SlideShare una empresa de Scribd logo
1 de 862
Descargar para leer sin conexión
A1
                                                     The International
                                                      System of Units,
                                                         Fundamental
                                                       Constants, and
Nitin Goel                                          Conversion Factors
Intel Technology India Pvt. Ltd.


The International system of units (SI) is based on seven base units. Other derived units can be related to
these base units through governing equations. The base units with the recommended symbols are listed
in Table A1.1. Derived units of interest in solar engineering are given in Table A1.2.
   Standard prefixes can be used in the SI system to designate multiples of the basic units and thereby
conserve space. The standard prefixes are listed in Table A1.3.
   Table A1.4 lists some physical constants that are frequently used in solar engineering, together with
their values in the SI system of units.
   Conversion factors between the SI and English systems for commonly used quantities are given in
Table A1.5.




                                                                                                    A1-1


q 2007 by Taylor & Francis Group, LLC
A1-2                                                                                            Energy Conversion


                TABLE A1.1        The Seven SI Base Units
                          Quantity                             Name of Unit                       Symbol
                Length                                              Meter                           m
                Mass                                                Kilogram                        kg
                Time                                                Second                          s
                Electric current                                    Ampere                          A
                Thermodynamic temperature                           Kelvin                          K
                Luminous intensity                                  Candela                         cd
                Amount of a substance                               Mole                            mol




            TABLE A1.2        SI Derived Units
                   Quantity                             Name of Unit                                  Symbol
            Acceleration                           Meters per second squared                          m/s2
            Area                                   Square meters                                      m2
            Density                                Kilogram per cubic meter                           kg/m3
            Dynamic viscosity                      Newton-second per square meter                     N s/m2
            Force                                  Newton (Z1 kg m/s2)                                N
            Frequency                              Hertz                                              Hz
            Kinematic viscosity                    Square meter per second                            m2/s
            Plane angle                            Radian                                             rad
            Potential difference                   Volt                                               V
            Power                                  Watt(Z1 J/s)                                       W
            Pressure                               Pascal (Z1 N/m2)                                   Pa
            Radiant intensity                      Watts per steradian                                W/sr
            Solid angle                            Steradian                                          sr
            Specific heat                           Joules per kilogram–Kelvin                         J/kg K
            Thermal conductivity                   Watts per meter–Kelvin                             W/m K
            Velocity                               Meters per second                                  m/s
            Volume                                 Cubic meter                                        m3
            Work, energy, heat                     Joule (Z1 N/m)                                     J




            TABLE A1.3        English Prefixes
            Multiplier                  Symbol          Prefix                  Multiplier   Multiplier Symbol
              12                                                                    3
            10                            T                 Tera                  10        M (thousand)
            109                           G                 Giga                  106       MM (million)
            106                           m                 Mega
            103                           k                 Kilo
            102                           h                 Hecto
            101                           da                Deka
            10K1                          d                 Deci
            10K2                          c                 Centi
            10K3                          m                 Milli
            10K6                          m                 Micro
            10K9                          n                 Nano
            10K12                         p                 Pico
            10K15                         f                 Femto
            10K18                         a                 Atto




q 2007 by Taylor & Francis Group, LLC
The International System of Units, Fundamental Constants, and Conversion Factors        A1-3


            TABLE A1.4        Physical Constants in SI Units
                  Quantity                             Symbol           Value
            Avogadro constant                         N          6.022169!1026 kmolK1
            Boltzmann constant                        k          1.380622!10K23 J/K
            First radiation constant                  C1Z2phC2   3.741844!10K16 W m2
            Gas constant                              R          8.31434!103 J/kmol K
            Planck constant                           h          6.626196!10K34 J s
            Second radiation constant                 C2Zhc/k    1.438833!10K2 m K
            Speed of light in a vacuum                C          2.997925!108 m/s
            Stefan–Boltzmann constant                 s          5.66961!10K8 W/m2 K4




q 2007 by Taylor & Francis Group, LLC
A1-4                                                          Energy Conversion


TABLE A1.5        Conversion Factors
           Physical Quantity            Symbol            Conversion Factor
Area                                    A        1 ft. Z0.0929 m2
                                                    2

                                                 1 acreZ43,560 ft.2Z4047 m2
                                                 1 hectareZ10,000 m2
                                                 1 square mileZ640 acres
Density                                 r        1 lbm/ft.3Z16.018 kg/m3
Heat, energy, or work                   Q or W   l BtuZ1055.1 J
                                                 1 kWhZ3.6 MJ
                                                 1 ThermZ105.506 MJ
                                                 l calZ4.186 J
                                                 1 ft. lbfZ1.3558 J
Force                                   F        1 lbfZ4.448 N
Heat flow rate, refrigeration            q        1 Btu/hZ0.2931 W
                                                 1 ton (refrigeration)Z3.517 kW
                                                 l Btu/sZ1055.1 W
Heat flux                                q/A      1 Btu/h ft.2Z3.1525 W/m2
Heat-transfer coefficient                h        1 Btu/h ft.2 FZ5.678 W/m2 K
Length                                  L        1 ft.Z0.3048 m
                                                 1 in.Z2.54 cm
                                                 1 miZ1.6093 km
Mass                                    m        1 lbmZ0.4536 kg
                                                 1 tonZ2240 lbm
                                                 1 tonne (metric)Z1000 kg
Mass flow rate                           m
                                        _        1 lbm/hZ0.000126 kg/s
Power                                   W_       1 hpZ745.7 W
                                                 1 kWZ3415 Btu/h
                                                 1 ft. lbf/sZ1.3558 W
                                                 1 Btu/hZ0.293 W
Pressure                                p        1 lbf/in.2 (psi)Z6894.8 Pa (N/m2)
                                                 1 in. HgZ3,386 Pa
                                                 1 atmZ101,325 Pa (N/m2)Z14.696 psi
Radiation                               l        1 langleyZ41,860 J/m2
                                                 1 langley/minZ697.4 W/m2
Specific heat capacity                   c        1 Btu/lbm 8FZ4187 J/kg K
Internal energy or enthalpy             e or h   1 Btu/lbmZ2326.0 J/kg
                                                 1 cal/gZ4184 J/kg
Temperature                             T        T(8R)Z(9/5)T(K)
                                                 T(8F)Z[T(8C)](9/5)C32
                                                 T(8F)Z[T(K)K273.15](9/5)C32
Thermal conductivity                    k        1 Btu/h ft. 8FZ1.731 W/m K
Thermal resistance                      Rth      1 h 8F/BtuZ1.8958 K/W
Velocity                                V        1 ft./sZ0.3048 m/s
                                                 1 mi/hZ0.44703 m/s
Viscosity, dynamic                      m        1 lbm/ft. sZ1.488 N s/m2
                                                 1 cPZ0.00100 N s/m2
Viscosity, kinematic                    n        1 ft.2/sZ0.09029 m2/s
                                                 1 ft.2/hZ2.581!10K5 m2/s
Volume                                  V        1 ft.3Z0.02832 m3Z28.32 L
                                                 1 barrelZ42 gal (U.S.)
                                                 1 gal (U.S. liq.)Z3.785 L
                                                 1 gal (U.K.)Z4.546 L
Volumetric flow rate                     _
                                        Q        1 ft.3/min (cfia)Z0.000472 m3/s
                                                 1 gal/min (GPM)Z0.0631 l/s




q 2007 by Taylor & Francis Group, LLC
A3
                                        Properties of Gases,
                                        Vapors, Liquids and
Nitin Goel                                            Solids
Intel Technology India Pvt. Ltd.




                                                          A3-1


q 2007 by Taylor & Francis Group, LLC
A3-2                                                                                          Energy Conversion


TABLE A3.1       Properties of Dry Air at Atmospheric Pressures between 250 and 1000 K
 a
T (K)               r (kg/m3)           cp (kJ/kg K)   m (kg/m   n (m2/s!106)   k (W/m K)     a (m2/s!104)       dPr
                                                       s!105)

250                   1.4128              1.0053        1.488         9.49       0.02227         0.13161        0.722
300                   1.1774              1.0057        1.983        15.68       0.02624         0.22160        0.708
350                   0.9980              1.0090        2.075        20.76       0.03003         0.2983         0.697
400                   0.8826              1.0140        2.286        25.90       0.03365         0.3760         0.689
450                   0.7833              1.0207        2.484        28.86       0.03707         0.4222         0.683
500                   0.7048              1.0295        2.671        37.90       0.04038         0.5564         0.680
550                   0.6423              1.0392        2.848        44.34       0.04360         0.6532         0.680
600                   0.5879              1.0551        3.018        51.34       0.04659         0.7512         0.680
650                   0.5430              1.0635        3.177        58.51       0.04953         0.8578         0.682
700                   0.5030              1.0752        3.332        66.25       0.05230         0.9672         0.684
750                   0.4709              1.0856        3.481        73.91       0.05509         1.0774         0.686
800                   0.4405              1.0978        3.625        82.29       0.05779         1.1951         0.689
850                   0.4149              1.1095        3.765        90.75       0.06028         1.3097         0.692
900                   0.3925              1.1212        3.899        99.3        0.06279         1.4271         0.696
950                   0.3716              1.1321        4.023       108.2        0.06525         1.5510         0.699
1000                  0.3524              1.1417        4.152       117.8        0.06752         1.6779         0.702
  a
    Symbols: KZabsolute temperature, degrees Kelvin; vZm/r; rZdensity; cp specific heat capacity; aZcpr/k; mZviscosity;
kZthermal conductivity; PrZPrandtl number, dimensionless. The values of m, k, cp, and Pr are not strongly pressure-
dependent and may be used over a fairly wide range of pressures.
  Source: From Natl. Bureau Standards (U.S.) Circ. 564, 1955.




q 2007 by Taylor & Francis Group, LLC
Properties of Gases, Vapors, Liquids and Solids                                                               A3-3


TABLE A3.2       Properties of Water (Saturated Liquid) between 273 and 533 K
                  T                     cp (kJ/kg   r (kg/m3) m (kg/m s)   k (W/m    Pr      ðgbr2 cp =mkÞðmK3 8CK1 Þ
                                           8C)                               8C)
  K               8F           8C
273               32           0         4.225        999.8   1.79!10K3     0.566   13.25
277.4             40           4.44      4.208        999.8   1.55          0.575   11.35          1.91!109
283               50          10         4.195        999.2   1.31          0.585    9.40          6.34!109
288.6             60          15.56      4.186        998.6   1.12          0.595    7.88          1.08!1010
294.1             70          21.11      4.179        997.4   9.8!10K4      0.604    6.78          1.46!1010
299.7             80          26.67      4.179        995.8   8.6           0.614    5.85          1.91!1010
302.2             90          32.22      4.174        994.9   7.65          0.623    5.12          2.48!1010
310.8            100          37.78      4.174        993.0   6.82          0.630    4.53           3.3!1010
316.3            110          43.33      4.174        990.6   6.16          0.637    4.04          4.19!1010
322.9            120          48.89      4.174        988.8   5.62          0.644    3.64          4.89!1010
327.4            130          54.44      4.179        985.7   5.13          0.649    3.30          5.66!1010
333.0            140          60         4.179        983.3   4.71          0.654    3.01          6.48!1010
338.6            150          65.55      4.183        980.3   4.3           0.659    2.73          7.62!1010
342.1            160          71.11      4.186        977.3   4.01          0.665    2.53          8.84!1010
349.7            170          76.67      4.191        973.7   3.72          0.668    2.33          9.85!1010
355.2            180          82.22      4.195        970.2   3.47          0.673    2.16          1.09!1011
360.8            190          87.78      4.199        966.7   3.27          0.675    2.03
366.3            200          93.33      4.204        963.2   3.06          0.678    1.90
377.4            220         104.4       4.216        955.1   2.67          0.684    1.66
388.6            240         115.6       4.229        946.7   2.44          0.685    1.51
399.7            260         126.7       4.250        937.2   2.19          0.685    1.36
410.8            280         137.8       4.271        928.1   1.98          0.685    1.24
421.9            300         148.9       4.296        918.0   1.86          0.684    1.17
449.7            350         176.7       4.371        890.4   1.57          0.677    1.02
477.4            400         204.4       4.467        859.4   1.36          0.665    1.00
505.2            450         232.2       4.585        825.7   1.20          0.646    0.85
533.0            500         260         4.731        785.2   1.07          0.616    0.83

  Source: Adapted from Brown, A. I. and S. M. Marco. 1958. Introduction to Heat Transfer, 3d Ed., McGraw-Hill Book
Company, New York.




q 2007 by Taylor & Francis Group, LLC
A3-4                                                                                     Energy Conversion


TABLE A3.3       Emittances and Absorptances of Materials
                         Substance                          Short-Wave      Long-Wave                 a3
                                                            Absorptance      Emittance

Class I substances: Absorptance to emittance ratios less than 0.5
Magnesium carbonate, MgCO3                                    0.025–0.04     0.79                0.03–0.05
White plaster                                                 0.07           0.91                0.08
Snow, fine particles, fresh                                    0.13           0.82                0.16
White paint, 0.017 in. on aluminum                            0.20           0.91                0.22
Whitewash on galvanized iron                                  0.22           0.90                0.24
White paper                                                   0.25–0.28      0.95                0.26–0.29
White enamel on iron                                          0.25–0.45      0.9                 0.28–0.5
Ice, with sparse snow cover                                   0.31           0.96–0.97           0.32
Snow, ice granules                                            0.33           0.89                0.37
Aluminum oil base paint                                       0.45           0.90                0.50
White powdered sand                                           0.45           0.84                0.54
Class II substances: Absorptance to emittance ratios between 0.5 and 0.9
Asbestos felt                                                 0.25           0.50                0.50
Green oil base paint                                          0.5            0.9                 0.56
Bricks, red                                                   0.55           0.92                0.60
Asbestos cement board, white                                  0.59           0.96                0.61
Marble, polished                                              0.5–0.6        0.9                 0.61
Wood, planed oak                                              –              0.9                 –
Rough concrete                                                0.60           0.97                0.62
Concrete                                                      0.60           0.88                0.68
Grass, green, after rain                                      0.67           0.98                0.68
Grass, high and dry                                           0.67–0.69      0.9                 0.76
Vegetable fields and shrubs, wilted                            0.70           0.9                 0.78
Oak leaves                                                    0.71–0.78      0.91–0.95           0.78–0.82
Frozen soil                                                   –              0.93–0.94           –
Desert surface                                                0.75           0.9                 0.83
Common vegetable fields and shrubs                             0.72–0.76      0.9                 0.82
Ground, dry plowed                                            0.75–0.80      0.9                 0.83–0.89
Oak woodland                                                  0.82           0.9                 0.91
Pine forest                                                   0.86           0.9                 0.96
Earth surface as a whole (land and sea, no clouds)            0.83            1010               –
Class III substances: Absorptance to emittance ratios between 0.8 and 1.0
Grey paint                                                    0.75           0.95                0.79
Red oil base paint                                            0.74           0.90                0.82
Asbestos, slate                                               0.81           0.96                0.84
Asbestos, paper                                                              0.93–0.96
Linoleum, red–brown                                           0.84           0.92                0.91
Dry sand                                                      0.82           0.90                0.91
Green roll roofing                                             0.88           0.91–0.97           0.93
Slate, dark grey                                              0.89           –
Old grey rubber                                                              0.86                –
Hard black rubber                                             –              0.90–0.95
Asphalt pavement                                              0.93           –                   –
Black cupric oxide on copper                                  0.91           0.96                0.95
Bare moist ground                                             0.9            0.95                0.95
Wet sand                                                      0.91           0.95                0.96
Water                                                         0.94           0.95–0.96           0.98
Black tar paper                                               0.93           0.93                1.0
Black gloss paint                                             0.90           0.90                1.0
Small hole in large box, furnace, or enclosure                0.99           0.99                1.0
“Hohlraum,” theoretically perfect black body                  1.0            1.0                 1.0
Class IV substances: Absorptance to emittance ratios greater than 1.0
Black silk velvet                                             0.99           0.97                1.02
                                                                                                     (continued)




q 2007 by Taylor & Francis Group, LLC
Properties of Gases, Vapors, Liquids and Solids                                                                             A3-5


