SlideShare una empresa de Scribd logo
1 de 49
Descargar para leer sin conexión
Sistema  Circulatorio
Introducción El  Sistema Circulatorio  (también llamado aparato circulatorio) es el sistema de transporte interno del organismo. Su objetivo es llevar elementos nutritivos, defensivos y oxígeno a todos los tejidos del organismo, eliminar los productos finales del metabolismo (desechos, dióxido de carbono) y llevar las hormonas desde las correspondientes glándulas endocrinas a los órganos sobre los cuales actúan. Durante este proceso, regula la temperatura del cuerpo, debido a que transporta el calor generado en los músculos.   El Sistema Circulatorio está compuesto por: 1. Un corazón 2. Vasos Sanguíneos (Venas, Arterias, Capilares) 3. Sangre 4. Vasos Linfáticos 5. Linfa
Red de Vasos Sanguíneos y Corazón
Circuitos Mayor y Menor Nuestro cuerpo, en realidad, tiene dos aparatos circulatorios: la  circulación pulmonar  es un circuito breve que va del corazón a los pulmones y de regreso al corazón y recibe el nombre de  Circuito Menor , y la  circulación sistémica  que envía sangre desde el corazón a todas las partes de nuestro cuerpo y después vuelve a traerla al corazón y recibe el nombre de  Circuito Mayor.  El circuito mayor comienza en el ventrículo izquierdo, sigue por la arteria aorta y a través de sus ramificaciones llegará a los capilares de todo el cuerpo. Este circuito retorna por las venas que drenan finalmente a las venas cavas, superior e inferior, finalizando el circuito en la aurícula derecha. El circuito menor, comienza en el ventrículo derecho, sale a través del tronco pulmonar sigue por las arterias pulmonares derecha e izquierda, capilarizándose en los pulmones. Este circuito retorna por las vénulas que convergen para formar las cuatro venas pulmonares, dos del pulmón derecho y dos del izquierdo, las que drenan en la aurícula izquierda.
Sentido de la circulación (animación) La sangre que procede de la circulación de todo el cuerpo, entra en la aurícula derecha a través de las  venas cava superior e inferior.  Por la superior ingresa la sangre que procede de la cabeza y los brazos y por la cava inferior la sangre que proviene de la parte inferior y las piernas. Esta sangre está desoxigenada pues ha dejado todo su oxígeno y nutrientes en el organismo. Ingresa por la  aurícula derecha , entra en el  ventrículo derecho  atravesando la  válvula tricúspide  y se conduce a los pulmones por la  arteria pulmonar , pasando luego por la  válvula pulmonar . Esta arteria es la única que lleva en su interior sangre venosa. La arteria pulmonar conduce la sangre a los pulmones en sus ramificaciones izquierda y derecha. La sangre desoxigenada vuelve a oxigenarse en los pulmones (intercambio gaseoso o Hematosis; cambia el anhídrido carbónico por oxígeno, enriqueciéndose), luego regresa por las  cuatro venas pulmonares  (dos izquierdas y dos derechas) recién oxigenada desde los pulmones a la aurícula izquierda. Estas son las únicas venas del organismo que transportan sangre con oxígeno y nutrientes. Ingresan al  ventrículo izquierdo  pasando por la  válvula mitral  y se dirige a la arteria  aorta  atravesando la  válvula aórtica . La arteria aorta enriquecerá con la sangre oxigenada a todos los órganos y tejidos del cuerpo humano.
 
Modelo Simplificado de la Circulación Mayor y Menor en Humanos
Corazón El  Corazón   es un órgano muscular hueco que  recibe sangre de las venas y la impulsa hacia las arterias. Tiene  el tamaño y volumen de un puño y está situado en el tórax, entre los dos pulmones y ligeramente desplazado a la izquierda, por delante del esófago y apoyado sobre el diafragma.  Las paredes de tejido muscular son reforzadas por bandas de tejido conectivo y todo el órgano está recubierto por tejido conectivo llamado pericardio, saco de pared doble con una capa que envuelve, además, al esternón, el diafragma, y las membranas del tórax. Tanto el corazón como todos los vasos están revestidos por una capa de células aplanadas llamada endotelio que evita que la sangre se coagule. En su parte interna está dividido en cuatro cavidades: dos   aurículas y dos ventrículos   (izquierdos y derechos) y l a sangre pasa de la aurícula al ventrículo. Por su función de bombeo el corazón está provisto de válvulas (en la conexión aurícula - ventrículo) que al cerrar herméticamente evitan el retroceso de la sangre. La   válvula tricúspide   se encuentra entre la aurícula y el ventrículo derecho, mientras que la   válvula bicúspide o mitral   se ubica entre la aurícula y ventrículo izquierdo. Podemos encontrar a las   válvulas semilunares (aórtica)   en el origen de las arterias aorta y pulmonar que parten de los ventrículos   Del corazón salen arterias y a él llegan venas. Su función es impulsar la sangre a todo el cuerpo, permitiendo así que cada tejido corporal reciba la cantidad de oxígeno y nutrientes que necesita y que elimine los desechos o productos celulares.
 
Circulación de la sangre en el corazón (animación)
Ciclo Cardiaco Cada latido del corazón desencadena una secuencia de eventos llamados   ciclos cardiacos ,  que constan principalmente de tres etapas:   sístole auricular, sístole ventricular y diástole .  El ciclo cardíaco hace que el corazón alterne entre una contracción y una relajación aproximadamente 75 veces por minuto, es decir el ciclo cardíaco dura unos 0,8 segundos . Durante la   sístole auricular ,  las aurículas se contraen y proyectan la sangre hacia los ventrículos. Una vez que la sangre ha sido expulsada de las aurículas, las válvulas auriculoventriculares entre las aurículas y los ventrículos se cierran. Esto evita el reflujo de sangre hacia los atrio. El cierre de estas válvulas produce el sonido familiar del latido del corazón.  La   sístole ventricular   implica la contracción de los ventrículos expulsando la sangre hacia el sistema circulatorio. Una vez que la sangre es expulsada, las dos válvulas sigmoideas, la válvula pulmonar en la derecha y la válvula aórtica en la izquierda, se cierran. Por último la   diástole   es la relajación de todas las partes del corazón para permitir la llegada de nueva sangre.  Este movimiento se produce unas 70 veces por minuto. La expulsión rítmica de la sangre provoca el pulso que se puede palpar en las arterias radiales, carótidas, femorales, etc. Diástole Sístole Ventricular Ciclo Cardiaco
Automatismo Cardíaco Un sistema de conducción eléctrico único en el corazón provoca los latidos con su ritmo regular. El   nodo sino auricular (SA),   una pequeña zona de tejido en la pared de la aurícula derecha, envía una señal eléctrica para comenzar la contracción del músculo cardíaco. Este nodo se denomina "marcapasos del corazón", porque fija la velocidad del latido y hace que el resto del corazón se contraiga a su ritmo. Estos impulsos eléctricos hacen contraer primero a las aurículas y después se trasladan hacia abajo en dirección al   nodo auriculoventricular (AV),   que actúa como una estación de relevo. Desde allí, la señal eléctrica viaja a través de los ventrículos derecho e izquierdo, haciéndolos contraer y expulsando la sangre hacia el interior de las arterias principales.
 
Vasos Sanguíneos: Venas Una   Vena   es un vaso sanguíneo que transporta sangre desoxigenada desde los capilares hasta el corazón. Las venas se localizan más superficialmente que las arterias, prácticamente por debajo de la piel en las venas superficiales.  Al igual que las arterias, sus paredes están formadas por tres capas pero son de menor espesor, sobre todo al disminuir la capa del medio. Las venas tienen válvulas que hacen que la sangre fluya desde la periferia hacia el corazón o sea que llevan la circulación centrípeta   Existen tres sistemas en los que se agrupan las venas: Venas del sistema general:   Por las venas de la circulación sistémica o general circula la sangre pobre en oxígeno desde los capilares o microcirculación sanguínea de los tejidos a la parte derecha del corazón. Las venas de la circulación sistémica también poseen unas válvulas, llamadas válvulas semilunares que impiden el retorno de la sangre hacia los capilares. Venas del sistema pulmonar:   Por las venas de la circulación pulmonar circula la sangre oxigenada en los pulmones hacia la parte izquierda del corazón. Venas del sistema portal:   Las venas portales reciben sangre procedente de las venas esplénica, mesentérica superior, cística, gástrica y pilórica, entran en el hígado y se ramifican en pequeños capilares que atraviesan todo este órgano.
 
