430199101
 
Section 1 PROJECT INTRODUCTION .docx
Section 1  PROJECT INTRODUCTION                                  .docxSection 1  PROJECT INTRODUCTION                                  .docx
Section 1 PROJECT INTRODUCTION .docx
 
IMPROVEMENT OF MANUFACTURING PROCESS PLANNING USING OF WEB BASED SYSTEM IN A ...
IMPROVEMENT OF MANUFACTURING PROCESS PLANNING USING OF WEB BASED SYSTEM IN A ...IMPROVEMENT OF MANUFACTURING PROCESS PLANNING USING OF WEB BASED SYSTEM IN A ...
IMPROVEMENT OF MANUFACTURING PROCESS PLANNING USING OF WEB BASED SYSTEM IN A ...
 
Leveraging Your CMMS - From Selection to Daily Use
Leveraging Your CMMS - From Selection to Daily UseLeveraging Your CMMS - From Selection to Daily Use
Leveraging Your CMMS - From Selection to Daily Use
 
Designing, implementation, evolution and execution of an intelligent manufact...
Designing, implementation, evolution and execution of an intelligent manufact...Designing, implementation, evolution and execution of an intelligent manufact...
Designing, implementation, evolution and execution of an intelligent manufact...
 
A Real-Time Information System For Multivariate Statistical Process Control
A Real-Time Information System For Multivariate Statistical Process ControlA Real-Time Information System For Multivariate Statistical Process Control
A Real-Time Information System For Multivariate Statistical Process Control
 
production operation management
production operation managementproduction operation management
production operation management
 

Último

SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESmohitsingh558521
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxLoriGlavin3
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxLoriGlavin3
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxBkGupta21
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxLoriGlavin3
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxLoriGlavin3
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxLoriGlavin3
 

Último (20)

SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptx
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
 