TABLE A3.3       (Continued)
                         Substance                              Short-Wave             Long-Wave                       a3
                                                                Absorptance             Emittance
Alfalfa, dark green                                      0.97                            0.95                       1.02
Lampblack                                                0.98                            0.95                       1.03
Black paint, 0.017 in. on aluminum                       0.94–0.98                       0.88                       1.07–1.11
Granite                                                  0.55                            0.44                       1.25
Graphite                                                 0.78                            0.41                       1.90
High ratios, but absorptances less than 0.80
Dull brass, copper, lead                                 0.2–0.4                         0.4–0.65                   1.63–2.0
Galvanized sheet iron, oxidized                          0.8                             0.28                       2.86
Galvanized iron, clean, new                              0.65                            0.13                       5.0
Aluminum foil                                            0.15                            0.05                       3.00
Magnesium                                                0.3                             0.07                       4.3
Chromium                                                 0.49                            0.08                       6.13
Polished zinc                                            0.46                            0.02                      23.0
Deposited silver (optical reflector) untarnished          0.07                            0.01
Class V substances: Selective surfacesa
Plated metals:b
Black sulfide on metal                                    0.92                            0.10                       9.2
Black cupric oxide on sheet aluminum                     0.08–0.93                       0.09–0.21
Copper (5!10w5 cm thick) on nickel or silver-plated metal
Cobalt oxide on platinum
Cobalt oxide on polished nickel                          0.93–0.94                       0.24–0.40                  3.9
Black nickel oxide on aluminum                           0.85–0.93                       0.06–0.1                  14.5–15.5
Black chrome                                             0.87                            0.09                       9.8
Particulate coatings:
Lampblack on metal
Black iron oxide, 47 mm grain size, on aluminum
Geometrically enhanced surfaces:c
Optimally corrugated greys                               0.89                            0.77                       1.2
Optimally corrugated selectives                          0.95                            0.16                       5.9
Stainless-steel wire mesh                                0.63–0.86                       0.23–0.28                  2.7–3.0
Copper, treated with NaClO, and NaOH                     0.87                            0.13                       6.69
  a
    Selective surfaces absorb most of the solar radiation between 0.3 and 1.9 mm, and emit very little in the 5–15 mm range–
the infrared.
  b
     For a discussion of plated selective surfaces, see Daniels, Direct Use of the Sun’s Energy, especially chapter 12.
  c
    For a discussion of how surface selectivity can be enhanced through surface geometry, see K. G. T. Hollands, July 1963.
Directional selectivity emittance and absorptance properties of vee corrugated specular surfaces, J. Sol. Energy Sci. Eng, vol. 3.
  Source: From Anderson, B. 1977. Solar Energy, McGraw-Hill Book Company. With permission.




q 2007 by Taylor & Francis Group, LLC
A3-6                                                                                          Energy Conversion


TABLE A3.4       Thermal Properties of Metals and Alloys
     Material                           k, Btu/(hr)(ft.)(8F)             c, Btu/(lbm)(8F)   r, lbm/ft.3   a, ft.2/hr

                         328F           2128F         5728F    9328F           328F           328F          328F
Metals
Aluminum                117             119           133      155            0.208             169         3.33
Bismuth                   4.9             3.9          .        .             0.029             612         0.28
Copper, pure            224             218           212      207            0.091             558         4.42
Gold                    169             170            .        .             0.030           1,203         4.68
Iron, pure               35.8            36.6          .        .             0.104             491         0.70
Lead                     20.1            19            18       .             0.030             705         0.95
Magnesium                91              92            .        .             0.232             109         3.60
Mercury                   4.8            .             .        .             0.033             849         0.17
Nickel                   34.5            34            32       .             0.103             555         0.60
Silver                  242             238            .        .             0.056             655         6.6
Tin                      36              34            .        .             0.054             456         1.46
Zinc                     65              64            59       .             0.091             446         1.60
Alloys
Admiralty metal           65             64
Brass, 70% Cu,            56             60            66       .             0.092             532         1.14
   30% Zn
Bronze, 75% Cu,           15             .             .        .             0.082             540         0.34
   25% Sn
Cast iron
 Plain                    33             31.8          27.7     24.8          0.11              474         0.63
 Alloy                    30             28.3          27                     0.10              455         0.66
Constantan,               12.4           12.8                                 0.10              557         0.22
   60% Cu, 40%
   Ni
18-8 Stainless steel,
 Type 304                  8.0            9.4          10.9     12.4          0.11              488         0.15
 Type 347                  8.0            9.3          11.0     12.8          0.11              488         0.15
Steel, mild, 1% C         26.5           26            25       22            0.11              490         0.49

  Source: From Kreith, F. 1997. Principles of Heat Transfer, PWS Publishing Co., Boston.




q 2007 by Taylor & Francis Group, LLC
Properties of Gases, Vapors, Liquids and Solids                                                                 A3-7


TABLE A3.5       Thermal Properties of Some Insulating and Building Materials
              Material                     Average,          k, Btu/(hr)(ft.)   c, Btu/(lbm)   r, lbm/ft.3   a, ft.2/hr
                                        Temperature, 8F            (8F)             (8F)

                                                    Insulating Materials
Asbestos                                       32                0.087             0.25           36         K0.01
                                              392                0.12                             36         K0.01
Cork                                           86                0.025             0.04           10         K0.006
Cotton, fabric                                200                0.046
Diatomaceous earth, powdered                  100                0.030             0.21           14         K0.01
                                              300                0.036              .
                                              600                0.046              .
Molded pipe covering                          400                0.051              .             26
                                             1600                0.088              .
                                                          Glass Wool
 Fine                                          20                 0.022             .
                                              100                 0.031             .               1.5
                                              200                 0.043             .
 Packed                                        20                 0.016             .
                                              100                 0.022             .               6.0
                                              200                 0.029             .
Hair felt                                     100                 0.027             .              8.2
Kaolin insulating brick                       932                 0.15              .             27
                                             2102                 0.26              .
Kaolin insulating firebrick                    392                 0.05              .             19
                                             1400                 0.11              .
85% magnesia                                   32                 0.032             .             17
                                              200                 0.037             .             17
Rock wool                                      20                 0.017             .              8
                                              200                 0.030             .
Rubber                                         32                 0.087            0.48           75           0.0024

Brick                                                Building Materials
Fire-clay                                     392                0.58              0.20          144           0.02
                                             1832                0.95
 Masonry                                       70                0.38              0.20          106           0.018
 Zirconia                                     392                0.84               .            304
                                             1832                1.13               .
Chrome brick                                  392                0.82               .            246
                                             1832                0.96               .
                                                          Concrete
Stone                                        K70                  0.54             0.20          144          0.019
10% Moisture                                 K70                  0.70              .            140         K0.025
Glass, window                                K70               K0.45               0.2           170          0.013
Limestone, dry                                70                  0.40             0.22          105          0.017
                                                            Sand
 Dry                                           68                  0.20             .             95
 10% H2O                                       68                  0.60                          100
                                                             Soil
 Dry                                           70                K0.20             0.44            .         K0.01
 Wet                                           70                K1.5               .                        K0.03
                                                            Wood
 Oak t to grain                                70                  0.12            0.57           51           0.0041
 s to grain                                    70                  0.20            0.57           51           0.0069
 Pine t to grain                               70                  0.06            0.67           31           0.0029
 s to grain                                    70                  0.14            0.67           31           0.0067
Ice                                            32                  1.28            0.46           57           0.048

  Source: From Kreith, R. 1997. Principles of Heat Transfer, PWS Publishing Co.



q 2007 by Taylor & Francis Group, LLC
A3-8
TABLE A3.6       Saturated Steam and Water–SI Units
 Temperature            Pressure         Specific Volume (m3/kg)   Specific Energy Internal (kJ/kg)            Specific Enthalpy (kJ/kg)            Specific Entropy (kJ/kg.K)
      (K)              (MN/m2)
                                           vf              vg          uf                ug           hf               hfg                hg           sf             sg
273.15                0.0006109         0.0010002      206.278      K0.03              2375.3       K0.02            2501.4             2501.3     K0.0001          9.1565
273.16                0.0006113         0.0010002      206.136         0               2375.3       C0.01            2501.3             2501.4      0               9.1562
278.15                0.0008721         0.0010001      147.120      C20.97             2382.3        20.98           2489.6             2510.6     C0.0761          9.0257
280.13                0.0010000         0.0010002      129.208        29.30            2385.0        29.30           2484.9             2514.2      0.1059          8.975
283.15                0.0012276         0.0010004      106.379        42.00            2389.2        42.01           2477.7             2519.8      0.1510          8.9008
286.18                0.0015000         0.0010007       87.980        54.71            2393.3        54.71           2470.6             2525.3      0.1957          8.8279
288.15                0.0017051         0.0010009       77.926        62.99            2396.1        62.99           2465.9             2528.9      0.2245          8.7814
290.65                0.0020000         0.0010013       67.004        73.48            2399.5        73.48           2460.0             2533.5      0.2607          8.7237
293.15                0.002339          0.0010018       57.791        83.95            2402.9        83.96           2454.1             2538.1      0.2966          8.6672
297.23                0.0030000         0.0010027       45.665       101.04            2408.5       101.05           2444.5             2545.5      0.3545          8.5776
298.15                0.003169          0.0010029       43.360       104.88            2409.8       104.89           2442.3             2547.2      0.3674          8.5580
302.11                0.004000          0.0010040       34.800       121.45            2415.2       121.46           2432.9             2554.4      0.4226          8.4746
303.15                0.004246          0.0010043       32.894       125.78            2416.6       125.79           2430.5             2556.3      0.4369          8.4533
306.03                0.005000          0.0010053       28.192       137.81            2420.5       137.82           2423.7             2561.5      0.4764          8.3951
308.15                0.005628          0.0010060       25.216       146.67            2423.4       146.68           2418.6             2565.3      0.5053          8.3531
309.31                0.006000          0.0010064       23.739       151.53            2425.0       151.53           2415.9             2567.4      0.5210          8.3304
312.15                0.007000          0.0010074       20.530       163.39            2428.8       163.40           2409.1             2572.5      0.5592          8.2758
313.15                0.007384          0.0010078       19.523       167.56            2430.1       167.57           2406.7             2574.3      0.5725          8.2570
314.66                0.008000          0.0010084       18.103       173.87            2432.2       173.88           2403.1             2577.0      0.5926          8.2287
316.91                0.009000          0.0010094       16.203       183.27            2435.2       183.29           2397.7             2581.0      0.6224          8.1872
318.15                0.009593          0.0010099       15.258       188.44            2436.8       188.45           2394.8             2583.2      0.6387          8.1648
318.96                0.010000          0.0010102       14.674       191.82            2437.9       191.83           2392.8             2584.7      0.6493          8.1502
323.15                0.012349          0.0010121       12.032       209.32            2443.5       209.33           2382.7             2592.1      0.7038          8.0763
327.12                0.015000          0.0010141       10.022       225.92            2448.7       225.94           2373.1             2599.1      0.7549          8.0085
328.15                0.015758          0.0010146        9.568       230.21            2450.1       230.23           2370.7             2600.9      0.7679          7.9913
333.15                0.019940          0.0010172        7.671       251.11            2456.6       251.13           2358.5             2609.6      0.8312          7.9096
333.21                0.020000          0.0010172        7.649       251.38            2456.7       251.40           2358.3             2609.7      0.8320          7.9085




                                                                                                                                                                             Energy Conversion
338.15                0.025030          0.0010199        6.197       272.02            2463.1       272.06           2346.2             2618.3      0.8935          7.8310
342.25                0.030000          0.0010223        5.229       289.20            2468.4       289.23           2336.1             2625.3      0.9439          7.7686
343.15                0.031190          0.0010228        5.042       292.95            2469.6       292.98           2333.8             2626.8      0.9549          7.7553
348.15                0.038580          0.0010259        4.131       313.90            2475.9       313.93           2221.4             2635.3      1.0155          7.6824
349.02                0.040000          0.0010265        3.993       317.53            2477.0       317.58           2319.2             2636.8      1.0259          7.6700
353.15                0.047390          0.0010291        3.407       334.86            2482.2       334.91           2308.8             2643.7      1.0753          7.6122
354.48                0.050000          0.0010300        3.240       340.44            2483.9       340.49           2305.4             2645.9      1.0910          7.5939




q 2007 by Taylor & Francis Group, LLC
Properties of Gases, Vapors, Liquids and Solids
358.15                0.057830          0.0010325             2.828             355.84            2488.4             355.90             2296.0             2651.9              1.1343          7.5445
359.09                0.060000          0.0010331             2.732             359.79            2489.6             359.86             2293.6             2653.5              1.1453          7.5320
363.10                0.070000          0.0010360             2.365             376.63            2494.5             376.70             2283.3             2660.0              1.1919          7.4797
363.15                0.070140          0.0010360             2.361             376.85            2494.5             376.92             2283.2             2660.1              1.1925          7.4791
366.65                0.080000          0.0010386             2.087             391.58            2498.8             391.66             2274.1             2665.8              1.2329          7.4346
368.15                0.084550          0.0010397             1.9819            397.88            2500.6             397.96             2270.2             2668.1              1.2500          7.4159

  Subscripts: f refers to a property of liquid in equilibrium with vapor; g refers to a property of vapor in equilibrium with liquid; fg refers to a change by evaporation. Table from Bolz, R. E. and
G. L. Tuve, eds. 1973. CRC Handbook of Tables for Applied Engineering Science, 2nd Ed., Chemical Rubber Co., Cleveland, Ohio.