Vasos Sanguíneos: Arterias Las   Arterias  son vasos tubulares que conducen la sangre desde el corazón hacia los tejidos del organismo. S u función es llevar la sangre desde el corazón hasta los tejidos. Están formada por tres capas, una capa media de fibras musculares lisas rodeada de dos capas de tejido conectivo; por dentro de ella se encuentra una capa muy delgada de células que constituyen el endotelio.   Hay dos arterias con comunicación directa con el corazón: la  aorta,  que lleva la sangre oxigenada desde el  ventrículo izquierdo  a todo el organismo, y  la arteria pulmonar, que conduce la sangre desde el ventrículo derecho a los pulmones. Las ramas arteriales más pequeñas se comunican con las venas a través de los capilares. Las arterias suelen recibir el nombre de la zona del cuerpo donde se localizan, como la arteria humeral (húmero), o braquial (brazo) o la metacarpiana (muñeca), o del órgano que irrigan, como la arteria hepática (hígado) o la arteria ovárica (ovario). Las arterias se dilatan y después se contraen con cada latido del corazón, un movimiento rítmico perceptible, el pulso.
Vasos Sanguíneos: Capilares Los  Capilares (figura de la izquierda)  son diminutos vasos sanguíneos que constituyen la conexión entre las arterias y las venas. Estos vasos son muy finos, tienen un diámetro que varía entre unos 0,0127 Mm. y 0,2032 Mm., son muy numerosos y están repartidos por todo el cuerpo. Las paredes de los capilares son extremadamente delgadas y muy permeables; a través de ellas se produce el intercambio constante entre sustancias que están en la sangre y los productos de desecho presentes en el exterior, en los tejidos corporales y en la linfa. Esta característica facilita los procesos de nutrición y excreción, y permite el intercambio de oxígeno y dióxido de carbono. Los capilares linfáticos colaboran con los capilares sanguíneos en este proceso. Sus paredes se componen de una sola capa celular, el  endotelio,  que se continúa con el mismo tejido de las venas y arterias en sus extremos. La sangre no se pone en contacto directo con las células del organismo, sino que éstas son rodeadas por un líquido intersticial que las baña; las sustancias se difunden desde la sangre por la pared de un capilar y atraviesan el espacio ocupado por líquido intersticial para llegar a las células. Las arterias antes de transformarse en capilares son un poco más pequeñas y se llaman  arteriolas  y cuando el capilar pasa a ser vena nuevamente hay un paso intermedio en el que son venas más pequeñas llamadas  vénulas (figura de la derecha).
Comparación entre Vena, Arteria y Capilar
[object Object],[object Object],[object Object]
Presión sanguínea  o  tensión sanguínea ,[object Object],[object Object],[object Object]
Gasto Cardíaco ,[object Object],[object Object]
Vasos Linfáticos Los  vasos linfáticos  representan la vía de retorno del líquido intersticial (líquido que se encuentra en el espacio que hay entre las células) al sistema circulatorio. A lo largo del recorrido de los vasos linfáticos se encuentran los  ganglios linfáticos , órganos con forma de riñón que contienen grandes cantidades de leucocitos incluidos en una red de tejido conectivo. Toda la  linfa  que circula por los vasos linfáticos hacia el torrente sanguíneo debe atravesar varios de estos ganglios, que filtran los materiales tóxicos e infecciosos y los destruyen. Los ganglios funcionan como centro de producción de macrófagos, que ingieren bacterias y demás sustancias.  Durante el transcurso de cualquier infección, los ganglios aumentan de tamaño debido a la gran cantidad de macrófagos que forman; estos ganglios suelen estar, durante el proceso infeccioso, inflamados y son dolorosos. Los vasos linfáticos forman una red de conductos que se inician en el espacio intersticial y que en el torrente circulatorio sanguíneo a nivel de la base del cuello, en el ángulo formado por las venas yugular interna y subclavia.   Derecha: Sistema linfático mostrando los vasos los ganglios y los órganos. Izquierda: ganglio linfático en corte
Sangre La Sangre  es un tejido constituido por células (eritrocitos, leucocitos y plaquetas) y sustancia intercelular líquida (plasma). Mantiene su fluidez mientras circula por vasos que conserven la integridad de sus paredes. Al lesionarse esos vasos, coagula rápidamente. El volumen de sangre total de un adulto de 70 Kg. de peso es de aproximadamente 5,5 litros. Está compuesto por:  Plasma sanguíneo:  es un líquido amarillento compuesto por agua, iones, glucosa, aminoácidos, proteínas, lípidos, hormonas, vitaminas, etc. Por el plasma sanguíneo se transporta gran cantidad de sustancias que son usadas a distancia por todos los tejidos corporales (hormonas, aminoácidos, etc.).  Eritrocitos o Glóbulos rojos Leucocito o Glóbulo blanco Plaquetas La sangre se forma normalmente en un tejido conectivo especializado denominado hemopoyético ubicado e n la médula ósea roja dentro de los espacios de los huesos largos jóvenes en la cavidad medular y en el hueso esponjoso.
Composición de la Sangre
Eritrocitos o Glóbulos Rojos Los  glóbulos rojos , también denominados  eritrocitos o hematíes , se encargan de la distribución del oxígeno molecular (O 2 ). Tienen forma de disco bicóncavo y son tan pequeños que en cada milímetro cúbico hay cuatro a cinco millones. Su citoplasma carece de organelas y ribosomas que desaparecen junto con el núcleo en la célula precursora antes de ser lanzados a la circulación desde su sitio de origen. Contiene  hemoglobina , proteína rica en hierro que le permite combinarse con oxígeno y transportarlo al resto de las células del organismo o con dióxido de carbono (CO 2 ), lo que permite su eliminación.  Su membrana plasmática permite el pasaje de O 2  y CO 2 .   La vida media promedio del eritrocito normal es de 100 a 120 días.
Eritrocito y Hemoglobina
La hemoglobina   ,[object Object]
Leucocitos o Glóbulos Blancos Los  Leucocitos o Glóbulo Blancos  normalmente se encuentran de 5000 a 10000 por /mm 3  en el adulto. Pueden desplazarse y hasta deslizarse a través de los vasos sanguíneos para penetrar en los tejidos corporales y cumplir funciones de protección del organismo (eliminar bacterias, por ejemplo). Se dividen en dos grandes grupos, de acuerdo con la presencia o ausencia de gránulos : granulocitos o agranulocitos . a)  Los granulocitos  comprenden los siguientes tipos celulares: Neutrófilos:  su función es dirigirse a áreas del organismo infectadas y fagocitar el material nocivo para el organismo. Eosinófilos:  concurren hacia las áreas en que se acumulan complejos antígeno-anticuerpo, a los que fagocitan y neutralizan, disminuyendo la intensidad de las reacciones alérgicas. Basófilos:  fija anticuerpos sobre su membrana plasmática. Cuando penetra en el organismo un antígeno específico, se forma el complejo antígeno-anticuerpo sobre su superficie y la célula puede destruirse. b)  los agranulocitos  se agrupan en dos tipos: Linfocitos:  sintetizan anticuerpos e intervienen en los procesos inmunológicos. Monocitos:  migran al tejido conectivo en donde eliminan bacterias, hongos, virus, etc. Su vida media es muy variada: desde horas a años (linfocitos T).
Linfocitos B :  representan cerca del 5-15% de todos los linfocitos circulantes. En el feto, se producen en el hígado y después en la médula ósea. Se distribuyen en los tejidos linfoides secundarios y responden a los estímulos antigénicos dividiéndose y diferenciándose a células plasmáticas,  liberadoras de anticuerpos (inmunoglobulinas),  gracias a la acción de citocinas secretadas por las células T.  Linfocitos T:  se desarrollan en el timo a partir de células madre linfocíticas de la médula ósea de origen embrionario. Después expresan receptores antigénicos específicos y se diferencian en dos subgrupos. Uno expresa el marcador CD4 y el otro el CD8. A su vez, constituyen diferentes poblaciones que son: los linfocitos T helper (auxiliadores), los citotóxicos y los supresores.  Sus funciones son: 1) ayudar a las células B a producir anticuerpos; 2) reconocer y destruir a los patógenos; y 3) controlar el nivel y la calidad de la respuesta inmunológica . Mastocitos:  se asocian con las células epiteliales de la mucosa, donde su proliferación depende de las Células T y con el tejido conectivo donde son T-independientes. Contienen gránulos ricos en mediadores inflamatorios, como la histamina y ante la estimulación también liberan prostaglandinas y leucotrienos.  Su función es relacionar la respuesta inmunológica y las reacciones inflamatorias, sobre todo en el caso de la infección por parásitos, pero también participan en las reacciones de hipersensibilidad.
Eosinófilos:   constituyen del 2-5% de los leucocitos circulantes en los individuos no alérgicos. Se clasifican como granulocitos debido al núcleo bilobulado y sus abundantes gránulos de una proteína básica, capaz de dañar a numerosos patógenos, particularmente parásitos. También contienen histaminasa y aril-sulfatasa que  controlan las reacciones alérgicas e inflamatorias , respectivamente. Son atraídos por productos liberados por las Células T, los mastocitos y los basófilos.   Basófilos:   constituyen menos del 0.5% de todos los leucocitos de la sangre.  Median las reacciones inflamatorias  y se parecen funcionalmente a los mastocitos, si bien se diferencian estructuralmente por la presencia de una abundante cantidad de gránulos citoplasmáticos de color azul violáceo oscuro   Células presentadoras de antígenos:   constituyen un grupo de células, definido desde el punto de vista estructural , capaz de fagocitar a los antígenos y presentarlos a los linfocitos en una forma en la que ellos los pueden reconocer . Sobre todo se encuentran en la piel, los nódulos linfáticos, el bazo y el timo. Su arquetipo son las células de Langerhan de la piel. Son ricos en antígenos de histocompatibilidad de clase V
Macrófagos : se trata de células de gran tamaño con función fagocítica, presente en la mayoría de los tejidos y cavidades.  Algunos permanecen en los tejidos durante años y otros circulan por los tejidos linfoides secundarios. También pueden actuar como células presentadoras de antígenos.  Neutrófilos : son los leucocitos más abundantes (>70%). Su tamaño es de 10-20m de diámetro y se clasifican como granulocitos debido a sus gránulos citoplasmáticos de lisosomas y de lactoferrina. Pasan menos de 48 horas en la circulación antes de migrar a los tejidos, debido a la influencia de los estímulos quimiotácticos.  Es en ellos donde ejercen su acción fagocítica y eventualmente mueren. Monocitos:   células circulares que se originan en la médula ósea y constituyen cerca del 5% del total de leucocitos de la sangre, donde permanencen sólo unos tres días. Después atraviesan las paredes de las vénulas y capilares donde la circulación es lenta.  Una vez en los órganos, se transforman en macrófagos, lo que se refleja en el aumento de su capacidad fagocítica,  de la síntesis de proteínas, el número de lisosomas y la cantidad de aparato de Golgi, microtúbulos y microfilamentos. Estos últimos se relacionan con la formación de pseudópodos, responsables del movimiento de los macrófagos.
Trombocitos o Plaquetas Las Plaquetas o Trombocitos   son masas citoplasmáticas sin núcleo, de forma esférica u ovoide. Intervienen en la   coagulación   sanguínea   y además son importantes en la respuesta inmunológica a la inflamación. Después de un daño al endotelio (tejido de revestimiento de los vasos sanguíneos), se adhieren y agregan en su superficie y liberan sustancias, capaces de aumentar la permeabilidad y factores responsables de activar al sistema complemento para atraer leucocitos   Tienen una vida media de 7 a 10 días.   Su cifra normal en  Homo sapiens  oscila entre 150 000 y 400 000 por mm³
Tejido Hematopoyético o Hemopoyético El  tejido hematopoyético  es un tipo de tejido conjuntivo especializado en la producción de las células de la sangre mediante un proceso llamado  hematopoyesis.  El tejido hematopoyético junto con el tejido adiposo, son los principales componentes tisulares de la médula ósea.  La hematopoyesis o hemopoyesis es el proceso de formación, desarrollo y maduración de los elementos celulares de la sangre (eritrocitos, leucocitos y plaquetas) a partir de un precursor celular común e indiferenciado conocido como  célula madre hematopoyética pluripotencial, Hemocitoblasto o stem cell . Las células madre que en el adulto se encuentran en la médula ósea son las responsables de formar todas las células y derivados celulares que circulan por la sangre. Las células sanguíneas son degradadas por el bazo y los macrófagos del hígado.
 