Introduction to Manufacturing Execution Systems Conference

  • 1. INTRODUCTION TO MANUFACTURING EXECUTION SYSTEMS MES CONFERENCE & EXPOSITION JUNE 4-6, 2001 Baltimore, Maryland Michael McClellan President MES Solutions Incorporated Terrebonne, Oregon 97760 541 548 6690
  • 2. INTRODUCTION TO MANUFACTURING EXECUTION SYSTEMS By Michael McClellan About the Author Mr. Michael McClellan is president of MES Solutions Incorporated, a company specializing in consulting services aiding clients in the design and implementation of Manufacturing Execution Systems. Prior to his current position Mr. McClellan was President of a major supplier of material management and control systems. Before that he was a founder and President of Integrated Production Systems, a company that pioneered the development and implementation of computer systems for production execution. While at Integrated Production Systems he published two papers and numerous articles on the subject of applying computer systems in manufacturing operations and managed the company that developed and installed systems for major clients. Prior to forming Integrated Production Systems Mr. McClellan held officer level management positions in companies providing equipment and control systems for production and material management. In addition to his work experience Mr. McClellan is a member of the Manufacturing Execution Systems Association (MESA International), American Production and Inventory Control Society (CPIM) and the Society of Manufacturing Engineers. He is a frequent speaker on MES, holds one patent, and is the author of the recently published book, Applying Manufacturing Execution Systems. Mr. McClellan is interested in any comments and ideas regarding MES and can be reached by telephone at 541 548 6690 or Fax at 541 548 6674 or by mail at P.O. Box 2148, Terrebonne, Oregon 97760. 2
  • 3. INTRODUCTION TO MANUFACTURING EXECUTION SYSTEMS By Michael McClellan Bridging the Gap Applying information technology to assist in the execution of production, through on-line management of the activities at the plant floor, has been a rapidly growing trend for a number of years. Planning systems have been applied under a variety of titles, including Material Requirements Planning (MRP), Manufacturing Resources Planning (MRPII), Enterprise Requirements Planning (ERP), and Manufacturing Control Systems (MCS). Also in place for many years are modern control systems that manage or control a machine’s functions such as PLCs used to run machine tools. The MES system bridges the gap between the planning system and the controlling system using on-line information to manage the current application of manufacturing resources: people, equipment and inventory. With direct electronic connections to the planning system and the equipment control systems, the MES is the hub that collects and provides information and direction within the production activities. To support on-line management decisions the MES usually includes direct connection to functions such as SPC, Time & Attendance, Product Data Management, Maintenance Management, and any other similar tool. A General Overview Technology Evolves The idea of using computers to manage manufacturing activities is not new. The concepts that allowed the development of Materials Requirements Planning evolved from computer usage primarily within the accounting departments (the main users of early computers) and were extensions of tools used for cost accounting and inventory measurement. Even the systems used by manufacturing have been oriented toward accounting and finance. This appears to be part of the reason for the distance between many manufacturing professionals and true computer implementation on the manufacturing floor. Many legitimate complaints are often stated about the computer systems used in manufacturing. For example: • The information is too old. • I don’t have time to read such a big report. • How much of this information applies to me. • This information applies to accounting or MIS, not to manufacturing. • All this is history. I need to make decisions based on what is happening now. A new idea is evolving. In recent years a concept with many versions has been developed for manufacturing managers—a real tool that helps manage the manufacturing floor, functions, resources, and inventory and gives accounting and MIS all the information they require. The best part is this idea is being built around the manufacturing world and requires no advanced knowledge of computers. In most cases these systems run on smaller local computers and are fairly simple to use. Manufacturing Execution Systems This concept has been around long enough to have a name: Manufacturing Execution Systems (MES). As the name implies, MES is more than a planning tool like ERP or MRPII. MES is an on-line extension of the planning system with an emphasis on execution or carrying out the plan. Execution means: • Making products. • Turning machines on and off. • Making and measuring parts. • Moving inventory to and from WorkStations. 3
  • 4. INTRODUCTION TO MANUFACTURING EXECUTION SYSTEMS By Michael McClellan • Changing order priorities. • Setting and reading measuring controls. • Assigning and reassigning personnel. • Changing order priorities. • Assigning and reassigning inventory. • Scheduling and rescheduling equipment. Manufacturing Execution Tool The MES is a manufacturing tool designed and built for manufacturing. Most manufacturing companies use a planning process (MRPII/ERP or equivalent) to determine what products are to be manufactured. Once that plan has been developed, there must be a translation of the plan that deals with real resources that are currently available. What is necessary is a method to take input from the planning system and translate that plan into a language that fits the plant floor and the resources required to execute the plan—a major role for the MES. What MES Can Do For You MESA International has conducted studies of companies using MES and offers the following benefits as reported by system users: • Reduces manufacturing cycle time. • Reduces or eliminates data entry time. • Reduces work-in-process inventory. • Reduces lead times. • Reduces paperwork between shifts. • Improves product quality. • Eliminates lost paperwork/blueprints. • Empowers plant operations people. • Improves customer service. • Responds to unanticipated events. The potential gain by implementing MES addresses the need for immediate, current, on-line information that allows users or the MES computer system to make the best informed decisions regarding the application of inventory, plant resources, and people. Some examples include: 1. Engineering wants to locate all current work orders for a given product to determine the effect of an immediate engineering change order. 