                                                                                                                                                                                                         A3-9
q 2007 by Taylor & Francis Group, LLC
A3-10
TABLE A3.7         Superheated Steam–SI Units
              2
Pressure (MN/m )                                                                              Temperature
   (Saturation
  Temperature)a
                                          508C       1008C       1508C       2008C       3008C               4008C        5008C       7008C       10008C      13008C
                                        323.15 K    373.15 K    423.15 K    473.15 K    573.15 K            673.15 K     773.15 K    973.15 K    1273.15 K   1573.15 K

0.001              v                     149.093     172.187     195.272     218.352     264.508             310.661      356.814     449.117     587.571     726.025
(6.988C)           u                    2445.4      2516.4      2588.4      2661.6      2812.2              2969.0       3132.4      3479.6      4053.0      4683.7
(280.13 K)         h                    2594.5      2688.6      2783.6      2880.0      3076.8              3279.7       3489.2      3928.7      4640.6      5409.7
                   s                       9.2423      9.5129      9.7520      9.9671     10.3443             10.6705      10.9605     11.4655     12.1019     12.6438
0.002              v                      74.524      86.081      97.628     109.170     132.251             155.329      178.405     224.558     293.785     363.012
(17.508C)          u                    2445.2      2516.3      2588.3      2661.6      2812.2              2969.0       3132.4      3479.6      4053.0      4683.7
(290.65 K)         h                    2594.3      2688.4      2793.6      2879.9      3076.7              3279.7       3489.2      3928.7      4640.6      5409.7
                   s                       8.9219      9.1928      9.4320      9.6471     10.0243             10.3506      10.6406     11.1456     11.7820     12.3239
0.004              v                      37.240      43.028      48.806      54.580      66.122              77.662       89.201     112.278     146.892     181.506
(28.%8C)           u                    2444.9      2516.1      2588.2      2661.5      2812.2              2969.0       3132.3      3479.6      4053.0      4683.7
(302.11 K)         h                    2593.9      2688.2      2783.4      2879.8      3076.7              3279.6       3489.2      3928.7      4640.6      5409.7
                   s                       8.6009      8.8724      9.1118      9.3271      9.7044             10.0307      10.3207     10.8257     11.4621     12.0040
0.006              v                      24.812      28.676      32.532      36.383      44.079              51.774       59.467      74.852      97.928     121.004
(36.168C)          u                    2444.6      2515.9      2588.1      2661.4      2812.2              2969.0      31323        3479.6      4053.0      4683.7
(309.31 K)         h                    2593.4      2688.0      2783.3      2879.7      3076.6              3279.6       3489.1      3928.7      4640.6      5409.7
                   s                       8.4128      8.6847      8.9244      9.1398      9.5172              9.8435      10.1336     10.6386     11.2750     11.8168
0.008              v                      18.598      21.501      24.395      27.284      33.058              38.829       44.599      56.138      73.446      90.753
(41.518C)          u                    2444.2      2515.7      2588.0      2661.4      2812.1              2969.0       3132.3      3479.6      4053.0      4683.7
(314.66 K)         h                    2593.0      2687.7      2783.1      2879.6      3076.6              3279.6       3489.1      3928.7      4640.6      5409.7
                   s                       8.2790      8.5514      8.7914      9.0069      9.3844              9.7107      10.0008     10.5058     11.1422     11.6841
0.010              v                      14.869      17.196      19.512      21.825      26.445              31.063       35.679      44.911      58.757      72.602
(45.818C)          u                    2443.9      2515.5      2587.9      2661.3      2812.1              2968.9       3132.3      3479.6      4053.0      4683.7
(318.96 K)         h                    2592.6      2687.5      2783.0      2879.5      3076.5              3279.6       3489.1      3928.7      4640.6      5409.7
                   s                       8.1749      8.4479      8.6882      8.9038      9.2813              9.6077       9.8978     10.4028     11.0393     11.5811
0.020              v                       7.412       8.585       9.748      10.907      13.219              15.529       17.838      22.455      29.378      36.301
(60.068C)          u                    2442.2      2514.6      2587.3      2660.9      2811.9              2968.8       3132.2      3479.5      4053.0      4683.7
(333.21 K)         h                    2590.4      2686.2      2782.3      2879.1      3076.3              3279.4       3489.0      3928.6      4640.6      5409.7
                   s                       7.8498      8.1255      8.3669      8.5831      8.9611              9.2876       9.5778     10.0829     10.7193     11.2612
0.040              v                       3.683       4.279       4.866       5.448       6.606               7.763        8.918      11.227      14.689      18.151
(75.878C)          u                    2438.8      2512.6      2586.2      2660.2      2811.5              2968.6       3132.1      3479.4      4052.9      4683.6
(349.02 K)         h                    2586.1      2683.8      2780.8      2878.1      3075.8              3279.1       3488.8      3928.5      4640.5      5409.6
                   s                       7.5192      7.8003      8.0444      8.2617      8.6406              8.9674       9.2577      9.7629     10.3994     10.9412




                                                                                                                                                                         Energy Conversion
0.060              v                       2.440       2.844       3.238       3.628       4.402               5.174        5.944       7.484       9.792      12.100
(85.948C)          u                    2435.3      2510.6      2585.1      2659.5      2811.2              2968.4       3131.9      3479.4      4052.9      4683.6
(359.09 K)         h                    2581.7      2681.3      2779.4      2877.2      3075.3              3278.8       3488.6      3928.4      4640.4      5409.6
                   s                       7.3212      7.6079      7.8546      8.0731      8.4528              8.7799       9.0704      9.5757     10.2122     10.7541
0.080              v                       1.8183      2.127       2.425       2.718       3.300               3.879        4.458       5.613       7.344       9.075
(93.508C)          u                    2431.7      2508.7      2583.9      2658.8      2810.8              2968.1       3131.7      3479.3      4052.8      4683.5
(366.65 K)         h                    2577.2      2678.8      2777.9      2876.2      3074.8              3278.5       3488.3      3928.3      4640.4      5409.5
                   s                       7.1775      7.4698      7.7191      7.9388      8.3194              8.6468       8.9374      9.4428     10.0794     10.6213
0.100              v                       1.4450      1.6958      1.9364      2.172       2.639               3.103        3.565       4.490       5.875       7.260




q 2007 by Taylor & Francis Group, LLC
Properties of Gases, Vapors, Liquids and Solids
(99.638C)        u                      2428.2      2506.7        2582.8          2658.1         2810.4          2967.9          3131.6         3479.2          4052.8      4683.5
(372.78 K)       h                      2572.7      2676.2        2776.4          2875.3         3074.3          3278.2          3488.1         3928.2          4640.3      5409.5
                 s                         7.0633      7.3614        7.6134          7.8343         8.2158          8.5435          8.8342         9.3398          9.9764     10.5183
0.200            v                         0.6969      0.8340        0.9596          1.0803         1.3162          1.5493          1.7814         2.244           2.937       3.630
(120.238C)       u                      2409.5      2496.3        2576.9          2654.4         2808.6          2966.7          3130.8         3478.8          4052.5      4683.2
(393.38 K)       h                      2548.9      2663.1        2768.8          2870.5         3071.8          3276.6          3487.1         3927.6          4640.0      5409.3
                 s                         6.6844      7.0135        7.2795          7.5066         7.8926          8.2218          8.5133         9.0194          9.6563     10.1982
0.300            v                         0.4455      0.5461        0.6339          0.7163         0.8753          1.0315          1.1867         1.4957          1.9581      2.4201
(133.558C)       u                      2389.1      2485.4        2570.8          2650.7         2806.7          2965.6          3130.0         3478.4          4052.3      4683.0
(406.70 K)       h                      2522.7      2649.2        2761.0          2865.6         3069.3          3275.0          3486.0         3927.1          4639.7      5409.0
                 s                         6.4319      6.7965        7.0778          7.3115         7.7022          8.0330          8.3251         8.8319          9.4690     10.0110
0.400            v                         0.3177      0.4017        0.4708          0.5342         0.6548          0.7726          0.8893         1.1215          1.4685      1.8151
(143.638C)       u                      2366.3      2473.8        2564.5          2646.8         2804.8          2964.4          3129.2         3477.9          4052.0      4682.8
(416.78 K)       h                      2493.4      2634.5        2752.8          2860.5         3066.8          3273.4          3484.9         3926.5          4639.4      5408.8
                 s                         6.2248      6.6319        6.9299          7.1706         7.5662          7.8985          8.1913         8.6987          9.3360      9.8780
0.500            v                                     0.3146        0.3729          0.4249         0.5226          0.6173          0.7109         0.8969          1.1747      1.4521
(151.868C)       u                                  2461.5        2557.9          2642.9         2802.9          2963.2           328.4         3477.5          4051.8      4682.5
(425.01 K)       h                                  2618.7        2744.4          2855.4         3064.2          3271.9          3483.9         3925.9          4639.1      5408.6
                 s                                     6.4945        6.8111          7.0592         7.4599          7.7938          8.0873         8.5952          9.2328      9.7749

   a
     Symbols: vZspecific volume, m3/kg; uZ specific internal energy, U/kg; hZspecific enthalpy, kJ/kg; sZspecific entropy, kJ/K kg.
   Source: From Bolz, R. E. and G. L. Tuve, Eds. 1973. CRC Handbook of Tables for Applied Engineering Science, 2nd Ed., Chemical Rubber Co., Cleveland, Ohio.




                                                                                                                                                                                        A3-11
q 2007 by Taylor & Francis Group, LLC
A4
                                                       Ultimate Analysis of
Nitin Goel                                                   Biomass Fuels
Intel Technology India Pvt. Ltd.




          Material                 Ca (%)   H2a (%)      O2a (%)     N2a (%)      Sa (%)     Aa (%)   HHV (kJ/kg)b
                                                    Agricultural Wastes
Bagasse (sugarcane refuse)          47.3      6.1          35.3           0.0       0.0       11.3       21,255
Feedlot manure                      42.7      5.5          31.3           2.4       0.3       17.8       17,160
Rice hulls                          38.5      5.7          39.8           0.5       0.0       15.5       15,370
Rice straw                          39.2      5.1          35.8           0.6       0.1       19.2       15,210

                                                 Municipal Solid Waste
General                             33.9      4.6       22.4         0.7            0.4       38.0       13,130
Brown paper                         44.9      6.1       47.8         0.0            0.1        1.1       17,920
Cardboard                           45.5      6.1       44.5         0.2            0.1        3.6       18,235
Corrugated boxes                    43.8      5.7       45.1         0.1            0.2        5.1       16,430
Food fats                           76.7     12.1       11.2         0.0            0.0        0.0       38,835
Garbage                             45.0      6.4       28.8         3.3            0.5       16.0       19,730
Glass bottles (labels)               0.5      0.1         0.4        0.0            0.0       99.0          195
Magazine paper                      33.2      5.0       38.9         0.1            0.1       22.7       12,650
Metal cans (labels, etc.)            4.5      0.6         4.3        0.1            0.0       90.5        1,725
Newspapers                          49.1      6.1       43.0         0.1            0.2        1.5       19,720
Oils, paints                        66.9      9.6         5.2        2.0            0.0       16.3       31,165
Paper food cartons                  44.7      6.1       41.9         0.2            0.2        6.9       17,975
Plastics
  General                           60.0      7.2          22.6           0.0       0.0       10.2       33,415
  Polyethylene                      85.6     14.4           0.0           0.0       0.0        0.0       46,395
  Vinyl chloride                    47.1      5.9          18.6           (ChlorineZ28.4%)               20,535
Rags                                55.0      6.6          31.2           4.6       0.1        2.5       13,955
Rubber                              77.7     10.3           0.0           0.0       2.0       10.0       26,350

                                                          Sewage
Raw sewage                          45.5      6.8          25.8           3.3       2.5       16.1       16,465
Sewage sludge                       14.2      2.1          10.5           1.1       0.7       71.4        4,745

                                               Wood and Wood Products
Hardwoods
  Beech                             51.6      6.3          41.5           0.0       0.0        0.6       20,370
  Hickory                           49.7      6.5          43.1           0.0       0.0        0.7       20,165
                                                                                                        (continued)




                                                                                                            A4-1


q 2007 by Taylor & Francis Group, LLC
A4-2                                                                                     Energy Conversion


           Material                Ca (%)       H2a (%)   O2a (%)   N2a (%)   Sa (%)   Aa (%)   HHV (kJ/kg)b
  Maple                             50.6          6.0      41.7       0.3      0.0       1.4       19,955
  Poplar                            51.6          6.3      41.5       0.0      0.0       0.6       20,745
  Oak                               49.5          6.6      43.4       0.3      0.0       0.2       20,185
Softwoods
  Douglas fir                        52.3          6.3      40.5       0.1      0.0       0.8       21,045
  Pine                              52.6          6.1      40.9       0.2      0.0       0.2       21,280
  Redwood                           53.5          5.9      40.3       0.1      0.0       0.2       21,025
  Western hemlock                   50.4          5.8      41.4       0.1      0.1       2.2       20,045
Wood products
  Charcoal (made at 4008C)          76.5          3.9      15.4       0.8      0.0       3.4       28,560
  Charcoal (made at 5008C)          81.7          3.2      11.5       0.2      0.0       3.4       31,630
  Douglas fir bark                   56.2          5.9      36.7       0.0      0.0       1.2       22,095
  Pine bark                         52.3          5.8      38.8       0.2      0.0       2.9       20,420
  Dry sawdust pellets               47.2          5.5      46.3       0.0      0.0       1.0       20,500
  Ripe leaves                       40.5          6.0      45.1       0.2      0.1       8.1       16,400
Plant wastes
  Brush                             42.5          5.9      41.2       2.0      0.1       8.3       18,370
  Evergreen trimmings               49.5          6.6      41.2       1.7      0.2       0.8        6,425
  Garden plants                     48.0          6.8      41.3       1.2      0.3       2.4        8,835
  Grass                             48.4          6.8      41.6       1.2      0.3       1.7       18,520
  a
      All percentages on moisture-free basis.
  b
      1 kJ/kgZ0.43 Btu/lbm.




q 2007 by Taylor & Francis Group, LLC
q 2007 by Taylor & Francis Group, LLC
q 2007 by Taylor & Francis Group, LLC
q 2007 by Taylor & Francis Group, LLC
q 2007 by Taylor & Francis Group, LLC
q 2007 by Taylor & Francis Group, LLC
Preface


Energy is universally acknowledged to be the mainstay of an industrial society. Without an adequate
supply of energy, the stability of the social and economic order, as well as the political structure of a
society, is in jeopardy. As the world supply of fossil energy sources decreases, the need for energy
conservation, efficient energy conversion, and developing renewable energy technologies becomes ever
more critical. This book deals with energy conversion from traditional fossil fuels and nuclear as well as
renewable energy resources.
    Recently, the issue of energy efficiency has emerged as a serious engineering challenge because it is
now generally accepted that human activities, mainly burning of fossil fuels, are the main contributors to
global climate change. Global warming is largely the result of the emission of radiation-trapping gases,
such as carbon dioxide and methane, into the atmosphere. It is the consensus of the scientific community
that human activities are largely responsible for the increase in the average global temperature. Thus,
improving the efficiency of energy conversion from fossil fuels and the development of renewable energy
technologies is becoming ever more important for the engineering community.
    This book is divided into two parts: energy resources and energy conversion. The first seven chapters
deal with available energy resources including fossil fuels, nuclear, and renewable. Chapters 8–11 cover
conventional energy conversion technologies of steam power plants, gas turbines, internal combustion
engines, and hydraulic turbines. Advanced conversion technologies such as advanced coal power
plants, combined cycle power plants, Stirling engines, and advanced nuclear power are covered in
Chapters 12–17. Chapter 15 covers various storage technologies.
    Renewable energy technologies including solar thermal power, photovoltaics, wind energy conver-
sion, biomass and biofuels, geothermal energy conversion, as well as waste-to-energy combustion are
covered in Chapters 18–24. Chapter 26 presents fundamentals as well as technology assessment of
fuel cells. Unconventional energy conversion systems still under development, including nuclear fusion,
ocean energy, and direct energy conversion by thermionic, thermoelectric, and magneto-hydrodynamic
methods, are covered in Chapters 17, 25, and 27.
    The material presented in this handbook has been extracted from the two previous handbooks edited
by us. The first is the Handbook of Mechanical Engineering and the other the Handbook of Energy Efficiency
and Renewable Energy published in 2007. It is hoped that bringing all the information for energy
resources and conversion under one roof will be useful to engineers in designing and building energy
generation systems from traditional and renewable resources. The editors would like to express their
appreciation to the authors for their forbearance and diligence in preparing their work for publication.
    In a work of this type, scope errors and omissions are unavoidable. The editors would therefore
appreciate feedback from the readers to rectify any errors and improve the coverage of future editions.