Muestra de sangre mostrando las diferentes células sanguíneas
Sistema ABO El sistema AB0, fue descubierto por Karl Landsteiner en 1901 (fotografía de la izquierda), que estudió los anticuerpos encontrados en el plasma sanguíneo, definiendo tres grupos sanguíneos A,B y 0. En el año 1907 Decastrello y Sturli definieron el cuarto grupo AB. Los grupos sanguíneos están definidos por   antígenos.   Estos son las glicoproteínas de la membrana de algunos   eritrocitos en la sangre.   El grupo 0 posee el antígeno H, El grupo A posee el antígeno A, el grupo B el antígeno B y el grupo AB posee ambos .   Generalmente no se menciona el antígeno del grupo 0. El grupo AB, tiene antígenos A y B alternados a lo largo en su membrana y no posee antígenos H. Los distintos grupos de sangre presentan anticuerpos en el plasma sanguíneo. El grupo A, tendrá anticuerpos B. El grupo B, tendrá anticuerpos A. El grupo O, tendrá anticuerpos A y B y el grupo AB no poseerá anticuerpos (imagen de la derecha).
Sistema AB0
Sistema AB0 En el caso de las transfusiones de sangre, si se mezclan dos tipos de sangre de igual grupo lo mas probable es que no suceda nada, en cambio si se exponen dos tipos de sangre con grupos diferentes, pueden ocurrir diversas complicaciones asociadas a una respuesta inmune del organismo contra las glicoproteínas de la superficie del eritrocito, produciéndose la aglutinación del hematíe, la cual consiste en la degradación de la membrana, hasta transformarla en una "grumo". Lo que determina la compatibilidad o la incompatibilidad de dos tipos de sangre es la presencia de antígenos, los cuales desencadenan una seria de reacciones entre ellas la producción de anticuerpos, por ejemplo, si una persona del tipo A dona sangre a una persona tipo B, los antígenos del tipo A al ser extraños al cuerpo del receptor, posibilitaran la producción de anticuerpos anti-A, los cuales atacaran, produciendo su lisis y su eliminación. Dependiendo de las concentraciones y de la cantidad de la transfusión estas reacciones pueden llegar a ser casi imperceptibles, pueden producir insuficiencia renal, o incluso la muerte, ya que el sistema inmunológico no es capaz de fagocitar a todos los grumos generados por los anticuerpos.               X O-             X X O+           X   X B-         X X X X B+       X       X A-     X X     X X A+   X   X   X   X AB- X X X X X X X X AB+ AB+ AB- A+ A- B+ B- O+ O- Donante Receptor
Factor Rh El factor Rhesus o antígeno D   fue descubierto por Landsteiner y Wiener en 1940. Este antígeno lo poseen en común el 82 % de los europeos y los monos rhesus. Ellos son rh-positivos. Al contrario de los antígenos del sistema ABO, el antígeno D no se presenta más en la naturaleza. El que no posee este antígeno, o sea quien es rh-negativo, no produce automáticamente anticuerpos contra ese antígeno como en el sistema ABO. Solamente luego de un contacto sanguíneo con el antígeno D se producen los anticuerpos en una persona rh-negativa. Los anticuerpos son detectables luego de unos meses después del contacto.  La producción de anticuerpos se provoca por trasfusiones sanguíneas con diferente factor Rhesus y también en mujeres con factor Rh-negativo que dan a luz a un segundo niño Rh-positivo. En el nacimiento de un niño no se puede evitar que el sistema circulatorio materno entre en contacto con la sangre del niño. Para el primer niño que nace, esto no tiene consecuencias, ya que el sistema inmunológico de la madre producirá después los anticuerpos. Si naciera otro niño, también Rh-positivo, entonces los anticuerpos anti-D pasarían al sistema circulatorio del embrión, dañando y destruyendo los glóbulos rojos.  Estos niños nacen, si sobreviven, con una especie de ictericia, la   eritroblastosis ,  y podrán sobrevivir, solamente si se les practica inmediatamente una transfusión total de sangre, con lo que se eliminaría la presencia de los anticuerpos a los antígenos D del cuerpo del niño. Más niños no podrían sobrevivir, ya que la producción de anticuerpos se estimuló por el nuevo contacto. Para evitar esas complicaciones, se inyecta actualmente a las madres rh-negativas, que han dado a luz a un niño rh-positivo, un suero con anticuerpos al antígeno D, inmediatamente después del nacimiento del niño. Ellos ocupan los antígenos en los glóbulos que han penetrado y evitan así que el sistema inmunológico materno tenga contacto con el antígeno D y de esa manera no produzca anticuerpos al antígeno D.  Mono  Macaco rhesus .  En estos primates se descubrió el antígeno Rh, el mismo que poseen algunos humanos
[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object]
 