2. Some purchased material that is specific to a given customer’s order currently in process has arrived as a partial shipment, 72% complete. Where is the order and what is the appropriate response? 3. A customer requires specific operator information including operator, date, and ambient conditions to be supplied with each item produced. 4. A process critical to production needs preventative maintenance. How are the current orders to be scheduled? 5. The president of a high-volume customer has just called and needs to know by tomorrow if he can double the quantity on the current order in house without affecting the delivery schedule. 6. There are 26 work orders totaling 443 hours of work for a specific routing location. What is the optimum sequence for these work orders and what factors should be considered? 7. A new quality assurance system has been installed that can receive and analyze data from the plant floor and provide current on-line results to the workstation operator. 8. Operator time is charged to each order and collected as the order passes through production through the use of a time card data collection system using bar code readers and menus. 9. Inventory can be retrieved from storage and sent to a specific workstation matching the production schedule. 10. The shift supervisor is considering replacing a part on a production machine and needs to know if the part is in stock and how long the maintenance work will take. 11. Information regarding inbound inventory can be gained by a through a communication link with the vendor’s MES computer. 12. A sales representative is at a customer’s office and needs to know where their order is in the production process. 4
  • 5. INTRODUCTION TO MANUFACTURING EXECUTION SYSTEMS By Michael McClellan ______________________________________CORE FUNCTIONS The following is an overview of the core functions of the MES: Planning System Interface The MES should be directly coupled to the planning system to accept work orders and all other input and to provide upload information as necessary. The communications should be two way so the MES can keep the planning system properly informed about plant activities such as labor data, inventory changes, and work order progress. Other methods of data entry and reporting can easily be accommodated, and in some cases, such as more continuous process, production orders may not be used at all. Work Orders The MES accepts the Work Order through automatic or manual entry. It manages changes on orders, establishes and changes schedules, and maintains a prioritized sequenced plan. Releasing orders to production and establishing a current order priority list based on your sequencing rules is a normal part of MES. Frequently changes must be made to released orders. Within MES, order modifications such as these examples can be done easily: • Enter schedule changes. • Mark for material shortage. • Enter quantity changes. • Place on hold. • Split orders or combine orders. The Work Order management function maintains a constant real time view of the work orders in the current backlog and the status of each order. Work Stations This part of the system is responsible for implementing the direction of the Work Order plan and the logical configuration of the WorkStations. The planning, scheduling, and loading of each operational Work Station is done here, providing the current and total shop load by operation using routing data and time standards. Based on this plan, the system will request and manage delivery of inventory, tooling, and data in response to the Bill of Material requirements and will issue and execute commands to move the required items to the planned WorkStation. The MES can and should include the direct control interface and connection with each WorkStation. Inventory Tracking and Management While the planning system has the aggregate data on inventory, the detail can easily reside at the local level—the MES. “Dock To Stock” operations are accomplished here with regular updates to the planning system. A current map of all inventory and storage locations, including WIP, is maintained. 5
  • 6. INTRODUCTION TO MANUFACTURING EXECUTION SYSTEMS By Michael McClellan Material Movement Another major area of MES system contribution is the movement of inventory or information to the needed location on the plant floor. This portion of the system controls material movement in the plant, in manual or automatic systems, by issuing requests for a manual move (printing move tickets) or issuing commands to material handling system control PLCs, such as ASRS, AGVS, conveyor systems, carrousels, robots, etc. The commands can be as simple as “move this item from this location to that location.” Data Collection This part of the MES system is the eyes and ears for management and gathers information so the system can remain current. Through various kinds of sensing devices and control interfaces, data from the floor operations can be collected, collated, and dispersed on whatever basis is desired. This is the primary method for all personnel to communicate with the MES, either through information input/output by system operators or recognition of events electronically. Direct connections with PLCs to download and/or collect information are also part of this function area. Exception Management The most custom portion of the MES is addressing how a company responds to plan exceptions. What happens when a WorkStation is suddenly down, or when material is not available, or when a Work Order becomes “hot”? The MES should be able to take these changes in stride and respond with alternative actions. Our process began with a planned or sequenced list of Work Orders, methods to schedule those Work Orders into Work Stations, control of inventory assignment, and management of material movement. Along with data collection to keep the system current and a way to handle exceptions, we have the ability to execute the manufacturing plan—truly a Manufacturing Execution System. 6