                                                                                    D. Yogi Goswami
                                                                                        Frank Kreith




q 2007 by Taylor & Francis Group, LLC
Editors-in-Chief


D. Yogi Goswami, Clean Energy Research Center, University of South Florida, Tampa,
Florida

Frank Kreith, Department of Mechanical Engineering, University of Colorado, Boulder,
Colorado




q 2007 by Taylor & Francis Group, LLC
Contributors


Elsayed M. Afify                         Steven I. Freedman                  David E. Klett
North Carolina State University         Gas Research Institute              North Carolina A&T State
Raleigh, North Carolina                 Deerfield, Illinois                    University
                                                                            Greensboro, North Carolina
                                        Nitin Goel
Anthony F. Armor                        Intel Technology India Pvt. Ltd.
Electric Power                          Bangalore, India                    Kenneth D. Kok
  Research Institute                                                        WSMS Mid-America
Palo Alto, California                   D. Yogi Goswami                     Oak Ridge, Tennessee
                                        Clean Energy Research Center
Roger E.A. Arndt                        University of South Florida
                                                                            Alex Lezuo
University of Minnesota                 Tampa, Florida
                                                                            Siemans Power Generation
Minneapolis, Minnesota                  and
                                                                            Erlangen, Germany
                                        University of Florida
                                        Gainesville, Florida
Richard Bajura                                                              Xianguo Li
West Virginia University                Leonard M. Grillo                   University of Waterloo
Morgantown, West Virginia               Grillo Engineering Company          Waterloo, Ontario, Canada
                                        Hollis, New Hampshire
Riccardo Battisti
University of Rome                      Roel Hammerschlag                   Robert McConnell
  “La Sapienza”                         Institute for Lifecycle             National Center for Photovoltaics
Rome, Italy                               Environmental Assessment          National Renewable
                                        Seattle, Washington                   Energy Laboratory
                                                                            Golden, Colorado
Dale E. Berg                            Edwin A. Harvego
Sandia National Laboratories            Idaho National Laboratory
Albuquerque, New Mexico                                                     Roger Messenger
                                        Idaho Falls, Idaho
                                                                            Department of
                                                                              Electrical Engineering
Desikan Bharathan                       Massoud Kayhanian                   Florida Atlantic University
National Renewable Energy               Center for Environmental and
                                                                            Boca Raton, Florida
  Laboratory                              Water Resources Engineering
Golden, Colorado                        Department of Civil and
                                          Environmental Engineering         Jeffrey H. Morehouse
                                        University of California at Davis   Department of Mechanical
Robert C. Brown                         Davis, California
Center for Sustainable                                                        Engineering
  Environmental Technologies                                                University of South Carolina
                                        John Kern                           Columbia, South Carolina
Iowa State University
                                        Siemens Power Generation
Ames, Iowa
                                        Milwaukee, Wisconsin
                                                                            Ralph P. Overend
Philip C. Crouse                        Kevin Kitz                          National Renewable Energy
Philip C. Crouse and Associates Inc.    U.S. Geothermal Inc.                  Laboratory
Dallas, Texas                           Boise, Idaho                        Golden, Colorado



q 2007 by Taylor & Francis Group, LLC
Takhir M. Razykov                       Hans Schweiger                  Hari M. Upadhyaya
Physical Technical Institute            AIGUASOL Engineering            Centre for Renewable Energy
Uzbek Academy of Sciences               Active Solar Systems Group        Systems Technology (CREST)
Tashkent, Uzbekistan                    Barcelona, Spain                Department of Electronic
                                                                          and Electrical Engineering
                                                                        Loughborough University
T. Agami Reddy                          Thomas E. Shannon               Loughborough, Leicestershire,
Department of Civil, Architectural      University of Tennessee           United Kingdom
  and Environmental Engineering         Knoxville, Tennessee
Drexel University                                                       Charles O. Velzy
Philadelphia, Pennsylvania                                              Private Consultant
                                        William B. Stine                White Haven, Pennsylvania
                                        California State Polytechnic
Marshall J. Reed                          University                    Sanjay Vijayaraghavan
U.S. Department of Energy               Pasadena, California            Intel Technology India Pvt. Ltd.
Washington, D.C.                                                        Bangalore, India

                                        George Tchobanoglous            Werner Weiss
Joel L. Renner
                                        Department of Civil and         AEE INTEC
Idaho National Engineering
                                          Environmental Engineering     Feldgasse, Austria
  Laboratory
Idaho Falls, Idaho                      University of California
                                          at Davis                      Roland Winston
                                        Davis, California               University of California
Robert Reuther                                                          Merced, California
U.S. Department of Energy
Morgantown, West Virginia               Ayodhya N. Tiwari               Lynn L. Wright
                                        Centre for Renewable Energy     Oak Ridge National Laboratory
                                           Systems Technology (CREST)   Oak Ridge, Tennessee
Manuel Romero-Alvarez                   Department of Electronic
Plataforma Solar de                       and Electrical Engineering    Federica Zangrando
  Almeria-CIEMAT                        Loughborough University         National Renewable Energy
Madrid, Spain                           Loughborough, Leicestershire,     Laboratory
                                          United Kingdom                Golden, Colorado

Christopher P. Schaber                                                  Eduardo Zarza
Institute for Lifecycle                 James S. Tulenko                Plataforma Solar de
  Environmental Assessment              University of Florida             Almeria-CIEMAT
Seattle, Washington                     Gainesville, Florida            Madrid, Spain




q 2007 by Taylor & Francis Group, LLC
Contents


  1     Introduction D. Yogi Goswami . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
        1.1  Energy Use by Sectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
        1.2  Electrical Capacity Additions to 2030 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
        1.3  Present Status and Potential of Renewable Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
        1.4  Role of Energy Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
        1.5  Energy Conversion Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10


SECTION I Energy Resources

  2     Fossil Fuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
        2.1  Coal Robert Reuther . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
        2.2  Environmental Aspects Richard Bajura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14
        2.3  Oil Philip C. Crouse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
        2.4  Natural Gas Philip C. Crouse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21

  3     Biomass Energy Ralph P. Overend and Lynn L. Wright . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
        3.1 Biomass Feedstock Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
        3.2 Biomass Conversion Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4

  4     Nuclear Resources James S. Tulenko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
        4.1 The Nuclear Fuel Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
        4.2 Processing of Nuclear Fuel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2

  5     Solar Energy Resources D. Yogi Goswami . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              5-1
        5.1  Solar Energy Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                  5-1
        5.2  Earth–Sun Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                    5-2
        5.3  Solar Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     5-4
        5.4  Solar Radiation on a Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                       5-4
        5.5  Solar Radiation on a Horizontal Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  5-5
        5.6  Solar Radiation on a Tilted Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              5-5
        5.7  Solar Radiation Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                           5-6
        5.8  Solar Radiation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .               5-6

  6     Wind Energy Resources Dale E. Berg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
        6.1 Wind Origins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1



q 2007 by Taylor & Francis Group, LLC
6.2      Wind Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     6-1
        6.3      Wind Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   6-2
        6.4      Wind Energy Resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .               6-2
        6.5      Wind Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .              6-6
        6.6      Wind Energy Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .              6-6

  7     Geothermal Energy Joel L. Renner and Marshall J. Reed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           7-1
        7.1 Heat Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       7-1
        7.2 Types of Geothermal Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                           7-2
        7.3 Geothermal Energy Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                         7-2
        7.4 Geothermal Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                     7-4
        7.5 Environmental Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                       7-4
        7.6 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                  7-6


SECTION II                       Energy Conversion

  8     Steam Power Plant John Kern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1
        8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1
        8.2 Rankine Cycle Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2
        8.3 Topping and Bottoming Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5
        8.4 Steam Boilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5
        8.5 Steam Turbines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-7
        8.6 Heat Exchangers, Pumps, and Other Cycle Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-11
        8.7 Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-14


  9     Gas Turbines Steven I. Freedman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1
        9.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1
        9.2 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1
        9.3 Fuels and Firing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2
        9.4 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2
        9.5 Gas Turbine Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3
        9.6 Cycle Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4
        9.7 Components Used in Complex Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6
        9.8 Upper Temperature Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-9
        9.9 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-10
        9.10Combustion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-10
        9.11Mechanical Product Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-11


10      Internal Combustion Engines David E. Klett and Elsayed M. Afify . . . . . . . . . . . . . . . . . . . . . . . 10-1
        10.1  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1
        10.2  Engine Types and Basic Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2
        10.3  Air Standard Power Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-7
        10.4  Actual Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-10
        10.5  Combustion in IC Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-12
        10.6  Exhaust Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-15
        10.7  Fuels for SI and CI Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-17
        10.8  Intake Pressurization—Supercharging and Turbocharging . . . . . . . . . . . . . . . . . . . . . . . 10-20



q 2007 by Taylor & Francis Group, LLC
11      Hydraulic Turbines Roger E.A. Arndt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1
        11.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1
        11.2 Principles of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-5
        11.3 Factors Involved in Selecting a Turbine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-8
        11.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-12
        11.5 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-14
        11.6 Field Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-17

12      Stirling Engines William B. Stine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .               12-1
        12.1   Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   12-1
        12.2   Thermodynamic Implementation of the Stirling Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                 12-2
        12.3   Mechanical Implementation of the Stirling Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        12-4
        12.4   Future of the Stirling Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                  12-9

13      Advanced Fossil Fuel Power Systems Anthony F. Armor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-1
        13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-1
        13.2 Fuels for Electric Power Generation in the U.S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-2
        13.3 Coal as a Fuel for Electric Power (World Coal Institute 2000) . . . . . . . . . . . . . . . . . . . . . 13-3
        13.4 Clean Coal Technology Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-4
        13.5 Pulverized-Coal Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-5
        13.6 Emissions Controls for Pulverized Coal Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-9
        13.7 Fluidized Bed Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-13
        13.8 Gasification Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-16
        13.9 Combustion Turbine Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-20
        13.10Central Station Options for New Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-24
        13.11Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-26

14      Combined-Cycle Power Plants Alex Lezuo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                14-1
        14.1Combined-Cycle Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                       14-1
        14.2Combined-Cycle Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 14-2
        14.3Combined-Cycle Arrangements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             14-4
        14.4Combined Heat and Power from Combined-Cycle Plants . . . . . . . . . . . . . . . . . . . . . . . . .                                                          14-7
        14.5Environmental Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                 14-8

15      Energy Storage Technologies Roel Hammerschlag and Christopher P. Schaber . . . . . . . . . . . . . 15-1
        15.1 Overview of Storage Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-1
        15.2 Principal Forms of Stored Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-3
        15.3 Applications of Energy Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-3
        15.4 Specifying Energy Storage Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-4
        15.5 Specifying Fuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-6
        15.6 Direct Electric Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-7
        15.7 Electrochemical Energy Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-8
        15.8 Mechanical Energy Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-13
        15.9 Direct Thermal Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-15
        15.10Thermochemical Energy Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-18

16      Nuclear Power Technologies Edwin A. Harvego and Kenneth D. Kok . . . . . . . . . . . . . . . . . . . . .                                                          16-1
        16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     16-1
        16.2 Development of Current Power-Reactor Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                  16-2
        16.3 Next-Generation Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                         16-8


q 2007 by Taylor & Francis Group, LLC
16.4       Generation-IV Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                      16-11
        16.5       Fuel Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    16-20
        16.6       Nuclear Waste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         16-26
        16.7       Nuclear Power Economics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                       16-29
        16.8       Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       16-29

17      Nuclear Fusion Thomas E. Shannon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                          17-1
        17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         17-1
        17.2 Fusion Fuel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        17-1
        17.3 Confinement Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                        17-2
        17.4 Tokamak Reactor Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                17-2
        17.5 Fusion Energy Conversion and Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                         17-4

18      Solar Thermal Energy Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-1
        18.1  Active Solar Heating Systems T. Agami Reddy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-1
        18.2  Solar Heat for Industrial Processes Riccardo Battisti, Hans Schweiger, and
                   Werner Weiss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-49
        18.3       Passive Solar Heating, Cooling, and Daylighting Jeffrey H. Morehouse . . . . . . . . . . . . 18-59
        18.4       Solar Cooling D. Yogi Goswami and Sanjay Vijayaraghavan . . . . . . . . . . . . . . . . . . . . . . 18-121

19      Concentrating Solar Thermal Power Manuel Romero-Alvarez and Eduardo Zarza . . . . . . . 19-1
        19.1  Introduction and Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-2
        19.2  Solar Concentration and CSP Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-6
        19.3  Solar Concentrator Beam Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-9
        19.4  Solar Concentration Ratio: Principles and Limitations of CSP Systems . . . . . . . . . . 19-13
        19.5  Solar Thermal Power Plant Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-15
        19.6  Parabolic Trough Solar Thermal Power Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-18
        19.7  Central Receiver Solar Thermal Power Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-50
        19.8  Volumetric Atmospheric Receivers: PHOEBUS and Solair . . . . . . . . . . . . . . . . . . . . . . . 19-80
        19.9  Solar Air Preheating Systems for Combustion
              Turbines: The SOLGATE Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-82
        19.10 Dish/Stirling Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-85
        19.11 Market Opportunities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-91
        19.12 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-92

20      Photovoltaics Fundamentals, Technology and Application . . . . . . . . . . . . . . . . . . . . . . . . . . 20-1
        20.1 Photovoltaics Roger Messenger and D. Yogi Goswami . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-1
        20.2 Thin-Film PV Technology Hari M. Upadhyaya, Takhir M. Razykov, and
                   Ayodhya N. Tiwari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     20-28
        20.3       Concentrating PV Technologies                       Roland Winston, Robert McConnell, and
                   D. Yogi Goswami . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   20-54

21      Wind Energy Conversion Dale E. Berg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-1
        21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-1
        21.2 Wind Turbine Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-4
        21.3 Wind Turbine Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-16
        21.4 Wind Turbine Structural Dynamic Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-16
        21.5 Peak Power Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-18
        21.6 Turbine Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-20
        21.7 Other Wind-Energy Conversion Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-23



q 2007 by Taylor & Francis Group, LLC
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion
Energy conversion

Más contenido relacionado

La actualidad más candente

Physics equation tables_2008_09
Physics equation tables_2008_09Physics equation tables_2008_09
Physics equation tables_2008_09
Agyapal Bajwa
 
Homogenized trigonal models for biomechanical applications description copia
Homogenized trigonal models for biomechanical applications description copiaHomogenized trigonal models for biomechanical applications description copia
Homogenized trigonal models for biomechanical applications description copia
Marco Ciervo
 
IGARSS2011_GulfOilSpill_CJones.pdf
IGARSS2011_GulfOilSpill_CJones.pdfIGARSS2011_GulfOilSpill_CJones.pdf
IGARSS2011_GulfOilSpill_CJones.pdf
grssieee
 

La actualidad más candente (6)

Physics equation tables_2008_09
Physics equation tables_2008_09Physics equation tables_2008_09
Physics equation tables_2008_09
 
Physics term
Physics termPhysics term
Physics term
 
Homogenized trigonal models for biomechanical applications description copia
Homogenized trigonal models for biomechanical applications description copiaHomogenized trigonal models for biomechanical applications description copia
Homogenized trigonal models for biomechanical applications description copia
 
IGARSS2011_GulfOilSpill_CJones.pdf
IGARSS2011_GulfOilSpill_CJones.pdfIGARSS2011_GulfOilSpill_CJones.pdf
IGARSS2011_GulfOilSpill_CJones.pdf
 
Lecture hw 2012
Lecture hw 2012Lecture hw 2012
Lecture hw 2012
 
Characterization of Thermoelectric Properties and Power Generation Efficienc...
Characterization of Thermoelectric Properties and Power Generation Efficienc...Characterization of Thermoelectric Properties and Power Generation Efficienc...
Characterization of Thermoelectric Properties and Power Generation Efficienc...
 