[object Object]
Transpeptidasa  Ambas Protransglutaminasa, factor estabilizante de la fibrina (FSF), fibrinoligasa  XIII Endopeptidasa  Intrínseca Factor Hageman In XII Endopeptidasa  Intrínseca Antecedente de la tromboplastina plasmática (PTA)  XI Endopeptidasa con residuos  gla   Ambas Factor Stuart-Prower  X Endopeptidasa con residuos gla Intrínseca Factor de Navidad, factor B antihemofílico, compuesto de la tromboplastina plasmática (PTC)  IX Cofactor proteico Intrínseca Factor A antihemofílico, globulina antihemofílica (AHG)  VIII Endopeptidasa con residuos gla Extrínseca Proconvertina, acelerador de la conversión de la protrombina del suero (SPCA), cotromboplastina  VII Este es el Va, una redundancia del factor V Ambas Acelerina VI (igual que la Va) Cofactor proteico Ambas Proacelerina, factor débil, acelerador (Ac-) globulina  V Ambas Calcio IV Extrínseca Factor tisular III Contiene el segmento  gla  de la N-terminal  Ambas Protrombina II Ambas Fibrinógeno I Co-factor en la activación de la calicreína y el factor XII, necesario en la activación del factor XIIa por el factor XI, precursor de la bradicinina (un potente vasodilatador e inductor de la contracción del músculo liso  Intrínseca Cofactor de activación al contacto, Fitzgerald, factor Flaujeac Williams Quininógeno de alto peso molecular (HMWK) Funciona con el HMWK y el factor XII Intrínseca Factor Fletcher Precalicreina (PK) Característica  Vía Nombre(s) Común(es) Factor
Activado en la superficie de plaquetas activadas por el complejo protrombinasa  Factor II  Activado en la superficie de plaquetas activadas por un complejo de tenasa y por el factor VIIa en presencia del factor tisular y Ca2+  Factor X Activado por la trombina en presencia del Ca2+  Factor VII  Activado por el factor XIa en presencia del Ca2+  Factor IX Activado por el factor XIIa  Factor XI Se une al colágeno expuesto en el lugar de la lesión en la pared del vaso, activado por el quininógeno de alto peso molecular y la calicreina  Factor XII  Actividades  Proteasas Zimógenos de Serina
Una glicoproteína de la superficie celular subendotelial que actúa de cofactor del factor VII  Factor III (factor tisular)  Activado por la trombina; el factor Va es un cofactor en la activación de la protrombina por el factor Xa  Factor V  Activado por la trombina; el factor VIIIa es un cofactor en la activación del factor X por el factor IXa  Factor VIII  Actividades  Cofactores
Activado por la trombina para formar un coágulo de fibrina  Factor I  Actividades  Fibrinógeno  Activado por la trombina en presencia del Ca2+; estabiliza el coágulo de fibrina a través de uniones covalentes  Factor XIII Actividades  Transglutaminasa
Inhibe factores de coagulación Heparina El inhibidor de coagulación más importante, controla la actividad de la trombina y los factores IXa, Xa, XIa y XIIa  Antitrombina III  Proteína en la superficie de las células endoteliales; se une a la trombina la cual luego activa a la proteína C. Es anticuagulante. Trombomodulina  Actúa como un cofactor de la proteína C; ambas proteínas contiene residuos  gla   Proteína S Activada a proteína Ca por una trombina unida a una trombomodulina; luego degrada a los factores VIIIa y Va  Proteína C  Asociado con el tejido conectivo subendotelial; sirve como un puente entre la glicoproteína GPIb/IX de las plaquetas y el colágeno  Factor von Willebrand  Actividades  Proteínas Reguladoras/Otras
Disolución de los Coágulos de Fibrina ,[object Object],[object Object]

Más contenido relacionado

La actualidad más candente

La actualidad más candente (20)

Aparato circulatorio
Aparato circulatorioAparato circulatorio
Aparato circulatorio
 
EL SISTEMA CARDIO VASCULAR
EL SISTEMA CARDIO VASCULAREL SISTEMA CARDIO VASCULAR
EL SISTEMA CARDIO VASCULAR
 
Sistema Cardiovascular
Sistema CardiovascularSistema Cardiovascular
Sistema Cardiovascular
 
Circulacion mayor y menor
Circulacion mayor y menorCirculacion mayor y menor
Circulacion mayor y menor
 
Venas
VenasVenas
Venas
 
Vasos sanguineos
Vasos sanguineosVasos sanguineos
Vasos sanguineos
 
Sistema cardiovascular
Sistema cardiovascularSistema cardiovascular
Sistema cardiovascular
 
Sistema Cardiovascular
Sistema CardiovascularSistema Cardiovascular
Sistema Cardiovascular
 
SISTEMA CIRCULATORIO
SISTEMA CIRCULATORIOSISTEMA CIRCULATORIO
SISTEMA CIRCULATORIO
 
Sistema cardiovascular
Sistema cardiovascularSistema cardiovascular
Sistema cardiovascular
 
Sistema cardiovascular - Anatomía
Sistema cardiovascular -  AnatomíaSistema cardiovascular -  Anatomía
Sistema cardiovascular - Anatomía
 
Diapositiva sistema circulatorio
Diapositiva sistema circulatorioDiapositiva sistema circulatorio
Diapositiva sistema circulatorio
 
APARATO CARDIOVASCULAR
APARATO CARDIOVASCULAR APARATO CARDIOVASCULAR
APARATO CARDIOVASCULAR
 
Circulación mayor y menor
Circulación mayor y menorCirculación mayor y menor
Circulación mayor y menor
 
Vasos sanguineos
Vasos sanguineosVasos sanguineos
Vasos sanguineos
 
Sistema Cardiovascular (ANATOMIA)
Sistema Cardiovascular (ANATOMIA)Sistema Cardiovascular (ANATOMIA)
Sistema Cardiovascular (ANATOMIA)
 
Presentacion sistema respiratorio
Presentacion sistema respiratorioPresentacion sistema respiratorio
Presentacion sistema respiratorio
 
Aparato Circulatorio
Aparato CirculatorioAparato Circulatorio
Aparato Circulatorio
 
Sistema circulatorio diapositiva i
Sistema circulatorio    diapositiva iSistema circulatorio    diapositiva i
Sistema circulatorio diapositiva i
 
Sistema cardiovascular
Sistema cardiovascularSistema cardiovascular
Sistema cardiovascular
 

Similar a Sistema Circulatorio

Similar a Sistema Circulatorio (20)

Sistema Circulatorio (Prof. Verónica Rosso)
Sistema Circulatorio (Prof. Verónica Rosso)Sistema Circulatorio (Prof. Verónica Rosso)
Sistema Circulatorio (Prof. Verónica Rosso)
 
Sistema cardiovascularrrr
Sistema cardiovascularrrrSistema cardiovascularrrr
Sistema cardiovascularrrr
 
El Aparato Circulatorio
El Aparato CirculatorioEl Aparato Circulatorio
El Aparato Circulatorio
 
El corazón y el aparato circulatorio
El corazón y el aparato circulatorioEl corazón y el aparato circulatorio
El corazón y el aparato circulatorio
 
Aparato circulatorio
Aparato circulatorioAparato circulatorio
Aparato circulatorio
 
Aparato circulatorio
Aparato circulatorioAparato circulatorio
Aparato circulatorio
 
Tarea 7
Tarea 7Tarea 7
Tarea 7
 
Sistema circulatorio.pdf
Sistema circulatorio.pdfSistema circulatorio.pdf
Sistema circulatorio.pdf
 
El corazón
El corazónEl corazón
El corazón
 
SISTEMA CARDIOVASCULAR MAYOR Y MENOR anatomia .pptx
SISTEMA CARDIOVASCULAR MAYOR Y MENOR anatomia .pptxSISTEMA CARDIOVASCULAR MAYOR Y MENOR anatomia .pptx
SISTEMA CARDIOVASCULAR MAYOR Y MENOR anatomia .pptx
 
Sistema-Circulatorio-para-Segundo-Grado-de-Secundaria.pdf
Sistema-Circulatorio-para-Segundo-Grado-de-Secundaria.pdfSistema-Circulatorio-para-Segundo-Grado-de-Secundaria.pdf
Sistema-Circulatorio-para-Segundo-Grado-de-Secundaria.pdf
 
Aparatocirculatorio
AparatocirculatorioAparatocirculatorio
Aparatocirculatorio
 
Aparatocirculatorio
AparatocirculatorioAparatocirculatorio
Aparatocirculatorio
 
Aparatocirculatorio
AparatocirculatorioAparatocirculatorio
Aparatocirculatorio
 
Aparatocirculatorio Diapo
Aparatocirculatorio DiapoAparatocirculatorio Diapo
Aparatocirculatorio Diapo
 