  • 7. INTRODUCTION TO MANUFACTURING EXECUTION SYSTEMS By Michael McClellan Support Functions Other components of Manufacturing Execution Systems act as Support functions. These are programs or software packages that support manufacturing but are not part of the planning process or the device control system. The most popular applications are listed here, but there are others, and more will be developed in the future. • Statistical Process Control • Maintenance Management • Time and Attendance • Product Data Management • Process Data/Performance Analysis • Supplier Management • Genealogy/Product Traceability • Laboratory Information Management • Quality Assurance 7
  • 8. INTRODUCTION TO MANUFACTURING EXECUTION SYSTEMS By Michael McClellan Manufacturing Execution System 8
  • 9. INTRODUCTION TO MANUFACTURING EXECUTION SYSTEMS By Michael McClellan ____________________________________Agile Manufacturing Agile Manufacturing is the ability to efficiently and competitively make “one of many” instead of “many of one.” The idea is similar to “a lot size of one” with a greater intensity and focus on timeliness, allowing insertion of the “one” into the production plan as necessary to meet customer requirements—usually sooner rather than later. This can be effective only with a detailed understanding of the current situation and a control system that allows immediate change of resource assignment. If your largest customer requires a change to an order, do you know the effect and can you respond to the request? With a properly designed MES system, the information necessary to view all the options is readily available. _____ Application Examples Planning System Data Exchange A major role of the MES is to collect, collate, and upload data to the planning level system. It would be difficult to describe each possible scenario since there are many existing and available varieties of planning system installations and products. Each system interface must stand on its own depending on the input and output requirements. These requirements can best be established in a meeting with the planning system vendor, the users, and the MES provider. This meeting should be held early in the system design process to determine the feasibility of the interface. Receiving Within MES Receiving can be treated as another group of work stations with processing routings established by reading the incoming bar code label (either PO number or part number). This displays a screen to the receiving personnel for appropriate data entry and establishes the routing for this specific receipt. At this point, the material begins its tracking within the inventory function and is directed through quality assurance processing steps. The material may be sent to a buffer storage area for later retrieval and assignment to a specific processing work station or sent immediately to the appropriate work station. Following the incoming processing steps, the material can be put into inventory for assignment to production orders or, upon failure to pass incoming processing, is sent to the appropriate Work Station for disposition. Disposition decisions are made and executed with status inputs to the MES and uploaded to the purchasing and inventory modules of the planning system. Timed Operation Routing Step The MES can automatically perform timed operations as part of the routing used in WorkStation scheduling. An example of a timed operation might be a “burn in” operation where the product is removed from a Work Station, sent to storage, and retrieved automatically after the timed function is complete. Work Scheduling or Sequencing A very obvious question that should be asked frequently in manufacturing management is “What is the schedule of work to be performed?” Though it may seem obvious or intuitive, the area of schedule development probably offers the best opportunity for improving the resource management process. The issue here is not to determine production quantities (presumably, that was determined by the planning system), but rather how to rank a given list of tasks based on the resources (people, equipment, and inventory) currently available. 9
  • 10. INTRODUCTION TO MANUFACTURING EXECUTION SYSTEMS By Michael McClellan System Requirements MES projects have developed on a somewhat piecemeal basis, but as the concept grows, the need for broader system design considerations for all software and hardware is increasingly obvious. Major system revisions as well as all new systems should be designed to include: Full Integration All systems must be able to exchange information and not be excluded from the overall system process. The concept of the information warehouse where each computerized activity draws from and delivers data to the system is becoming increasingly important. Scalability To Future Needs The design of the software and hardware must allow upward scalability to meet the increasing needs of your company as growth and change occurs. Compatibility With Existing Systems Ideally, an MES system should be incorporated into the existing systems. However, this may not be economically feasible with systems using older software. Broad System Access Information is the tool that gives users access to what is going on. It will be increasingly more important to broaden the audience of information users. Do not be overly restrictive. Security While broad access is a cornerstone, so too is the requirement of adequate security, primarily to ensure data integrity The Ability To Upgrade Hardware The system must allow hardware and technology changes to be made easily without disruption. Easily Added Functionality Changes New and better ideas will be obvious after the MES is in operation. As continuous improvement opportunities present themselves, the system must incorporate these changes with little cost or inconvenience. ___________________________System Risk Some MES projects fail—not because of computer or software malfunction but most frequently, from poor definition. Other reasons include: • Extensive custom software • Customer delays and changes. • Too much reliance on the vendor. • Choice of product or product vendor did not fit the needs. Be Risk Averse 10