Destacado

Electromechnical Energy Conversion ppt
Electromechnical Energy Conversion pptElectromechnical Energy Conversion ppt
Electromechnical Energy Conversion ppt
Anirudhan Guru
 
Electromechanical energy conversion principles
Electromechanical energy conversion principlesElectromechanical energy conversion principles
Electromechanical energy conversion principles
Vijay Raskar
 
MET 401 Thermodynamics property tables_si_units
MET 401 Thermodynamics property tables_si_unitsMET 401 Thermodynamics property tables_si_units
MET 401 Thermodynamics property tables_si_units
Ibrahim AboKhalil
 
Electromechanical Energy Conversion ppt 2
Electromechanical Energy Conversion ppt 2Electromechanical Energy Conversion ppt 2
Electromechanical Energy Conversion ppt 2
Anirudhan Guru
 
Chen Zeng (201375033)
Chen Zeng (201375033)Chen Zeng (201375033)
Chen Zeng (201375033)
Chen Zeng
 
CRP presentation final
CRP presentation finalCRP presentation final
CRP presentation final
Tieg Laskowske
 
SOTCON_final_report
SOTCON_final_reportSOTCON_final_report
SOTCON_final_report
Chen Zeng
 
Hydromodus- An Autonomous Underwater Vehicle
Hydromodus- An Autonomous Underwater VehicleHydromodus- An Autonomous Underwater Vehicle
Hydromodus- An Autonomous Underwater Vehicle
Jordan Read
 
Design Optimization of Drone propeller
Design Optimization of Drone propellerDesign Optimization of Drone propeller
Design Optimization of Drone propeller
Mun Lai
 

Destacado (19)

Steam tables
Steam tablesSteam tables
Steam tables
 
Steam tables
Steam tablesSteam tables
Steam tables
 
Electromechnical Energy Conversion ppt
Electromechnical Energy Conversion pptElectromechnical Energy Conversion ppt
Electromechnical Energy Conversion ppt
 
Thermo Property Tables in SI and Other Units Tables
Thermo Property Tables in SI and Other Units TablesThermo Property Tables in SI and Other Units Tables
Thermo Property Tables in SI and Other Units Tables
 
Tabel uap
Tabel uapTabel uap
Tabel uap
 
Electromechanical energy conversion principles
Electromechanical energy conversion principlesElectromechanical energy conversion principles
Electromechanical energy conversion principles
 
MET 401 Thermodynamics property tables_si_units
MET 401 Thermodynamics property tables_si_unitsMET 401 Thermodynamics property tables_si_units
MET 401 Thermodynamics property tables_si_units
 
Steam tables
Steam tablesSteam tables
Steam tables
 
Fluid Mechanics
Fluid MechanicsFluid Mechanics
Fluid Mechanics
 
Electromechanical Energy Conversion ppt 2
Electromechanical Energy Conversion ppt 2Electromechanical Energy Conversion ppt 2
Electromechanical Energy Conversion ppt 2
 
Ly hợp từ thắng điện từ Electromagnetic Clutches and Brake )
Ly hợp từ thắng điện từ Electromagnetic Clutches and Brake )Ly hợp từ thắng điện từ Electromagnetic Clutches and Brake )
Ly hợp từ thắng điện từ Electromagnetic Clutches and Brake )
 
Chen Zeng (201375033)
Chen Zeng (201375033)Chen Zeng (201375033)
Chen Zeng (201375033)
 
Marks
MarksMarks
Marks
 
Energy conversion
Energy conversionEnergy conversion
Energy conversion
 
CRP presentation final
CRP presentation finalCRP presentation final
CRP presentation final
 
SOTCON_final_report
SOTCON_final_reportSOTCON_final_report
SOTCON_final_report
 
Hydromodus- An Autonomous Underwater Vehicle
Hydromodus- An Autonomous Underwater VehicleHydromodus- An Autonomous Underwater Vehicle
Hydromodus- An Autonomous Underwater Vehicle
 
Design Optimization of Drone propeller
Design Optimization of Drone propellerDesign Optimization of Drone propeller
Design Optimization of Drone propeller
 
Transformation of energy
Transformation of energyTransformation of energy
Transformation of energy
 

Similar a Energy conversion

Energy and nanotechnology
Energy and nanotechnologyEnergy and nanotechnology
Energy and nanotechnology
Star Gold
 
Transducers
TransducersTransducers
Transducers
popet
 
Measurements And Units
Measurements And UnitsMeasurements And Units
Measurements And Units
guest24f659
 
Presentación de productos SEOUL
Presentación de productos SEOULPresentación de productos SEOUL
Presentación de productos SEOUL
Gonzalo Guerrero
 

Similar a Energy conversion (20)

Energy and nanotechnology
Energy and nanotechnologyEnergy and nanotechnology
Energy and nanotechnology
 
Transducers
TransducersTransducers
Transducers
 
Scientific units
Scientific unitsScientific units
Scientific units
 
Dtra tr-07-38
Dtra tr-07-38Dtra tr-07-38
Dtra tr-07-38
 
ثرموداينمك
ثرموداينمكثرموداينمك
ثرموداينمك
 
Smart Power Amplifier
Smart Power AmplifierSmart Power Amplifier
Smart Power Amplifier
 
Revision notes on unit and dimensions
Revision notes on unit and dimensionsRevision notes on unit and dimensions
Revision notes on unit and dimensions
 
001
001001
001
 
N30UH Grade Neodymium Magnets Data
N30UH Grade Neodymium Magnets DataN30UH Grade Neodymium Magnets Data
N30UH Grade Neodymium Magnets Data
 
Vapor phase cutting of carbon nanotubes using a nanomanipulator platform-ms&t...
Vapor phase cutting of carbon nanotubes using a nanomanipulator platform-ms&t...Vapor phase cutting of carbon nanotubes using a nanomanipulator platform-ms&t...
Vapor phase cutting of carbon nanotubes using a nanomanipulator platform-ms&t...
 
Siunits
SiunitsSiunits
Siunits
 
Expert Design & Empirical Test Strategies for Practical Transformer Development
Expert Design & Empirical Test Strategies for Practical Transformer DevelopmentExpert Design & Empirical Test Strategies for Practical Transformer Development
Expert Design & Empirical Test Strategies for Practical Transformer Development
 
Si Derived Units.pdf
Si Derived Units.pdfSi Derived Units.pdf
Si Derived Units.pdf
 
Measurements And Units
Measurements And UnitsMeasurements And Units
Measurements And Units
 
Suc Brasil 2012 : Sesam for SURF
Suc Brasil 2012 : Sesam for SURFSuc Brasil 2012 : Sesam for SURF
Suc Brasil 2012 : Sesam for SURF
 
Bosch_automotive_handbook.pdf
Bosch_automotive_handbook.pdfBosch_automotive_handbook.pdf
Bosch_automotive_handbook.pdf
 
Extreme Rheology- Cardiff- 2009
Extreme Rheology- Cardiff- 2009Extreme Rheology- Cardiff- 2009
Extreme Rheology- Cardiff- 2009
 
N28UH Grade Neodymium Magnets Data
N28UH Grade Neodymium Magnets DataN28UH Grade Neodymium Magnets Data
N28UH Grade Neodymium Magnets Data
 
N30 Grade Neodymium Magnets Data
N30 Grade Neodymium Magnets DataN30 Grade Neodymium Magnets Data
N30 Grade Neodymium Magnets Data
 
Presentación de productos SEOUL
Presentación de productos SEOULPresentación de productos SEOUL
Presentación de productos SEOUL
 

Último

Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 

Último (20)

Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Magic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptxMagic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptx
 
Third Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptxThird Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 

