Trigonometry SIMPLE     EQUATION
Trigonomentri simpleequation is an equation that contains thecomparison trigonomentri
In general, to solvetrigonometry is used in the     following formula:
1. sin x = sin α  x = α + k.360⁰ atau x = (180⁰ - α) + k.360⁰
2. cos x = cos αx = α + k.360⁰ atau x = - α + k.360⁰
3. tan x = tan α     x = α + k.180⁰
For angle in units of radians, in use the following formula:
1. sin x = sin α  x = α + k.2π or x = (π – α) + k.2π
2. cos x = sin αx = α + k.2π or x = -α + k.2π
3. tan x = tan α     x = α + k.π
Example - exampleproblems trigonometric      equations:
 Determine the set of equations following the completion of the interval 0 ≤ x ≤ 2πa.   Sin x = ½ √3b.   Tan x = √3
Answer :a.   Sin x = ½√3             = sin (π/3 + k. 2π)           x = π/3 + k. 2π        for k = 0    x = π/3
ORsin x    = ½ √3         = sin ( π – π/3 + k.2π)        x = 2π/3 + k . 2π For k = 0    x = 2π/3
Thus, the solution set  = {π / 3, 2π / 3}
tan x = √3           = tan (π/3 + k. π)    x = π/3 + k . πFor k = 0     x = π/3 + k.Π    k=1       x = 4π/3
so, the solution set = {Π / 3, 4π / 3}
2. Determine the set of completion of the equation cos (3x - 45 ⁰) = - ½ √ 2, for 0 ⁰ ≤ x ≤ 360 ⁰.
Answer :  Cos (3x – 45⁰) = -½√2  Cos (3x – 45⁰) = cos 135⁰  3x – 45⁰ = 135⁰ + k. 360⁰        3x = 180⁰ + k. 360⁰         x...
OR3x – 45⁰ = -135 + k . 360⁰         3x = -90⁰ + k . 360⁰          x = -30⁰ + k . 120⁰          x = 90⁰ , 210⁰ , 330⁰
Thus, the solution set = {60 ⁰, 90 ⁰, 180 ⁰, 210 ⁰, 300 ⁰, 330 ⁰}
The basic technique is           to solvetrigonometric equations using trigidentities and algebra techniques totransform a...
example:Determine the set ofcompletion of sin x = sin 70°,0° <x <360 °
Answer :  x = 70° + k.360°  k = 0 ==> x = 70°    atau x = (180 - 70) + k.360° ==>   x=110° + k.360°  k = 0 ==> x = 110°   ...
Determine the set ofcompletion of cos x = cos 24in the interval 0 ° <x <360 °
Answer :    x = 24° + k.360°    k = 0 , x = 24°    OR    x = -24° + k.360°    k = 1 , x = -24° + 360° = 336°     Thus, Hp ...
Determine the set of completion of tan  x = tan 56 °, in the interval 0 ° <x                 <360 °
Answer:  x = 56 ° + ° k.180  k = 0 ==> x = 56 ° k = 1 ==> x = 56 ° + 180 ° = 236 °  Thus, the solution set is  {52 °, 236 °}
THANK YOU
Próxima SlideShare
Cargando en...5
×

Matematika - Persamaan Trigonometri Sederhana

6,278

Published on

1 Comment
1 Me gusta
Estadísticas
Notas
Sin descargas
reproducciones
reproducciones totales
6,278
En SlideShare
0
De insertados
0
Número de insertados
0
Acciones
Compartido
0
Descargas
159
Comentarios
1
Me gusta
1
Insertados 0
No embeds

No notes for slide

Matematika - Persamaan Trigonometri Sederhana

  1. 1. Trigonometry SIMPLE EQUATION
  2. 2. Trigonomentri simpleequation is an equation that contains thecomparison trigonomentri
  3. 3. In general, to solvetrigonometry is used in the following formula:
  4. 4. 1. sin x = sin α x = α + k.360⁰ atau x = (180⁰ - α) + k.360⁰
  5. 5. 2. cos x = cos αx = α + k.360⁰ atau x = - α + k.360⁰
  6. 6. 3. tan x = tan α x = α + k.180⁰
  7. 7. For angle in units of radians, in use the following formula:
  8. 8. 1. sin x = sin α x = α + k.2π or x = (π – α) + k.2π
  9. 9. 2. cos x = sin αx = α + k.2π or x = -α + k.2π
  10. 10. 3. tan x = tan α x = α + k.π
  11. 11. Example - exampleproblems trigonometric equations:
  12. 12.  Determine the set of equations following the completion of the interval 0 ≤ x ≤ 2πa. Sin x = ½ √3b. Tan x = √3
  13. 13. Answer :a. Sin x = ½√3 = sin (π/3 + k. 2π) x = π/3 + k. 2π for k = 0 x = π/3
  14. 14. ORsin x = ½ √3 = sin ( π – π/3 + k.2π) x = 2π/3 + k . 2π For k = 0 x = 2π/3
  15. 15. Thus, the solution set = {π / 3, 2π / 3}
  16. 16. tan x = √3 = tan (π/3 + k. π) x = π/3 + k . πFor k = 0 x = π/3 + k.Π k=1 x = 4π/3
  17. 17. so, the solution set = {Π / 3, 4π / 3}
  18. 18. 2. Determine the set of completion of the equation cos (3x - 45 ⁰) = - ½ √ 2, for 0 ⁰ ≤ x ≤ 360 ⁰.
  19. 19. Answer : Cos (3x – 45⁰) = -½√2 Cos (3x – 45⁰) = cos 135⁰ 3x – 45⁰ = 135⁰ + k. 360⁰ 3x = 180⁰ + k. 360⁰ x = 60⁰ + k. 120⁰ x = 60⁰ , 180⁰ , 300⁰
  20. 20. OR3x – 45⁰ = -135 + k . 360⁰ 3x = -90⁰ + k . 360⁰ x = -30⁰ + k . 120⁰ x = 90⁰ , 210⁰ , 330⁰
  21. 21. Thus, the solution set = {60 ⁰, 90 ⁰, 180 ⁰, 210 ⁰, 300 ⁰, 330 ⁰}
  22. 22. The basic technique is to solvetrigonometric equations using trigidentities and algebra techniques totransform a trigonometric equation intosimpler forms.
  23. 23. example:Determine the set ofcompletion of sin x = sin 70°,0° <x <360 °
  24. 24. Answer : x = 70° + k.360° k = 0 ==> x = 70° atau x = (180 - 70) + k.360° ==> x=110° + k.360° k = 0 ==> x = 110° Jadi, Hp = {70°, 110°}
  25. 25. Determine the set ofcompletion of cos x = cos 24in the interval 0 ° <x <360 °
  26. 26. Answer : x = 24° + k.360° k = 0 , x = 24° OR x = -24° + k.360° k = 1 , x = -24° + 360° = 336° Thus, Hp = {24°, 336°}
  27. 27. Determine the set of completion of tan x = tan 56 °, in the interval 0 ° <x <360 °
  28. 28. Answer: x = 56 ° + ° k.180 k = 0 ==> x = 56 ° k = 1 ==> x = 56 ° + 180 ° = 236 ° Thus, the solution set is {52 °, 236 °}
  29. 29. THANK YOU
  1. ¿Le ha llamado la atención una diapositiva en particular?

    Recortar diapositivas es una manera útil de recopilar información importante para consultarla más tarde.

×