Aparatocirculatorio
AparatocirculatorioAparatocirculatorio
Aparatocirculatorio
 
Reciclaje
ReciclajeReciclaje
Reciclaje
 
Aparato circulatorio, presentación en powerpoint
Aparato circulatorio, presentación en powerpointAparato circulatorio, presentación en powerpoint
Aparato circulatorio, presentación en powerpoint
 
Aparatocirculatorio (2)
Aparatocirculatorio (2)Aparatocirculatorio (2)
Aparatocirculatorio (2)
 
2810presentacion Original
2810presentacion Original2810presentacion Original
2810presentacion Original
 

Más de Verónica Rosso

Desarrollo Del EmbrióN Humano
Desarrollo Del EmbrióN HumanoDesarrollo Del EmbrióN Humano
Desarrollo Del EmbrióN HumanoVerónica Rosso
 
Propiedades Y Reacciones (Organica)
Propiedades Y Reacciones (Organica)Propiedades Y Reacciones (Organica)
Propiedades Y Reacciones (Organica)Verónica Rosso
 
RegulacióN De La Temperatura
RegulacióN De La TemperaturaRegulacióN De La Temperatura
RegulacióN De La TemperaturaVerónica Rosso
 
Propiedades Y Reacciones (Organica) Segunda Parte
Propiedades Y Reacciones (Organica) Segunda PartePropiedades Y Reacciones (Organica) Segunda Parte
Propiedades Y Reacciones (Organica) Segunda ParteVerónica Rosso
 
Trabajo PráCtico Mol Avogadro
Trabajo PráCtico Mol AvogadroTrabajo PráCtico Mol Avogadro
Trabajo PráCtico Mol AvogadroVerónica Rosso
 
QuíMica OrgáNica Nomenclatura
QuíMica OrgáNica NomenclaturaQuíMica OrgáNica Nomenclatura
QuíMica OrgáNica NomenclaturaVerónica Rosso
 
QuíMica OrgáNica 2°Parte
QuíMica OrgáNica 2°ParteQuíMica OrgáNica 2°Parte
QuíMica OrgáNica 2°ParteVerónica Rosso
 
TransmisióN Del Impulso Nervioso. Sinapsis
TransmisióN Del Impulso Nervioso. SinapsisTransmisióN Del Impulso Nervioso. Sinapsis
TransmisióN Del Impulso Nervioso. SinapsisVerónica Rosso
 
Trabajo PráCtico Estado Gaseoso
Trabajo PráCtico Estado GaseosoTrabajo PráCtico Estado Gaseoso
Trabajo PráCtico Estado GaseosoVerónica Rosso
 

Más de Verónica Rosso (20)

Desarrollo Del EmbrióN Humano
Desarrollo Del EmbrióN HumanoDesarrollo Del EmbrióN Humano
Desarrollo Del EmbrióN Humano
 
MoléCulas BiolóGicas
MoléCulas BiolóGicasMoléCulas BiolóGicas
MoléCulas BiolóGicas
 
Sistema Reproductor
Sistema ReproductorSistema Reproductor
Sistema Reproductor
 
Sistema Inmunitario
Sistema InmunitarioSistema Inmunitario
Sistema Inmunitario
 
Propiedades Y Reacciones (Organica)
Propiedades Y Reacciones (Organica)Propiedades Y Reacciones (Organica)
Propiedades Y Reacciones (Organica)
 
Sistema Excretor
Sistema ExcretorSistema Excretor
Sistema Excretor
 
RegulacióN De La Temperatura
RegulacióN De La TemperaturaRegulacióN De La Temperatura
RegulacióN De La Temperatura
 
Propiedades Y Reacciones (Organica) Segunda Parte
Propiedades Y Reacciones (Organica) Segunda PartePropiedades Y Reacciones (Organica) Segunda Parte
Propiedades Y Reacciones (Organica) Segunda Parte
 
NutricióN
NutricióNNutricióN
NutricióN
 
Sistema Respiratorio
Sistema RespiratorioSistema Respiratorio
Sistema Respiratorio
 
Sistema Digestivo
Sistema DigestivoSistema Digestivo
Sistema Digestivo
 
IsomeríA
IsomeríAIsomeríA
IsomeríA
 
Sistema Endocrino
Sistema EndocrinoSistema Endocrino
Sistema Endocrino
 
Trabajo PráCtico Mol Avogadro
Trabajo PráCtico Mol AvogadroTrabajo PráCtico Mol Avogadro
Trabajo PráCtico Mol Avogadro
 
QuíMica OrgáNica Nomenclatura
QuíMica OrgáNica NomenclaturaQuíMica OrgáNica Nomenclatura
QuíMica OrgáNica Nomenclatura
 
QuíMica OrgáNica 2°Parte
QuíMica OrgáNica 2°ParteQuíMica OrgáNica 2°Parte
QuíMica OrgáNica 2°Parte
 
Aparato Respiratorio
Aparato RespiratorioAparato Respiratorio
Aparato Respiratorio
 
TransmisióN Del Impulso Nervioso. Sinapsis
TransmisióN Del Impulso Nervioso. SinapsisTransmisióN Del Impulso Nervioso. Sinapsis
TransmisióN Del Impulso Nervioso. Sinapsis
 
Sistema Nervioso
Sistema NerviosoSistema Nervioso
Sistema Nervioso
 
Trabajo PráCtico Estado Gaseoso
Trabajo PráCtico Estado GaseosoTrabajo PráCtico Estado Gaseoso
Trabajo PráCtico Estado Gaseoso
 