Energy conversion

  • 1. A1 The International System of Units, Fundamental Constants, and Nitin Goel Conversion Factors Intel Technology India Pvt. Ltd. The International system of units (SI) is based on seven base units. Other derived units can be related to these base units through governing equations. The base units with the recommended symbols are listed in Table A1.1. Derived units of interest in solar engineering are given in Table A1.2. Standard prefixes can be used in the SI system to designate multiples of the basic units and thereby conserve space. The standard prefixes are listed in Table A1.3. Table A1.4 lists some physical constants that are frequently used in solar engineering, together with their values in the SI system of units. Conversion factors between the SI and English systems for commonly used quantities are given in Table A1.5. A1-1 q 2007 by Taylor & Francis Group, LLC
  • 2. A1-2 Energy Conversion TABLE A1.1 The Seven SI Base Units Quantity Name of Unit Symbol Length Meter m Mass Kilogram kg Time Second s Electric current Ampere A Thermodynamic temperature Kelvin K Luminous intensity Candela cd Amount of a substance Mole mol TABLE A1.2 SI Derived Units Quantity Name of Unit Symbol Acceleration Meters per second squared m/s2 Area Square meters m2 Density Kilogram per cubic meter kg/m3 Dynamic viscosity Newton-second per square meter N s/m2 Force Newton (Z1 kg m/s2) N Frequency Hertz Hz Kinematic viscosity Square meter per second m2/s Plane angle Radian rad Potential difference Volt V Power Watt(Z1 J/s) W Pressure Pascal (Z1 N/m2) Pa Radiant intensity Watts per steradian W/sr Solid angle Steradian sr Specific heat Joules per kilogram–Kelvin J/kg K Thermal conductivity Watts per meter–Kelvin W/m K Velocity Meters per second m/s Volume Cubic meter m3 Work, energy, heat Joule (Z1 N/m) J TABLE A1.3 English Prefixes Multiplier Symbol Prefix Multiplier Multiplier Symbol 12 3 10 T Tera 10 M (thousand) 109 G Giga 106 MM (million) 106 m Mega 103 k Kilo 102 h Hecto 101 da Deka 10K1 d Deci 10K2 c Centi 10K3 m Milli 10K6 m Micro 10K9 n Nano 10K12 p Pico 10K15 f Femto 10K18 a Atto q 2007 by Taylor & Francis Group, LLC
  • 3. The International System of Units, Fundamental Constants, and Conversion Factors A1-3 TABLE A1.4 Physical Constants in SI Units Quantity Symbol Value Avogadro constant N 6.022169!1026 kmolK1 Boltzmann constant k 1.380622!10K23 J/K First radiation constant C1Z2phC2 3.741844!10K16 W m2 Gas constant R 8.31434!103 J/kmol K Planck constant h 6.626196!10K34 J s Second radiation constant C2Zhc/k 1.438833!10K2 m K Speed of light in a vacuum C 2.997925!108 m/s Stefan–Boltzmann constant s 5.66961!10K8 W/m2 K4 q 2007 by Taylor & Francis Group, LLC
  • 4. A1-4 Energy Conversion TABLE A1.5 Conversion Factors Physical Quantity Symbol Conversion Factor Area A 1 ft. Z0.0929 m2 2 1 acreZ43,560 ft.2Z4047 m2 1 hectareZ10,000 m2 1 square mileZ640 acres Density r 1 lbm/ft.3Z16.018 kg/m3 Heat, energy, or work Q or W l BtuZ1055.1 J 1 kWhZ3.6 MJ 1 ThermZ105.506 MJ l calZ4.186 J 1 ft. lbfZ1.3558 J Force F 1 lbfZ4.448 N Heat flow rate, refrigeration q 1 Btu/hZ0.2931 W 1 ton (refrigeration)Z3.517 kW l Btu/sZ1055.1 W Heat flux q/A 1 Btu/h ft.2Z3.1525 W/m2 Heat-transfer coefficient h 1 Btu/h ft.2 FZ5.678 W/m2 K Length L 1 ft.Z0.3048 m 1 in.Z2.54 cm 1 miZ1.6093 km Mass m 1 lbmZ0.4536 kg 1 tonZ2240 lbm 1 tonne (metric)Z1000 kg Mass flow rate m _ 1 lbm/hZ0.000126 kg/s Power W_ 1 hpZ745.7 W 1 kWZ3415 Btu/h 1 ft. lbf/sZ1.3558 W 1 Btu/hZ0.293 W Pressure p 1 lbf/in.2 (psi)Z6894.8 Pa (N/m2) 1 in. HgZ3,386 Pa 1 atmZ101,325 Pa (N/m2)Z14.696 psi Radiation l 1 langleyZ41,860 J/m2 1 langley/minZ697.4 W/m2 Specific heat capacity c 1 Btu/lbm 8FZ4187 J/kg K Internal energy or enthalpy e or h 1 Btu/lbmZ2326.0 J/kg 1 cal/gZ4184 J/kg Temperature T T(8R)Z(9/5)T(K) T(8F)Z[T(8C)](9/5)C32 T(8F)Z[T(K)K273.15](9/5)C32 Thermal conductivity k 1 Btu/h ft. 8FZ1.731 W/m K Thermal resistance Rth 1 h 8F/BtuZ1.8958 K/W Velocity V 1 ft./sZ0.3048 m/s 1 mi/hZ0.44703 m/s Viscosity, dynamic m 1 lbm/ft. sZ1.488 N s/m2 1 cPZ0.00100 N s/m2 Viscosity, kinematic n 1 ft.2/sZ0.09029 m2/s 1 ft.2/hZ2.581!10K5 m2/s Volume V 1 ft.3Z0.02832 m3Z28.32 L 1 barrelZ42 gal (U.S.) 1 gal (U.S. liq.)Z3.785 L 1 gal (U.K.)Z4.546 L Volumetric flow rate _ Q 1 ft.3/min (cfia)Z0.000472 m3/s 1 gal/min (GPM)Z0.0631 l/s q 2007 by Taylor & Francis Group, LLC
  • 5. A3 Properties of Gases, Vapors, Liquids and Nitin Goel Solids Intel Technology India Pvt. Ltd. A3-1 q 2007 by Taylor & Francis Group, LLC
  • 6. A3-2 Energy Conversion TABLE A3.1 Properties of Dry Air at Atmospheric Pressures between 250 and 1000 K a T (K) r (kg/m3) cp (kJ/kg K) m (kg/m n (m2/s!106) k (W/m K) a (m2/s!104) dPr s!105) 250 1.4128 1.0053 1.488 9.49 0.02227 0.13161 0.722 300 1.1774 1.0057 1.983 15.68 0.02624 0.22160 0.708 350 0.9980 1.0090 2.075 20.76 0.03003 0.2983 0.697 400 0.8826 1.0140 2.286 25.90 0.03365 0.3760 0.689 450 0.7833 1.0207 2.484 28.86 0.03707 0.4222 0.683 500 0.7048 1.0295 2.671 37.90 0.04038 0.5564 0.680 550 0.6423 1.0392 2.848 44.34 0.04360 0.6532 0.680 600 0.5879 1.0551 3.018 51.34 0.04659 0.7512 0.680 650 0.5430 1.0635 3.177 58.51 0.04953 0.8578 0.682 700 0.5030 1.0752 3.332 66.25 0.05230 0.9672 0.684 750 0.4709 1.0856 3.481 73.91 0.05509 1.0774 0.686 800 0.4405 1.0978 3.625 82.29 0.05779 1.1951 0.689 850 0.4149 1.1095 3.765 90.75 0.06028 1.3097 0.692 900 0.3925 1.1212 3.899 99.3 0.06279 1.4271 0.696 950 0.3716 1.1321 4.023 108.2 0.06525 1.5510 0.699 1000 0.3524 1.1417 4.152 117.8 0.06752 1.6779 0.702 a Symbols: KZabsolute temperature, degrees Kelvin; vZm/r; rZdensity; cp specific heat capacity; aZcpr/k; mZviscosity; kZthermal conductivity; PrZPrandtl number, dimensionless. The values of m, k, cp, and Pr are not strongly pressure- dependent and may be used over a fairly wide range of pressures. Source: From Natl. Bureau Standards (U.S.) Circ. 564, 1955. q 2007 by Taylor & Francis Group, LLC
  • 7. Properties of Gases, Vapors, Liquids and Solids A3-3 TABLE A3.2 Properties of Water (Saturated Liquid) between 273 and 533 K T cp (kJ/kg r (kg/m3) m (kg/m s) k (W/m Pr ðgbr2 cp =mkÞðmK3 8CK1 Þ 8C) 8C) K 8F 8C 273 32 0 4.225 999.8 1.79!10K3 0.566 13.25 277.4 40 4.44 4.208 999.8 1.55 0.575 11.35 1.91!109 283 50 10 4.195 999.2 1.31 0.585 9.40 6.34!109 288.6 60 15.56 4.186 998.6 1.12 0.595 7.88 1.08!1010 294.1 70 21.11 4.179 997.4 9.8!10K4 0.604 6.78 1.46!1010 299.7 80 26.67 4.179 995.8 8.6 0.614 5.85 1.91!1010 302.2 90 32.22 4.174 994.9 7.65 0.623 5.12 2.48!1010 310.8 100 37.78 4.174 993.0 6.82 0.630 4.53 3.3!1010 316.3 110 43.33 4.174 990.6 6.16 0.637 4.04 4.19!1010 322.9 120 48.89 4.174 988.8 5.62 0.644 3.64 4.89!1010 327.4 130 54.44 4.179 985.7 5.13 0.649 3.30 5.66!1010 333.0 140 60 4.179 983.3 4.71 0.654 3.01 6.48!1010 338.6 150 65.55 4.183 980.3 4.3 0.659 2.73 7.62!1010 342.1 160 71.11 4.186 977.3 4.01 0.665 2.53 8.84!1010 349.7 170 76.67 4.191 973.7 3.72 0.668 2.33 9.85!1010 355.2 180 82.22 4.195 970.2 3.47 0.673 2.16 1.09!1011 360.8 190 87.78 4.199 966.7 3.27 0.675 2.03 366.3 200 93.33 4.204 963.2 3.06 0.678 1.90 377.4 220 104.4 4.216 955.1 2.67 0.684 1.66 388.6 240 115.6 4.229 946.7 2.44 0.685 1.51 399.7 260 126.7 4.250 937.2 2.19 0.685 1.36 410.8 280 137.8 4.271 928.1 1.98 0.685 1.24 421.9 300 148.9 4.296 918.0 1.86 0.684 1.17 449.7 350 176.7 4.371 890.4 1.57 0.677 1.02 477.4 400 204.4 4.467 859.4 1.36 0.665 1.00 505.2 450 232.2 4.585 825.7 1.20 0.646 0.85 533.0 500 260 4.731 785.2 1.07 0.616 0.83 Source: Adapted from Brown, A. I. and S. M. Marco. 1958. Introduction to Heat Transfer, 3d Ed., McGraw-Hill Book Company, New York. q 2007 by Taylor & Francis Group, LLC
  • 8. A3-4 Energy Conversion TABLE A3.3 Emittances and Absorptances of Materials Substance Short-Wave Long-Wave a3 Absorptance Emittance Class I substances: Absorptance to emittance ratios less than 0.5 Magnesium carbonate, MgCO3 0.025–0.04 0.79 0.03–0.05 White plaster 0.07 0.91 0.08 Snow, fine particles, fresh 0.13 0.82 0.16 White paint, 0.017 in. on aluminum 0.20 0.91 0.22 Whitewash on galvanized iron 0.22 0.90 0.24 White paper 0.25–0.28 0.95 0.26–0.29 White enamel on iron 0.25–0.45 0.9 0.28–0.5 Ice, with sparse snow cover 0.31 0.96–0.97 0.32 Snow, ice granules 0.33 0.89 0.37 Aluminum oil base paint 0.45 0.90 0.50 White powdered sand 0.45 0.84 0.54 Class II substances: Absorptance to emittance ratios between 0.5 and 0.9 Asbestos felt 0.25 0.50 0.50 Green oil base paint 0.5 0.9 0.56 Bricks, red 0.55 0.92 0.60 Asbestos cement board, white 0.59 0.96 0.61 Marble, polished 0.5–0.6 0.9 0.61 Wood, planed oak – 0.9 – Rough concrete 0.60 0.97 0.62 Concrete 0.60 0.88 0.68 Grass, green, after rain 0.67 0.98 0.68 Grass, high and dry 0.67–0.69 0.9 0.76 Vegetable fields and shrubs, wilted 0.70 0.9 0.78 Oak leaves 0.71–0.78 0.91–0.95 0.78–0.82 Frozen soil – 0.93–0.94 – Desert surface 0.75 0.9 0.83 Common vegetable fields and shrubs 0.72–0.76 0.9 0.82 Ground, dry plowed 0.75–0.80 0.9 0.83–0.89 Oak woodland 0.82 0.9 0.91 Pine forest 0.86 0.9 0.96 Earth surface as a whole (land and sea, no clouds) 0.83 1010 – Class III substances: Absorptance to emittance ratios between 0.8 and 1.0 Grey paint 0.75 0.95 0.79 Red oil base paint 0.74 0.90 0.82 Asbestos, slate 0.81 0.96 0.84 Asbestos, paper 0.93–0.96 Linoleum, red–brown 0.84 0.92 0.91 Dry sand 0.82 0.90 0.91 Green roll roofing 0.88 0.91–0.97 0.93 Slate, dark grey 0.89 – Old grey rubber 0.86 – Hard black rubber – 0.90–0.95 Asphalt pavement 0.93 – – Black cupric oxide on copper 0.91 0.96 0.95 Bare moist ground 0.9 0.95 0.95 Wet sand 0.91 0.95 0.96 Water 0.94 0.95–0.96 0.98 Black tar paper 0.93 0.93 1.0 Black gloss paint 0.90 0.90 1.0 Small hole in large box, furnace, or enclosure 0.99 0.99 1.0 “Hohlraum,” theoretically perfect black body 1.0 1.0 1.0 Class IV substances: Absorptance to emittance ratios greater than 1.0 Black silk velvet 0.99 0.97 1.02 (continued) q 2007 by Taylor & Francis Group, LLC
  • 9. Properties of Gases, Vapors, Liquids and Solids A3-5 TABLE A3.3 (Continued) Substance Short-Wave Long-Wave a3 Absorptance Emittance Alfalfa, dark green 0.97 0.95 1.02 Lampblack 0.98 0.95 1.03 Black paint, 0.017 in. on aluminum 0.94–0.98 0.88 1.07–1.11 Granite 0.55 0.44 1.25 Graphite 0.78 0.41 1.90 High ratios, but absorptances less than 0.80 Dull brass, copper, lead 0.2–0.4 0.4–0.65 1.63–2.0 Galvanized sheet iron, oxidized 0.8 0.28 2.86 Galvanized iron, clean, new 0.65 0.13 5.0 Aluminum foil 0.15 0.05 3.00 Magnesium 0.3 0.07 4.3 Chromium 0.49 0.08 6.13 Polished zinc 0.46 0.02 23.0 Deposited silver (optical reflector) untarnished 0.07 0.01 Class V substances: Selective surfacesa Plated metals:b Black sulfide on metal 0.92 0.10 9.2 Black cupric oxide on sheet aluminum 0.08–0.93 0.09–0.21 Copper (5!10w5 cm thick) on nickel or silver-plated metal Cobalt oxide on platinum Cobalt oxide on polished nickel 0.93–0.94 0.24–0.40 3.9 Black nickel oxide on aluminum 0.85–0.93 0.06–0.1 14.5–15.5 Black chrome 0.87 0.09 9.8 Particulate coatings: Lampblack on metal Black iron oxide, 47 mm grain size, on aluminum Geometrically enhanced surfaces:c Optimally corrugated greys 0.89 0.77 1.2 Optimally corrugated selectives 0.95 0.16 5.9 Stainless-steel wire mesh 0.63–0.86 0.23–0.28 2.7–3.0 Copper, treated with NaClO, and NaOH 0.87 0.13 6.69 a Selective surfaces absorb most of the solar radiation between 0.3 and 1.9 mm, and emit very little in the 5–15 mm range– the infrared. b For a discussion of plated selective surfaces, see Daniels, Direct Use of the Sun’s Energy, especially chapter 12. c For a discussion of how surface selectivity can be enhanced through surface geometry, see K. G. T. Hollands, July 1963. Directional selectivity emittance and absorptance properties of vee corrugated specular surfaces, J. Sol. Energy Sci. Eng, vol. 3. Source: From Anderson, B. 1977. Solar Energy, McGraw-Hill Book Company. With permission. q 2007 by Taylor & Francis Group, LLC
  • 10. A3-6 Energy Conversion TABLE A3.4 Thermal Properties of Metals and Alloys Material k, Btu/(hr)(ft.)(8F) c, Btu/(lbm)(8F) r, lbm/ft.3 a, ft.2/hr 328F 2128F 5728F 9328F 328F 328F 328F Metals Aluminum 117 119 133 155 0.208 169 3.33 Bismuth 4.9 3.9 . . 0.029 612 0.28 Copper, pure 224 218 212 207 0.091 558 4.42 Gold 169 170 . . 0.030 1,203 4.68 Iron, pure 35.8 36.6 . . 0.104 491 0.70 Lead 20.1 19 18 . 0.030 705 0.95 Magnesium 91 92 . . 0.232 109 3.60 Mercury 4.8 . . . 0.033 849 0.17 Nickel 34.5 34 32 . 0.103 555 0.60 Silver 242 238 . . 0.056 655 6.6 Tin 36 34 . . 0.054 456 1.46 Zinc 65 64 59 . 0.091 446 1.60 Alloys Admiralty metal 65 64 Brass, 70% Cu, 56 60 66 . 0.092 532 1.14 30% Zn Bronze, 75% Cu, 15 . . . 0.082 540 0.34 25% Sn Cast iron Plain 33 31.8 27.7 24.8 0.11 474 0.63 Alloy 30 28.3 27 0.10 455 0.66 Constantan, 12.4 12.8 0.10 557 0.22 60% Cu, 40% Ni 18-8 Stainless steel, Type 304 8.0 9.4 10.9 12.4 0.11 488 0.15 Type 347 8.0 9.3 11.0 12.8 0.11 488 0.15 Steel, mild, 1% C 26.5 26 25 22 0.11 490 0.49 Source: From Kreith, F. 1997. Principles of Heat Transfer, PWS Publishing Co., Boston. q 2007 by Taylor & Francis Group, LLC
  • 11. Properties of Gases, Vapors, Liquids and Solids A3-7 TABLE A3.5 Thermal Properties of Some Insulating and Building Materials Material Average, k, Btu/(hr)(ft.) c, Btu/(lbm) r, lbm/ft.3 a, ft.2/hr Temperature, 8F (8F) (8F) Insulating Materials Asbestos 32 0.087 0.25 36 K0.01 392 0.12 36 K0.01 Cork 86 0.025 0.04 10 K0.006 Cotton, fabric 200 0.046 Diatomaceous earth, powdered 100 0.030 0.21 14 K0.01 300 0.036 . 600 0.046 . Molded pipe covering 400 0.051 . 26 1600 0.088 . Glass Wool Fine 20 0.022 . 100 0.031 . 1.5 200 0.043 . Packed 20 0.016 . 100 0.022 . 6.0 200 0.029 . Hair felt 100 0.027 . 8.2 Kaolin insulating brick 932 0.15 . 27 2102 0.26 . Kaolin insulating firebrick 392 0.05 . 19 1400 0.11 . 85% magnesia 32 0.032 . 17 200 0.037 . 17 Rock wool 20 0.017 . 8 200 0.030 . Rubber 32 0.087 0.48 75 0.0024 Brick Building Materials Fire-clay 392 0.58 0.20 144 0.02 1832 0.95 Masonry 70 0.38 0.20 106 0.018 Zirconia 392 0.84 . 304 1832 1.13 . Chrome brick 392 0.82 . 246 1832 0.96 . Concrete Stone K70 0.54 0.20 144 0.019 10% Moisture K70 0.70 . 140 K0.025 Glass, window K70 K0.45 0.2 170 0.013 Limestone, dry 70 0.40 0.22 105 0.017 Sand Dry 68 0.20 . 95 10% H2O 68 0.60 100 Soil Dry 70 K0.20 0.44 . K0.01 Wet 70 K1.5 . K0.03 Wood Oak t to grain 70 0.12 0.57 51 0.0041 s to grain 70 0.20 0.57 51 0.0069 Pine t to grain 70 0.06 0.67 31 0.0029 s to grain 70 0.14 0.67 31 0.0067 Ice 32 1.28 0.46 57 0.048 Source: From Kreith, R. 1997. Principles of Heat Transfer, PWS Publishing Co. q 2007 by Taylor & Francis Group, LLC