  • 11. INTRODUCTION TO MANUFACTURING EXECUTION SYSTEMS By Michael McClellan We recommend that buyers adopt a strategy of being risk averse—that is to avoid the risk of system failure. Accept Responsibility For Your System The most important aspect of being risk averse is to accept system responsibility—define in detail what you want the system to do. This requires more up-front work but the payoff will be very rewarding. As you define what you want the system to do for you, you must think through how you want to manage your business—a responsibility that should not be transferred to a vendor. System Requirements Definition and Functional Design Specification The System Requirements Definition should provide the definition and analysis of the current problems and opportunities, the objectives and goals of the system, and the expected results of the project. • Identify the fundamental problem or problems the system is to address (the “as is”). • List specific needs the solution must satisfy related to functions and tasks (the “to be”). • Describe the physical system environment, the expected users and their computer skill level. • Indicate any hardware and software preferences or needs. • Describe the minimal quality, performance, security, and support requirements. • Describe any compatibility and legacy system migration needs. • Describe the system support requirements. Taking the requirements on step further, the Functional Design Specification (usually done by the vendor and reviewed by the buyer) describes in detail what the system will look like to the user. This includes each screen, data field, and key stroke definition along with all interfaces to external participants or data points. • Identify all data input and output points with the data characteristics. • Layout each screen or man/machine interface with exact definitions for each keystroke. • Identify and describe any and all expert rules. This effort may seem exhaustive and too detailed but these definitions and decisions must be made either by the vendor or by you, the buyer. If you do not understand, in detail how the system will function you will have left important decisions on how your company is run up to the vendor. Can you take that risk? 11
  • 12. INTRODUCTION TO MANUFACTURING EXECUTION SYSTEMS By Michael McClellan _____________________________________________A New Approach This paper has been presented at earlier forums and is a shortened version of the book, Applying Manufacturing Execution Systems. The information presented in both of these has been a useful definition of what a using company might envision their functional system requirements to be. There have been few, if any, vendors that could provide a complete set of the listed functions as outlined and even fewer that could accomplish a system with fully or even partially integrated functions. This is changing. There is a new approach to the manufacturing environment that provides much easier integration between applications and takes into account the realization that existing plant methods and systems cannot be simply discarded and replaced. This view includes a fundamental change to the historical hierarchy of the three tiered systems by consolidating the controls level with the execution level. It has been long established that planning systems (ERP) fall in the category of decision support systems while plant environment applications are most often on-line transaction processing systems. This natural categorization provides a simple dividing line (never an absolute) between these systems and might even suggest that controls and execution could be combined, which is what is beginning to occur in the market. ERP vendors have long taken a system approach that centers on an overall framework that integrates application modules to provide a global answer to those issues such as financial, personnel, and planning, etc. This idea has now come to the area of plant applications even while recognizing the differences of system implementations where an open environment is an absolute must. This is where legacy systems and new applications from one or more vendors must be easily integrated into a holistic manufacturing system. This new approach of combining the controls system functionality with the execution system applications is often referred to as the Enterprise Production System. This change has been in process for some time but has been accelerating with the firm establishment of software standards in manufacturing such as Microsoft DNA. With systems following common standards, the ability to integrate functions has become much easier, less costly, and faster to implement. Stay tuned. The plant system world is going to get a lot more interesting and more satisfying very fast. Portions of this paper were presented at National Manufacturing Week, Chicago, Illinois, and are reissued with their permission. McClellan, Michael, Applying Manufacturing Execution Systems, St. Lucie Press, Boca Raton, Fl, 1997 MESA International, The Benefits of MES: A Report From The Field, MESA International, Pittsburgh, PA Cube Technology Inc, The Open Control System, Cube Technology Inc, Milford, MA. 12