Sistema Circulatorio

  • 2. Introducción El Sistema Circulatorio (también llamado aparato circulatorio) es el sistema de transporte interno del organismo. Su objetivo es llevar elementos nutritivos, defensivos y oxígeno a todos los tejidos del organismo, eliminar los productos finales del metabolismo (desechos, dióxido de carbono) y llevar las hormonas desde las correspondientes glándulas endocrinas a los órganos sobre los cuales actúan. Durante este proceso, regula la temperatura del cuerpo, debido a que transporta el calor generado en los músculos. El Sistema Circulatorio está compuesto por: 1. Un corazón 2. Vasos Sanguíneos (Venas, Arterias, Capilares) 3. Sangre 4. Vasos Linfáticos 5. Linfa
  • 3. Red de Vasos Sanguíneos y Corazón
  • 4. Circuitos Mayor y Menor Nuestro cuerpo, en realidad, tiene dos aparatos circulatorios: la circulación pulmonar es un circuito breve que va del corazón a los pulmones y de regreso al corazón y recibe el nombre de Circuito Menor , y la circulación sistémica que envía sangre desde el corazón a todas las partes de nuestro cuerpo y después vuelve a traerla al corazón y recibe el nombre de Circuito Mayor. El circuito mayor comienza en el ventrículo izquierdo, sigue por la arteria aorta y a través de sus ramificaciones llegará a los capilares de todo el cuerpo. Este circuito retorna por las venas que drenan finalmente a las venas cavas, superior e inferior, finalizando el circuito en la aurícula derecha. El circuito menor, comienza en el ventrículo derecho, sale a través del tronco pulmonar sigue por las arterias pulmonares derecha e izquierda, capilarizándose en los pulmones. Este circuito retorna por las vénulas que convergen para formar las cuatro venas pulmonares, dos del pulmón derecho y dos del izquierdo, las que drenan en la aurícula izquierda.
  • 5. Sentido de la circulación (animación) La sangre que procede de la circulación de todo el cuerpo, entra en la aurícula derecha a través de las venas cava superior e inferior. Por la superior ingresa la sangre que procede de la cabeza y los brazos y por la cava inferior la sangre que proviene de la parte inferior y las piernas. Esta sangre está desoxigenada pues ha dejado todo su oxígeno y nutrientes en el organismo. Ingresa por la aurícula derecha , entra en el ventrículo derecho atravesando la válvula tricúspide y se conduce a los pulmones por la arteria pulmonar , pasando luego por la válvula pulmonar . Esta arteria es la única que lleva en su interior sangre venosa. La arteria pulmonar conduce la sangre a los pulmones en sus ramificaciones izquierda y derecha. La sangre desoxigenada vuelve a oxigenarse en los pulmones (intercambio gaseoso o Hematosis; cambia el anhídrido carbónico por oxígeno, enriqueciéndose), luego regresa por las cuatro venas pulmonares (dos izquierdas y dos derechas) recién oxigenada desde los pulmones a la aurícula izquierda. Estas son las únicas venas del organismo que transportan sangre con oxígeno y nutrientes. Ingresan al ventrículo izquierdo pasando por la válvula mitral y se dirige a la arteria aorta atravesando la válvula aórtica . La arteria aorta enriquecerá con la sangre oxigenada a todos los órganos y tejidos del cuerpo humano.
  • 6.  
  • 7. Modelo Simplificado de la Circulación Mayor y Menor en Humanos
  • 8. Corazón El Corazón es un órgano muscular hueco que recibe sangre de las venas y la impulsa hacia las arterias. Tiene el tamaño y volumen de un puño y está situado en el tórax, entre los dos pulmones y ligeramente desplazado a la izquierda, por delante del esófago y apoyado sobre el diafragma. Las paredes de tejido muscular son reforzadas por bandas de tejido conectivo y todo el órgano está recubierto por tejido conectivo llamado pericardio, saco de pared doble con una capa que envuelve, además, al esternón, el diafragma, y las membranas del tórax. Tanto el corazón como todos los vasos están revestidos por una capa de células aplanadas llamada endotelio que evita que la sangre se coagule. En su parte interna está dividido en cuatro cavidades: dos aurículas y dos ventrículos (izquierdos y derechos) y l a sangre pasa de la aurícula al ventrículo. Por su función de bombeo el corazón está provisto de válvulas (en la conexión aurícula - ventrículo) que al cerrar herméticamente evitan el retroceso de la sangre. La válvula tricúspide se encuentra entre la aurícula y el ventrículo derecho, mientras que la válvula bicúspide o mitral se ubica entre la aurícula y ventrículo izquierdo. Podemos encontrar a las válvulas semilunares (aórtica) en el origen de las arterias aorta y pulmonar que parten de los ventrículos Del corazón salen arterias y a él llegan venas. Su función es impulsar la sangre a todo el cuerpo, permitiendo así que cada tejido corporal reciba la cantidad de oxígeno y nutrientes que necesita y que elimine los desechos o productos celulares.
  • 9.  
  • 10. Circulación de la sangre en el corazón (animación)
  • 11. Ciclo Cardiaco Cada latido del corazón desencadena una secuencia de eventos llamados ciclos cardiacos , que constan principalmente de tres etapas: sístole auricular, sístole ventricular y diástole . El ciclo cardíaco hace que el corazón alterne entre una contracción y una relajación aproximadamente 75 veces por minuto, es decir el ciclo cardíaco dura unos 0,8 segundos . Durante la sístole auricular , las aurículas se contraen y proyectan la sangre hacia los ventrículos. Una vez que la sangre ha sido expulsada de las aurículas, las válvulas auriculoventriculares entre las aurículas y los ventrículos se cierran. Esto evita el reflujo de sangre hacia los atrio. El cierre de estas válvulas produce el sonido familiar del latido del corazón. La sístole ventricular implica la contracción de los ventrículos expulsando la sangre hacia el sistema circulatorio. Una vez que la sangre es expulsada, las dos válvulas sigmoideas, la válvula pulmonar en la derecha y la válvula aórtica en la izquierda, se cierran. Por último la diástole es la relajación de todas las partes del corazón para permitir la llegada de nueva sangre. Este movimiento se produce unas 70 veces por minuto. La expulsión rítmica de la sangre provoca el pulso que se puede palpar en las arterias radiales, carótidas, femorales, etc. Diástole Sístole Ventricular Ciclo Cardiaco
  • 12. Automatismo Cardíaco Un sistema de conducción eléctrico único en el corazón provoca los latidos con su ritmo regular. El nodo sino auricular (SA), una pequeña zona de tejido en la pared de la aurícula derecha, envía una señal eléctrica para comenzar la contracción del músculo cardíaco. Este nodo se denomina "marcapasos del corazón", porque fija la velocidad del latido y hace que el resto del corazón se contraiga a su ritmo. Estos impulsos eléctricos hacen contraer primero a las aurículas y después se trasladan hacia abajo en dirección al nodo auriculoventricular (AV), que actúa como una estación de relevo. Desde allí, la señal eléctrica viaja a través de los ventrículos derecho e izquierdo, haciéndolos contraer y expulsando la sangre hacia el interior de las arterias principales.
  • 13.  
  • 14. Vasos Sanguíneos: Venas Una Vena es un vaso sanguíneo que transporta sangre desoxigenada desde los capilares hasta el corazón. Las venas se localizan más superficialmente que las arterias, prácticamente por debajo de la piel en las venas superficiales. Al igual que las arterias, sus paredes están formadas por tres capas pero son de menor espesor, sobre todo al disminuir la capa del medio. Las venas tienen válvulas que hacen que la sangre fluya desde la periferia hacia el corazón o sea que llevan la circulación centrípeta Existen tres sistemas en los que se agrupan las venas: Venas del sistema general: Por las venas de la circulación sistémica o general circula la sangre pobre en oxígeno desde los capilares o microcirculación sanguínea de los tejidos a la parte derecha del corazón. Las venas de la circulación sistémica también poseen unas válvulas, llamadas válvulas semilunares que impiden el retorno de la sangre hacia los capilares. Venas del sistema pulmonar: Por las venas de la circulación pulmonar circula la sangre oxigenada en los pulmones hacia la parte izquierda del corazón. Venas del sistema portal: Las venas portales reciben sangre procedente de las venas esplénica, mesentérica superior, cística, gástrica y pilórica, entran en el hígado y se ramifican en pequeños capilares que atraviesan todo este órgano.
  • 15.  
  • 16. Vasos Sanguíneos: Arterias Las Arterias son vasos tubulares que conducen la sangre desde el corazón hacia los tejidos del organismo. S u función es llevar la sangre desde el corazón hasta los tejidos. Están formada por tres capas, una capa media de fibras musculares lisas rodeada de dos capas de tejido conectivo; por dentro de ella se encuentra una capa muy delgada de células que constituyen el endotelio. Hay dos arterias con comunicación directa con el corazón: la aorta, que lleva la sangre oxigenada desde el ventrículo izquierdo a todo el organismo, y la arteria pulmonar, que conduce la sangre desde el ventrículo derecho a los pulmones. Las ramas arteriales más pequeñas se comunican con las venas a través de los capilares. Las arterias suelen recibir el nombre de la zona del cuerpo donde se localizan, como la arteria humeral (húmero), o braquial (brazo) o la metacarpiana (muñeca), o del órgano que irrigan, como la arteria hepática (hígado) o la arteria ovárica (ovario). Las arterias se dilatan y después se contraen con cada latido del corazón, un movimiento rítmico perceptible, el pulso.