  • 12. A3-8 TABLE A3.6 Saturated Steam and Water–SI Units Temperature Pressure Specific Volume (m3/kg) Specific Energy Internal (kJ/kg) Specific Enthalpy (kJ/kg) Specific Entropy (kJ/kg.K) (K) (MN/m2) vf vg uf ug hf hfg hg sf sg 273.15 0.0006109 0.0010002 206.278 K0.03 2375.3 K0.02 2501.4 2501.3 K0.0001 9.1565 273.16 0.0006113 0.0010002 206.136 0 2375.3 C0.01 2501.3 2501.4 0 9.1562 278.15 0.0008721 0.0010001 147.120 C20.97 2382.3 20.98 2489.6 2510.6 C0.0761 9.0257 280.13 0.0010000 0.0010002 129.208 29.30 2385.0 29.30 2484.9 2514.2 0.1059 8.975 283.15 0.0012276 0.0010004 106.379 42.00 2389.2 42.01 2477.7 2519.8 0.1510 8.9008 286.18 0.0015000 0.0010007 87.980 54.71 2393.3 54.71 2470.6 2525.3 0.1957 8.8279 288.15 0.0017051 0.0010009 77.926 62.99 2396.1 62.99 2465.9 2528.9 0.2245 8.7814 290.65 0.0020000 0.0010013 67.004 73.48 2399.5 73.48 2460.0 2533.5 0.2607 8.7237 293.15 0.002339 0.0010018 57.791 83.95 2402.9 83.96 2454.1 2538.1 0.2966 8.6672 297.23 0.0030000 0.0010027 45.665 101.04 2408.5 101.05 2444.5 2545.5 0.3545 8.5776 298.15 0.003169 0.0010029 43.360 104.88 2409.8 104.89 2442.3 2547.2 0.3674 8.5580 302.11 0.004000 0.0010040 34.800 121.45 2415.2 121.46 2432.9 2554.4 0.4226 8.4746 303.15 0.004246 0.0010043 32.894 125.78 2416.6 125.79 2430.5 2556.3 0.4369 8.4533 306.03 0.005000 0.0010053 28.192 137.81 2420.5 137.82 2423.7 2561.5 0.4764 8.3951 308.15 0.005628 0.0010060 25.216 146.67 2423.4 146.68 2418.6 2565.3 0.5053 8.3531 309.31 0.006000 0.0010064 23.739 151.53 2425.0 151.53 2415.9 2567.4 0.5210 8.3304 312.15 0.007000 0.0010074 20.530 163.39 2428.8 163.40 2409.1 2572.5 0.5592 8.2758 313.15 0.007384 0.0010078 19.523 167.56 2430.1 167.57 2406.7 2574.3 0.5725 8.2570 314.66 0.008000 0.0010084 18.103 173.87 2432.2 173.88 2403.1 2577.0 0.5926 8.2287 316.91 0.009000 0.0010094 16.203 183.27 2435.2 183.29 2397.7 2581.0 0.6224 8.1872 318.15 0.009593 0.0010099 15.258 188.44 2436.8 188.45 2394.8 2583.2 0.6387 8.1648 318.96 0.010000 0.0010102 14.674 191.82 2437.9 191.83 2392.8 2584.7 0.6493 8.1502 323.15 0.012349 0.0010121 12.032 209.32 2443.5 209.33 2382.7 2592.1 0.7038 8.0763 327.12 0.015000 0.0010141 10.022 225.92 2448.7 225.94 2373.1 2599.1 0.7549 8.0085 328.15 0.015758 0.0010146 9.568 230.21 2450.1 230.23 2370.7 2600.9 0.7679 7.9913 333.15 0.019940 0.0010172 7.671 251.11 2456.6 251.13 2358.5 2609.6 0.8312 7.9096 333.21 0.020000 0.0010172 7.649 251.38 2456.7 251.40 2358.3 2609.7 0.8320 7.9085 Energy Conversion 338.15 0.025030 0.0010199 6.197 272.02 2463.1 272.06 2346.2 2618.3 0.8935 7.8310 342.25 0.030000 0.0010223 5.229 289.20 2468.4 289.23 2336.1 2625.3 0.9439 7.7686 343.15 0.031190 0.0010228 5.042 292.95 2469.6 292.98 2333.8 2626.8 0.9549 7.7553 348.15 0.038580 0.0010259 4.131 313.90 2475.9 313.93 2221.4 2635.3 1.0155 7.6824 349.02 0.040000 0.0010265 3.993 317.53 2477.0 317.58 2319.2 2636.8 1.0259 7.6700 353.15 0.047390 0.0010291 3.407 334.86 2482.2 334.91 2308.8 2643.7 1.0753 7.6122 354.48 0.050000 0.0010300 3.240 340.44 2483.9 340.49 2305.4 2645.9 1.0910 7.5939 q 2007 by Taylor & Francis Group, LLC
  • 13. Properties of Gases, Vapors, Liquids and Solids 358.15 0.057830 0.0010325 2.828 355.84 2488.4 355.90 2296.0 2651.9 1.1343 7.5445 359.09 0.060000 0.0010331 2.732 359.79 2489.6 359.86 2293.6 2653.5 1.1453 7.5320 363.10 0.070000 0.0010360 2.365 376.63 2494.5 376.70 2283.3 2660.0 1.1919 7.4797 363.15 0.070140 0.0010360 2.361 376.85 2494.5 376.92 2283.2 2660.1 1.1925 7.4791 366.65 0.080000 0.0010386 2.087 391.58 2498.8 391.66 2274.1 2665.8 1.2329 7.4346 368.15 0.084550 0.0010397 1.9819 397.88 2500.6 397.96 2270.2 2668.1 1.2500 7.4159 Subscripts: f refers to a property of liquid in equilibrium with vapor; g refers to a property of vapor in equilibrium with liquid; fg refers to a change by evaporation. Table from Bolz, R. E. and G. L. Tuve, eds. 1973. CRC Handbook of Tables for Applied Engineering Science, 2nd Ed., Chemical Rubber Co., Cleveland, Ohio. A3-9 q 2007 by Taylor & Francis Group, LLC
  • 14. A3-10 TABLE A3.7 Superheated Steam–SI Units 2 Pressure (MN/m ) Temperature (Saturation Temperature)a 508C 1008C 1508C 2008C 3008C 4008C 5008C 7008C 10008C 13008C 323.15 K 373.15 K 423.15 K 473.15 K 573.15 K 673.15 K 773.15 K 973.15 K 1273.15 K 1573.15 K 0.001 v 149.093 172.187 195.272 218.352 264.508 310.661 356.814 449.117 587.571 726.025 (6.988C) u 2445.4 2516.4 2588.4 2661.6 2812.2 2969.0 3132.4 3479.6 4053.0 4683.7 (280.13 K) h 2594.5 2688.6 2783.6 2880.0 3076.8 3279.7 3489.2 3928.7 4640.6 5409.7 s 9.2423 9.5129 9.7520 9.9671 10.3443 10.6705 10.9605 11.4655 12.1019 12.6438 0.002 v 74.524 86.081 97.628 109.170 132.251 155.329 178.405 224.558 293.785 363.012 (17.508C) u 2445.2 2516.3 2588.3 2661.6 2812.2 2969.0 3132.4 3479.6 4053.0 4683.7 (290.65 K) h 2594.3 2688.4 2793.6 2879.9 3076.7 3279.7 3489.2 3928.7 4640.6 5409.7 s 8.9219 9.1928 9.4320 9.6471 10.0243 10.3506 10.6406 11.1456 11.7820 12.3239 0.004 v 37.240 43.028 48.806 54.580 66.122 77.662 89.201 112.278 146.892 181.506 (28.%8C) u 2444.9 2516.1 2588.2 2661.5 2812.2 2969.0 3132.3 3479.6 4053.0 4683.7 (302.11 K) h 2593.9 2688.2 2783.4 2879.8 3076.7 3279.6 3489.2 3928.7 4640.6 5409.7 s 8.6009 8.8724 9.1118 9.3271 9.7044 10.0307 10.3207 10.8257 11.4621 12.0040 0.006 v 24.812 28.676 32.532 36.383 44.079 51.774 59.467 74.852 97.928 121.004 (36.168C) u 2444.6 2515.9 2588.1 2661.4 2812.2 2969.0 31323 3479.6 4053.0 4683.7 (309.31 K) h 2593.4 2688.0 2783.3 2879.7 3076.6 3279.6 3489.1 3928.7 4640.6 5409.7 s 8.4128 8.6847 8.9244 9.1398 9.5172 9.8435 10.1336 10.6386 11.2750 11.8168 0.008 v 18.598 21.501 24.395 27.284 33.058 38.829 44.599 56.138 73.446 90.753 (41.518C) u 2444.2 2515.7 2588.0 2661.4 2812.1 2969.0 3132.3 3479.6 4053.0 4683.7 (314.66 K) h 2593.0 2687.7 2783.1 2879.6 3076.6 3279.6 3489.1 3928.7 4640.6 5409.7 s 8.2790 8.5514 8.7914 9.0069 9.3844 9.7107 10.0008 10.5058 11.1422 11.6841 0.010 v 14.869 17.196 19.512 21.825 26.445 31.063 35.679 44.911 58.757 72.602 (45.818C) u 2443.9 2515.5 2587.9 2661.3 2812.1 2968.9 3132.3 3479.6 4053.0 4683.7 (318.96 K) h 2592.6 2687.5 2783.0 2879.5 3076.5 3279.6 3489.1 3928.7 4640.6 5409.7 s 8.1749 8.4479 8.6882 8.9038 9.2813 9.6077 9.8978 10.4028 11.0393 11.5811 0.020 v 7.412 8.585 9.748 10.907 13.219 15.529 17.838 22.455 29.378 36.301 (60.068C) u 2442.2 2514.6 2587.3 2660.9 2811.9 2968.8 3132.2 3479.5 4053.0 4683.7 (333.21 K) h 2590.4 2686.2 2782.3 2879.1 3076.3 3279.4 3489.0 3928.6 4640.6 5409.7 s 7.8498 8.1255 8.3669 8.5831 8.9611 9.2876 9.5778 10.0829 10.7193 11.2612 0.040 v 3.683 4.279 4.866 5.448 6.606 7.763 8.918 11.227 14.689 18.151 (75.878C) u 2438.8 2512.6 2586.2 2660.2 2811.5 2968.6 3132.1 3479.4 4052.9 4683.6 (349.02 K) h 2586.1 2683.8 2780.8 2878.1 3075.8 3279.1 3488.8 3928.5 4640.5 5409.6 s 7.5192 7.8003 8.0444 8.2617 8.6406 8.9674 9.2577 9.7629 10.3994 10.9412 Energy Conversion 0.060 v 2.440 2.844 3.238 3.628 4.402 5.174 5.944 7.484 9.792 12.100 (85.948C) u 2435.3 2510.6 2585.1 2659.5 2811.2 2968.4 3131.9 3479.4 4052.9 4683.6 (359.09 K) h 2581.7 2681.3 2779.4 2877.2 3075.3 3278.8 3488.6 3928.4 4640.4 5409.6 s 7.3212 7.6079 7.8546 8.0731 8.4528 8.7799 9.0704 9.5757 10.2122 10.7541 0.080 v 1.8183 2.127 2.425 2.718 3.300 3.879 4.458 5.613 7.344 9.075 (93.508C) u 2431.7 2508.7 2583.9 2658.8 2810.8 2968.1 3131.7 3479.3 4052.8 4683.5 (366.65 K) h 2577.2 2678.8 2777.9 2876.2 3074.8 3278.5 3488.3 3928.3 4640.4 5409.5 s 7.1775 7.4698 7.7191 7.9388 8.3194 8.6468 8.9374 9.4428 10.0794 10.6213 0.100 v 1.4450 1.6958 1.9364 2.172 2.639 3.103 3.565 4.490 5.875 7.260 q 2007 by Taylor & Francis Group, LLC
  • 15. Properties of Gases, Vapors, Liquids and Solids (99.638C) u 2428.2 2506.7 2582.8 2658.1 2810.4 2967.9 3131.6 3479.2 4052.8 4683.5 (372.78 K) h 2572.7 2676.2 2776.4 2875.3 3074.3 3278.2 3488.1 3928.2 4640.3 5409.5 s 7.0633 7.3614 7.6134 7.8343 8.2158 8.5435 8.8342 9.3398 9.9764 10.5183 0.200 v 0.6969 0.8340 0.9596 1.0803 1.3162 1.5493 1.7814 2.244 2.937 3.630 (120.238C) u 2409.5 2496.3 2576.9 2654.4 2808.6 2966.7 3130.8 3478.8 4052.5 4683.2 (393.38 K) h 2548.9 2663.1 2768.8 2870.5 3071.8 3276.6 3487.1 3927.6 4640.0 5409.3 s 6.6844 7.0135 7.2795 7.5066 7.8926 8.2218 8.5133 9.0194 9.6563 10.1982 0.300 v 0.4455 0.5461 0.6339 0.7163 0.8753 1.0315 1.1867 1.4957 1.9581 2.4201 (133.558C) u 2389.1 2485.4 2570.8 2650.7 2806.7 2965.6 3130.0 3478.4 4052.3 4683.0 (406.70 K) h 2522.7 2649.2 2761.0 2865.6 3069.3 3275.0 3486.0 3927.1 4639.7 5409.0 s 6.4319 6.7965 7.0778 7.3115 7.7022 8.0330 8.3251 8.8319 9.4690 10.0110 0.400 v 0.3177 0.4017 0.4708 0.5342 0.6548 0.7726 0.8893 1.1215 1.4685 1.8151 (143.638C) u 2366.3 2473.8 2564.5 2646.8 2804.8 2964.4 3129.2 3477.9 4052.0 4682.8 (416.78 K) h 2493.4 2634.5 2752.8 2860.5 3066.8 3273.4 3484.9 3926.5 4639.4 5408.8 s 6.2248 6.6319 6.9299 7.1706 7.5662 7.8985 8.1913 8.6987 9.3360 9.8780 0.500 v 0.3146 0.3729 0.4249 0.5226 0.6173 0.7109 0.8969 1.1747 1.4521 (151.868C) u 2461.5 2557.9 2642.9 2802.9 2963.2 328.4 3477.5 4051.8 4682.5 (425.01 K) h 2618.7 2744.4 2855.4 3064.2 3271.9 3483.9 3925.9 4639.1 5408.6 s 6.4945 6.8111 7.0592 7.4599 7.7938 8.0873 8.5952 9.2328 9.7749 a Symbols: vZspecific volume, m3/kg; uZ specific internal energy, U/kg; hZspecific enthalpy, kJ/kg; sZspecific entropy, kJ/K kg. Source: From Bolz, R. E. and G. L. Tuve, Eds. 1973. CRC Handbook of Tables for Applied Engineering Science, 2nd Ed., Chemical Rubber Co., Cleveland, Ohio. A3-11 q 2007 by Taylor & Francis Group, LLC
  • 16.
  • 17. A4 Ultimate Analysis of Nitin Goel Biomass Fuels Intel Technology India Pvt. Ltd. Material Ca (%) H2a (%) O2a (%) N2a (%) Sa (%) Aa (%) HHV (kJ/kg)b Agricultural Wastes Bagasse (sugarcane refuse) 47.3 6.1 35.3 0.0 0.0 11.3 21,255 Feedlot manure 42.7 5.5 31.3 2.4 0.3 17.8 17,160 Rice hulls 38.5 5.7 39.8 0.5 0.0 15.5 15,370 Rice straw 39.2 5.1 35.8 0.6 0.1 19.2 15,210 Municipal Solid Waste General 33.9 4.6 22.4 0.7 0.4 38.0 13,130 Brown paper 44.9 6.1 47.8 0.0 0.1 1.1 17,920 Cardboard 45.5 6.1 44.5 0.2 0.1 3.6 18,235 Corrugated boxes 43.8 5.7 45.1 0.1 0.2 5.1 16,430 Food fats 76.7 12.1 11.2 0.0 0.0 0.0 38,835 Garbage 45.0 6.4 28.8 3.3 0.5 16.0 19,730 Glass bottles (labels) 0.5 0.1 0.4 0.0 0.0 99.0 195 Magazine paper 33.2 5.0 38.9 0.1 0.1 22.7 12,650 Metal cans (labels, etc.) 4.5 0.6 4.3 0.1 0.0 90.5 1,725 Newspapers 49.1 6.1 43.0 0.1 0.2 1.5 19,720 Oils, paints 66.9 9.6 5.2 2.0 0.0 16.3 31,165 Paper food cartons 44.7 6.1 41.9 0.2 0.2 6.9 17,975 Plastics General 60.0 7.2 22.6 0.0 0.0 10.2 33,415 Polyethylene 85.6 14.4 0.0 0.0 0.0 0.0 46,395 Vinyl chloride 47.1 5.9 18.6 (ChlorineZ28.4%) 20,535 Rags 55.0 6.6 31.2 4.6 0.1 2.5 13,955 Rubber 77.7 10.3 0.0 0.0 2.0 10.0 26,350 Sewage Raw sewage 45.5 6.8 25.8 3.3 2.5 16.1 16,465 Sewage sludge 14.2 2.1 10.5 1.1 0.7 71.4 4,745 Wood and Wood Products Hardwoods Beech 51.6 6.3 41.5 0.0 0.0 0.6 20,370 Hickory 49.7 6.5 43.1 0.0 0.0 0.7 20,165 (continued) A4-1 q 2007 by Taylor & Francis Group, LLC
  • 18. A4-2 Energy Conversion Material Ca (%) H2a (%) O2a (%) N2a (%) Sa (%) Aa (%) HHV (kJ/kg)b Maple 50.6 6.0 41.7 0.3 0.0 1.4 19,955 Poplar 51.6 6.3 41.5 0.0 0.0 0.6 20,745 Oak 49.5 6.6 43.4 0.3 0.0 0.2 20,185 Softwoods Douglas fir 52.3 6.3 40.5 0.1 0.0 0.8 21,045 Pine 52.6 6.1 40.9 0.2 0.0 0.2 21,280 Redwood 53.5 5.9 40.3 0.1 0.0 0.2 21,025 Western hemlock 50.4 5.8 41.4 0.1 0.1 2.2 20,045 Wood products Charcoal (made at 4008C) 76.5 3.9 15.4 0.8 0.0 3.4 28,560 Charcoal (made at 5008C) 81.7 3.2 11.5 0.2 0.0 3.4 31,630 Douglas fir bark 56.2 5.9 36.7 0.0 0.0 1.2 22,095 Pine bark 52.3 5.8 38.8 0.2 0.0 2.9 20,420 Dry sawdust pellets 47.2 5.5 46.3 0.0 0.0 1.0 20,500 Ripe leaves 40.5 6.0 45.1 0.2 0.1 8.1 16,400 Plant wastes Brush 42.5 5.9 41.2 2.0 0.1 8.3 18,370 Evergreen trimmings 49.5 6.6 41.2 1.7 0.2 0.8 6,425 Garden plants 48.0 6.8 41.3 1.2 0.3 2.4 8,835 Grass 48.4 6.8 41.6 1.2 0.3 1.7 18,520 a All percentages on moisture-free basis. b 1 kJ/kgZ0.43 Btu/lbm. q 2007 by Taylor & Francis Group, LLC
  • 19. q 2007 by Taylor & Francis Group, LLC
  • 20. q 2007 by Taylor & Francis Group, LLC
  • 21. q 2007 by Taylor & Francis Group, LLC
  • 22.
  • 23. q 2007 by Taylor & Francis Group, LLC
  • 24. q 2007 by Taylor & Francis Group, LLC