  • 17. Vasos Sanguíneos: Capilares Los Capilares (figura de la izquierda) son diminutos vasos sanguíneos que constituyen la conexión entre las arterias y las venas. Estos vasos son muy finos, tienen un diámetro que varía entre unos 0,0127 Mm. y 0,2032 Mm., son muy numerosos y están repartidos por todo el cuerpo. Las paredes de los capilares son extremadamente delgadas y muy permeables; a través de ellas se produce el intercambio constante entre sustancias que están en la sangre y los productos de desecho presentes en el exterior, en los tejidos corporales y en la linfa. Esta característica facilita los procesos de nutrición y excreción, y permite el intercambio de oxígeno y dióxido de carbono. Los capilares linfáticos colaboran con los capilares sanguíneos en este proceso. Sus paredes se componen de una sola capa celular, el endotelio, que se continúa con el mismo tejido de las venas y arterias en sus extremos. La sangre no se pone en contacto directo con las células del organismo, sino que éstas son rodeadas por un líquido intersticial que las baña; las sustancias se difunden desde la sangre por la pared de un capilar y atraviesan el espacio ocupado por líquido intersticial para llegar a las células. Las arterias antes de transformarse en capilares son un poco más pequeñas y se llaman arteriolas y cuando el capilar pasa a ser vena nuevamente hay un paso intermedio en el que son venas más pequeñas llamadas vénulas (figura de la derecha).
  • 18. Comparación entre Vena, Arteria y Capilar
  • 19.
  • 20.
  • 21.
  • 22. Vasos Linfáticos Los vasos linfáticos representan la vía de retorno del líquido intersticial (líquido que se encuentra en el espacio que hay entre las células) al sistema circulatorio. A lo largo del recorrido de los vasos linfáticos se encuentran los ganglios linfáticos , órganos con forma de riñón que contienen grandes cantidades de leucocitos incluidos en una red de tejido conectivo. Toda la linfa que circula por los vasos linfáticos hacia el torrente sanguíneo debe atravesar varios de estos ganglios, que filtran los materiales tóxicos e infecciosos y los destruyen. Los ganglios funcionan como centro de producción de macrófagos, que ingieren bacterias y demás sustancias. Durante el transcurso de cualquier infección, los ganglios aumentan de tamaño debido a la gran cantidad de macrófagos que forman; estos ganglios suelen estar, durante el proceso infeccioso, inflamados y son dolorosos. Los vasos linfáticos forman una red de conductos que se inician en el espacio intersticial y que en el torrente circulatorio sanguíneo a nivel de la base del cuello, en el ángulo formado por las venas yugular interna y subclavia. Derecha: Sistema linfático mostrando los vasos los ganglios y los órganos. Izquierda: ganglio linfático en corte
  • 23. Sangre La Sangre es un tejido constituido por células (eritrocitos, leucocitos y plaquetas) y sustancia intercelular líquida (plasma). Mantiene su fluidez mientras circula por vasos que conserven la integridad de sus paredes. Al lesionarse esos vasos, coagula rápidamente. El volumen de sangre total de un adulto de 70 Kg. de peso es de aproximadamente 5,5 litros. Está compuesto por: Plasma sanguíneo: es un líquido amarillento compuesto por agua, iones, glucosa, aminoácidos, proteínas, lípidos, hormonas, vitaminas, etc. Por el plasma sanguíneo se transporta gran cantidad de sustancias que son usadas a distancia por todos los tejidos corporales (hormonas, aminoácidos, etc.). Eritrocitos o Glóbulos rojos Leucocito o Glóbulo blanco Plaquetas La sangre se forma normalmente en un tejido conectivo especializado denominado hemopoyético ubicado e n la médula ósea roja dentro de los espacios de los huesos largos jóvenes en la cavidad medular y en el hueso esponjoso.
  • 25. Eritrocitos o Glóbulos Rojos Los glóbulos rojos , también denominados eritrocitos o hematíes , se encargan de la distribución del oxígeno molecular (O 2 ). Tienen forma de disco bicóncavo y son tan pequeños que en cada milímetro cúbico hay cuatro a cinco millones. Su citoplasma carece de organelas y ribosomas que desaparecen junto con el núcleo en la célula precursora antes de ser lanzados a la circulación desde su sitio de origen. Contiene hemoglobina , proteína rica en hierro que le permite combinarse con oxígeno y transportarlo al resto de las células del organismo o con dióxido de carbono (CO 2 ), lo que permite su eliminación. Su membrana plasmática permite el pasaje de O 2 y CO 2 . La vida media promedio del eritrocito normal es de 100 a 120 días.
  • 27.
  • 28. Leucocitos o Glóbulos Blancos Los Leucocitos o Glóbulo Blancos normalmente se encuentran de 5000 a 10000 por /mm 3 en el adulto. Pueden desplazarse y hasta deslizarse a través de los vasos sanguíneos para penetrar en los tejidos corporales y cumplir funciones de protección del organismo (eliminar bacterias, por ejemplo). Se dividen en dos grandes grupos, de acuerdo con la presencia o ausencia de gránulos : granulocitos o agranulocitos . a) Los granulocitos comprenden los siguientes tipos celulares: Neutrófilos: su función es dirigirse a áreas del organismo infectadas y fagocitar el material nocivo para el organismo. Eosinófilos: concurren hacia las áreas en que se acumulan complejos antígeno-anticuerpo, a los que fagocitan y neutralizan, disminuyendo la intensidad de las reacciones alérgicas. Basófilos: fija anticuerpos sobre su membrana plasmática. Cuando penetra en el organismo un antígeno específico, se forma el complejo antígeno-anticuerpo sobre su superficie y la célula puede destruirse. b) los agranulocitos se agrupan en dos tipos: Linfocitos: sintetizan anticuerpos e intervienen en los procesos inmunológicos. Monocitos: migran al tejido conectivo en donde eliminan bacterias, hongos, virus, etc. Su vida media es muy variada: desde horas a años (linfocitos T).
  • 29. Linfocitos B : representan cerca del 5-15% de todos los linfocitos circulantes. En el feto, se producen en el hígado y después en la médula ósea. Se distribuyen en los tejidos linfoides secundarios y responden a los estímulos antigénicos dividiéndose y diferenciándose a células plasmáticas, liberadoras de anticuerpos (inmunoglobulinas), gracias a la acción de citocinas secretadas por las células T. Linfocitos T: se desarrollan en el timo a partir de células madre linfocíticas de la médula ósea de origen embrionario. Después expresan receptores antigénicos específicos y se diferencian en dos subgrupos. Uno expresa el marcador CD4 y el otro el CD8. A su vez, constituyen diferentes poblaciones que son: los linfocitos T helper (auxiliadores), los citotóxicos y los supresores. Sus funciones son: 1) ayudar a las células B a producir anticuerpos; 2) reconocer y destruir a los patógenos; y 3) controlar el nivel y la calidad de la respuesta inmunológica . Mastocitos: se asocian con las células epiteliales de la mucosa, donde su proliferación depende de las Células T y con el tejido conectivo donde son T-independientes. Contienen gránulos ricos en mediadores inflamatorios, como la histamina y ante la estimulación también liberan prostaglandinas y leucotrienos. Su función es relacionar la respuesta inmunológica y las reacciones inflamatorias, sobre todo en el caso de la infección por parásitos, pero también participan en las reacciones de hipersensibilidad.
  • 30. Eosinófilos: constituyen del 2-5% de los leucocitos circulantes en los individuos no alérgicos. Se clasifican como granulocitos debido al núcleo bilobulado y sus abundantes gránulos de una proteína básica, capaz de dañar a numerosos patógenos, particularmente parásitos. También contienen histaminasa y aril-sulfatasa que controlan las reacciones alérgicas e inflamatorias , respectivamente. Son atraídos por productos liberados por las Células T, los mastocitos y los basófilos. Basófilos: constituyen menos del 0.5% de todos los leucocitos de la sangre. Median las reacciones inflamatorias y se parecen funcionalmente a los mastocitos, si bien se diferencian estructuralmente por la presencia de una abundante cantidad de gránulos citoplasmáticos de color azul violáceo oscuro Células presentadoras de antígenos: constituyen un grupo de células, definido desde el punto de vista estructural , capaz de fagocitar a los antígenos y presentarlos a los linfocitos en una forma en la que ellos los pueden reconocer . Sobre todo se encuentran en la piel, los nódulos linfáticos, el bazo y el timo. Su arquetipo son las células de Langerhan de la piel. Son ricos en antígenos de histocompatibilidad de clase V
  • 31. Macrófagos : se trata de células de gran tamaño con función fagocítica, presente en la mayoría de los tejidos y cavidades. Algunos permanecen en los tejidos durante años y otros circulan por los tejidos linfoides secundarios. También pueden actuar como células presentadoras de antígenos. Neutrófilos : son los leucocitos más abundantes (>70%). Su tamaño es de 10-20m de diámetro y se clasifican como granulocitos debido a sus gránulos citoplasmáticos de lisosomas y de lactoferrina. Pasan menos de 48 horas en la circulación antes de migrar a los tejidos, debido a la influencia de los estímulos quimiotácticos. Es en ellos donde ejercen su acción fagocítica y eventualmente mueren. Monocitos: células circulares que se originan en la médula ósea y constituyen cerca del 5% del total de leucocitos de la sangre, donde permanencen sólo unos tres días. Después atraviesan las paredes de las vénulas y capilares donde la circulación es lenta. Una vez en los órganos, se transforman en macrófagos, lo que se refleja en el aumento de su capacidad fagocítica, de la síntesis de proteínas, el número de lisosomas y la cantidad de aparato de Golgi, microtúbulos y microfilamentos. Estos últimos se relacionan con la formación de pseudópodos, responsables del movimiento de los macrófagos.
  • 32. Trombocitos o Plaquetas Las Plaquetas o Trombocitos son masas citoplasmáticas sin núcleo, de forma esférica u ovoide. Intervienen en la coagulación sanguínea y además son importantes en la respuesta inmunológica a la inflamación. Después de un daño al endotelio (tejido de revestimiento de los vasos sanguíneos), se adhieren y agregan en su superficie y liberan sustancias, capaces de aumentar la permeabilidad y factores responsables de activar al sistema complemento para atraer leucocitos Tienen una vida media de 7 a 10 días. Su cifra normal en Homo sapiens oscila entre 150 000 y 400 000 por mm³
  • 33. Tejido Hematopoyético o Hemopoyético El tejido hematopoyético es un tipo de tejido conjuntivo especializado en la producción de las células de la sangre mediante un proceso llamado hematopoyesis. El tejido hematopoyético junto con el tejido adiposo, son los principales componentes tisulares de la médula ósea. La hematopoyesis o hemopoyesis es el proceso de formación, desarrollo y maduración de los elementos celulares de la sangre (eritrocitos, leucocitos y plaquetas) a partir de un precursor celular común e indiferenciado conocido como célula madre hematopoyética pluripotencial, Hemocitoblasto o stem cell . Las células madre que en el adulto se encuentran en la médula ósea son las responsables de formar todas las células y derivados celulares que circulan por la sangre. Las células sanguíneas son degradadas por el bazo y los macrófagos del hígado.
  • 34.  
  • 35. Muestra de sangre mostrando las diferentes células sanguíneas
  • 36. Sistema ABO El sistema AB0, fue descubierto por Karl Landsteiner en 1901 (fotografía de la izquierda), que estudió los anticuerpos encontrados en el plasma sanguíneo, definiendo tres grupos sanguíneos A,B y 0. En el año 1907 Decastrello y Sturli definieron el cuarto grupo AB. Los grupos sanguíneos están definidos por antígenos. Estos son las glicoproteínas de la membrana de algunos eritrocitos en la sangre. El grupo 0 posee el antígeno H, El grupo A posee el antígeno A, el grupo B el antígeno B y el grupo AB posee ambos . Generalmente no se menciona el antígeno del grupo 0. El grupo AB, tiene antígenos A y B alternados a lo largo en su membrana y no posee antígenos H. Los distintos grupos de sangre presentan anticuerpos en el plasma sanguíneo. El grupo A, tendrá anticuerpos B. El grupo B, tendrá anticuerpos A. El grupo O, tendrá anticuerpos A y B y el grupo AB no poseerá anticuerpos (imagen de la derecha).
  • 38. Sistema AB0 En el caso de las transfusiones de sangre, si se mezclan dos tipos de sangre de igual grupo lo mas probable es que no suceda nada, en cambio si se exponen dos tipos de sangre con grupos diferentes, pueden ocurrir diversas complicaciones asociadas a una respuesta inmune del organismo contra las glicoproteínas de la superficie del eritrocito, produciéndose la aglutinación del hematíe, la cual consiste en la degradación de la membrana, hasta transformarla en una "grumo". Lo que determina la compatibilidad o la incompatibilidad de dos tipos de sangre es la presencia de antígenos, los cuales desencadenan una seria de reacciones entre ellas la producción de anticuerpos, por ejemplo, si una persona del tipo A dona sangre a una persona tipo B, los antígenos del tipo A al ser extraños al cuerpo del receptor, posibilitaran la producción de anticuerpos anti-A, los cuales atacaran, produciendo su lisis y su eliminación. Dependiendo de las concentraciones y de la cantidad de la transfusión estas reacciones pueden llegar a ser casi imperceptibles, pueden producir insuficiencia renal, o incluso la muerte, ya que el sistema inmunológico no es capaz de fagocitar a todos los grumos generados por los anticuerpos.               X O-             X X O+           X   X B-         X X X X B+       X       X A-     X X     X X A+   X   X   X   X AB- X X X X X X X X AB+ AB+ AB- A+ A- B+ B- O+ O- Donante Receptor
  • 39. Factor Rh El factor Rhesus o antígeno D fue descubierto por Landsteiner y Wiener en 1940. Este antígeno lo poseen en común el 82 % de los europeos y los monos rhesus. Ellos son rh-positivos. Al contrario de los antígenos del sistema ABO, el antígeno D no se presenta más en la naturaleza. El que no posee este antígeno, o sea quien es rh-negativo, no produce automáticamente anticuerpos contra ese antígeno como en el sistema ABO. Solamente luego de un contacto sanguíneo con el antígeno D se producen los anticuerpos en una persona rh-negativa. Los anticuerpos son detectables luego de unos meses después del contacto. La producción de anticuerpos se provoca por trasfusiones sanguíneas con diferente factor Rhesus y también en mujeres con factor Rh-negativo que dan a luz a un segundo niño Rh-positivo. En el nacimiento de un niño no se puede evitar que el sistema circulatorio materno entre en contacto con la sangre del niño. Para el primer niño que nace, esto no tiene consecuencias, ya que el sistema inmunológico de la madre producirá después los anticuerpos. Si naciera otro niño, también Rh-positivo, entonces los anticuerpos anti-D pasarían al sistema circulatorio del embrión, dañando y destruyendo los glóbulos rojos. Estos niños nacen, si sobreviven, con una especie de ictericia, la eritroblastosis , y podrán sobrevivir, solamente si se les practica inmediatamente una transfusión total de sangre, con lo que se eliminaría la presencia de los anticuerpos a los antígenos D del cuerpo del niño. Más niños no podrían sobrevivir, ya que la producción de anticuerpos se estimuló por el nuevo contacto. Para evitar esas complicaciones, se inyecta actualmente a las madres rh-negativas, que han dado a luz a un niño rh-positivo, un suero con anticuerpos al antígeno D, inmediatamente después del nacimiento del niño. Ellos ocupan los antígenos en los glóbulos que han penetrado y evitan así que el sistema inmunológico materno tenga contacto con el antígeno D y de esa manera no produzca anticuerpos al antígeno D. Mono Macaco rhesus . En estos primates se descubrió el antígeno Rh, el mismo que poseen algunos humanos
  • 40.
  • 41.
  • 42.  
  • 43.
  • 44. Transpeptidasa Ambas Protransglutaminasa, factor estabilizante de la fibrina (FSF), fibrinoligasa XIII Endopeptidasa Intrínseca Factor Hageman In XII Endopeptidasa Intrínseca Antecedente de la tromboplastina plasmática (PTA) XI Endopeptidasa con residuos gla Ambas Factor Stuart-Prower X Endopeptidasa con residuos gla Intrínseca Factor de Navidad, factor B antihemofílico, compuesto de la tromboplastina plasmática (PTC) IX Cofactor proteico Intrínseca Factor A antihemofílico, globulina antihemofílica (AHG) VIII Endopeptidasa con residuos gla Extrínseca Proconvertina, acelerador de la conversión de la protrombina del suero (SPCA), cotromboplastina VII Este es el Va, una redundancia del factor V Ambas Acelerina VI (igual que la Va) Cofactor proteico Ambas Proacelerina, factor débil, acelerador (Ac-) globulina V Ambas Calcio IV Extrínseca Factor tisular III Contiene el segmento gla de la N-terminal Ambas Protrombina II Ambas Fibrinógeno I Co-factor en la activación de la calicreína y el factor XII, necesario en la activación del factor XIIa por el factor XI, precursor de la bradicinina (un potente vasodilatador e inductor de la contracción del músculo liso Intrínseca Cofactor de activación al contacto, Fitzgerald, factor Flaujeac Williams Quininógeno de alto peso molecular (HMWK) Funciona con el HMWK y el factor XII Intrínseca Factor Fletcher Precalicreina (PK) Característica Vía Nombre(s) Común(es) Factor
  • 45. Activado en la superficie de plaquetas activadas por el complejo protrombinasa Factor II Activado en la superficie de plaquetas activadas por un complejo de tenasa y por el factor VIIa en presencia del factor tisular y Ca2+ Factor X Activado por la trombina en presencia del Ca2+ Factor VII Activado por el factor XIa en presencia del Ca2+ Factor IX Activado por el factor XIIa Factor XI Se une al colágeno expuesto en el lugar de la lesión en la pared del vaso, activado por el quininógeno de alto peso molecular y la calicreina Factor XII Actividades Proteasas Zimógenos de Serina
  • 46. Una glicoproteína de la superficie celular subendotelial que actúa de cofactor del factor VII Factor III (factor tisular) Activado por la trombina; el factor Va es un cofactor en la activación de la protrombina por el factor Xa Factor V Activado por la trombina; el factor VIIIa es un cofactor en la activación del factor X por el factor IXa Factor VIII Actividades Cofactores
  • 47. Activado por la trombina para formar un coágulo de fibrina Factor I Actividades Fibrinógeno Activado por la trombina en presencia del Ca2+; estabiliza el coágulo de fibrina a través de uniones covalentes Factor XIII Actividades Transglutaminasa
  • 48. Inhibe factores de coagulación Heparina El inhibidor de coagulación más importante, controla la actividad de la trombina y los factores IXa, Xa, XIa y XIIa Antitrombina III Proteína en la superficie de las células endoteliales; se une a la trombina la cual luego activa a la proteína C. Es anticuagulante. Trombomodulina Actúa como un cofactor de la proteína C; ambas proteínas contiene residuos gla Proteína S Activada a proteína Ca por una trombina unida a una trombomodulina; luego degrada a los factores VIIIa y Va Proteína C Asociado con el tejido conectivo subendotelial; sirve como un puente entre la glicoproteína GPIb/IX de las plaquetas y el colágeno Factor von Willebrand Actividades Proteínas Reguladoras/Otras
  • 49.