  • 25. Preface Energy is universally acknowledged to be the mainstay of an industrial society. Without an adequate supply of energy, the stability of the social and economic order, as well as the political structure of a society, is in jeopardy. As the world supply of fossil energy sources decreases, the need for energy conservation, efficient energy conversion, and developing renewable energy technologies becomes ever more critical. This book deals with energy conversion from traditional fossil fuels and nuclear as well as renewable energy resources. Recently, the issue of energy efficiency has emerged as a serious engineering challenge because it is now generally accepted that human activities, mainly burning of fossil fuels, are the main contributors to global climate change. Global warming is largely the result of the emission of radiation-trapping gases, such as carbon dioxide and methane, into the atmosphere. It is the consensus of the scientific community that human activities are largely responsible for the increase in the average global temperature. Thus, improving the efficiency of energy conversion from fossil fuels and the development of renewable energy technologies is becoming ever more important for the engineering community. This book is divided into two parts: energy resources and energy conversion. The first seven chapters deal with available energy resources including fossil fuels, nuclear, and renewable. Chapters 8–11 cover conventional energy conversion technologies of steam power plants, gas turbines, internal combustion engines, and hydraulic turbines. Advanced conversion technologies such as advanced coal power plants, combined cycle power plants, Stirling engines, and advanced nuclear power are covered in Chapters 12–17. Chapter 15 covers various storage technologies. Renewable energy technologies including solar thermal power, photovoltaics, wind energy conver- sion, biomass and biofuels, geothermal energy conversion, as well as waste-to-energy combustion are covered in Chapters 18–24. Chapter 26 presents fundamentals as well as technology assessment of fuel cells. Unconventional energy conversion systems still under development, including nuclear fusion, ocean energy, and direct energy conversion by thermionic, thermoelectric, and magneto-hydrodynamic methods, are covered in Chapters 17, 25, and 27. The material presented in this handbook has been extracted from the two previous handbooks edited by us. The first is the Handbook of Mechanical Engineering and the other the Handbook of Energy Efficiency and Renewable Energy published in 2007. It is hoped that bringing all the information for energy resources and conversion under one roof will be useful to engineers in designing and building energy generation systems from traditional and renewable resources. The editors would like to express their appreciation to the authors for their forbearance and diligence in preparing their work for publication. In a work of this type, scope errors and omissions are unavoidable. The editors would therefore appreciate feedback from the readers to rectify any errors and improve the coverage of future editions. D. Yogi Goswami Frank Kreith q 2007 by Taylor & Francis Group, LLC
  • 26.
  • 27. Editors-in-Chief D. Yogi Goswami, Clean Energy Research Center, University of South Florida, Tampa, Florida Frank Kreith, Department of Mechanical Engineering, University of Colorado, Boulder, Colorado q 2007 by Taylor & Francis Group, LLC
  • 28.
  • 29. Contributors Elsayed M. Afify Steven I. Freedman David E. Klett North Carolina State University Gas Research Institute North Carolina A&T State Raleigh, North Carolina Deerfield, Illinois University Greensboro, North Carolina Nitin Goel Anthony F. Armor Intel Technology India Pvt. Ltd. Electric Power Bangalore, India Kenneth D. Kok Research Institute WSMS Mid-America Palo Alto, California D. Yogi Goswami Oak Ridge, Tennessee Clean Energy Research Center Roger E.A. Arndt University of South Florida Alex Lezuo University of Minnesota Tampa, Florida Siemans Power Generation Minneapolis, Minnesota and Erlangen, Germany University of Florida Gainesville, Florida Richard Bajura Xianguo Li West Virginia University Leonard M. Grillo University of Waterloo Morgantown, West Virginia Grillo Engineering Company Waterloo, Ontario, Canada Hollis, New Hampshire Riccardo Battisti University of Rome Roel Hammerschlag Robert McConnell “La Sapienza” Institute for Lifecycle National Center for Photovoltaics Rome, Italy Environmental Assessment National Renewable Seattle, Washington Energy Laboratory Golden, Colorado Dale E. Berg Edwin A. Harvego Sandia National Laboratories Idaho National Laboratory Albuquerque, New Mexico Roger Messenger Idaho Falls, Idaho Department of Electrical Engineering Desikan Bharathan Massoud Kayhanian Florida Atlantic University National Renewable Energy Center for Environmental and Boca Raton, Florida Laboratory Water Resources Engineering Golden, Colorado Department of Civil and Environmental Engineering Jeffrey H. Morehouse University of California at Davis Department of Mechanical Robert C. Brown Davis, California Center for Sustainable Engineering Environmental Technologies University of South Carolina John Kern Columbia, South Carolina Iowa State University Siemens Power Generation Ames, Iowa Milwaukee, Wisconsin Ralph P. Overend Philip C. Crouse Kevin Kitz National Renewable Energy Philip C. Crouse and Associates Inc. U.S. Geothermal Inc. Laboratory Dallas, Texas Boise, Idaho Golden, Colorado q 2007 by Taylor & Francis Group, LLC
  • 30. Takhir M. Razykov Hans Schweiger Hari M. Upadhyaya Physical Technical Institute AIGUASOL Engineering Centre for Renewable Energy Uzbek Academy of Sciences Active Solar Systems Group Systems Technology (CREST) Tashkent, Uzbekistan Barcelona, Spain Department of Electronic and Electrical Engineering Loughborough University T. Agami Reddy Thomas E. Shannon Loughborough, Leicestershire, Department of Civil, Architectural University of Tennessee United Kingdom and Environmental Engineering Knoxville, Tennessee Drexel University Charles O. Velzy Philadelphia, Pennsylvania Private Consultant William B. Stine White Haven, Pennsylvania California State Polytechnic Marshall J. Reed University Sanjay Vijayaraghavan U.S. Department of Energy Pasadena, California Intel Technology India Pvt. Ltd. Washington, D.C. Bangalore, India George Tchobanoglous Werner Weiss Joel L. Renner Department of Civil and AEE INTEC Idaho National Engineering Environmental Engineering Feldgasse, Austria Laboratory Idaho Falls, Idaho University of California at Davis Roland Winston Davis, California University of California Robert Reuther Merced, California U.S. Department of Energy Morgantown, West Virginia Ayodhya N. Tiwari Lynn L. Wright Centre for Renewable Energy Oak Ridge National Laboratory Systems Technology (CREST) Oak Ridge, Tennessee Manuel Romero-Alvarez Department of Electronic Plataforma Solar de and Electrical Engineering Federica Zangrando Almeria-CIEMAT Loughborough University National Renewable Energy Madrid, Spain Loughborough, Leicestershire, Laboratory United Kingdom Golden, Colorado Christopher P. Schaber Eduardo Zarza Institute for Lifecycle James S. Tulenko Plataforma Solar de Environmental Assessment University of Florida Almeria-CIEMAT Seattle, Washington Gainesville, Florida Madrid, Spain q 2007 by Taylor & Francis Group, LLC
  • 31. Contents 1 Introduction D. Yogi Goswami . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 1.1 Energy Use by Sectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 1.2 Electrical Capacity Additions to 2030 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4 1.3 Present Status and Potential of Renewable Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 1.4 Role of Energy Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7 1.5 Energy Conversion Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10 SECTION I Energy Resources 2 Fossil Fuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 2.1 Coal Robert Reuther . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 2.2 Environmental Aspects Richard Bajura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 2.3 Oil Philip C. Crouse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16 2.4 Natural Gas Philip C. Crouse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21 3 Biomass Energy Ralph P. Overend and Lynn L. Wright . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 3.1 Biomass Feedstock Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 3.2 Biomass Conversion Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 4 Nuclear Resources James S. Tulenko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 4.1 The Nuclear Fuel Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 4.2 Processing of Nuclear Fuel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 5 Solar Energy Resources D. Yogi Goswami . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 5.1 Solar Energy Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 5.2 Earth–Sun Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 5.3 Solar Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4 5.4 Solar Radiation on a Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4 5.5 Solar Radiation on a Horizontal Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 5.6 Solar Radiation on a Tilted Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 5.7 Solar Radiation Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6 5.8 Solar Radiation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6 6 Wind Energy Resources Dale E. Berg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1 6.1 Wind Origins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1 q 2007 by Taylor & Francis Group, LLC
  • 32. 6.2 Wind Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1 6.3 Wind Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 6.4 Wind Energy Resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 6.5 Wind Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6 6.6 Wind Energy Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6 7 Geothermal Energy Joel L. Renner and Marshall J. Reed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1 7.1 Heat Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1 7.2 Types of Geothermal Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2 7.3 Geothermal Energy Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2 7.4 Geothermal Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4 7.5 Environmental Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4 7.6 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6 SECTION II Energy Conversion 8 Steam Power Plant John Kern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1 8.2 Rankine Cycle Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2 8.3 Topping and Bottoming Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5 8.4 Steam Boilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5 8.5 Steam Turbines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-7 8.6 Heat Exchangers, Pumps, and Other Cycle Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-11 8.7 Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-14 9 Gas Turbines Steven I. Freedman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1 9.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1 9.2 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1 9.3 Fuels and Firing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2 9.4 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2 9.5 Gas Turbine Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3 9.6 Cycle Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4 9.7 Components Used in Complex Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6 9.8 Upper Temperature Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-9 9.9 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-10 9.10Combustion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-10 9.11Mechanical Product Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-11 10 Internal Combustion Engines David E. Klett and Elsayed M. Afify . . . . . . . . . . . . . . . . . . . . . . . 10-1 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1 10.2 Engine Types and Basic Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2 10.3 Air Standard Power Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-7 10.4 Actual Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-10 10.5 Combustion in IC Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-12 10.6 Exhaust Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-15 10.7 Fuels for SI and CI Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-17 10.8 Intake Pressurization—Supercharging and Turbocharging . . . . . . . . . . . . . . . . . . . . . . . 10-20 q 2007 by Taylor & Francis Group, LLC
  • 33. 11 Hydraulic Turbines Roger E.A. Arndt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1 11.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1 11.2 Principles of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-5 11.3 Factors Involved in Selecting a Turbine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-8 11.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-12 11.5 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-14 11.6 Field Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-17 12 Stirling Engines William B. Stine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1 12.2 Thermodynamic Implementation of the Stirling Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2 12.3 Mechanical Implementation of the Stirling Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-4 12.4 Future of the Stirling Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-9 13 Advanced Fossil Fuel Power Systems Anthony F. Armor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-1 13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-1 13.2 Fuels for Electric Power Generation in the U.S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-2 13.3 Coal as a Fuel for Electric Power (World Coal Institute 2000) . . . . . . . . . . . . . . . . . . . . . 13-3 13.4 Clean Coal Technology Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-4 13.5 Pulverized-Coal Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-5 13.6 Emissions Controls for Pulverized Coal Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-9 13.7 Fluidized Bed Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-13 13.8 Gasification Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-16 13.9 Combustion Turbine Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-20 13.10Central Station Options for New Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-24 13.11Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-26 14 Combined-Cycle Power Plants Alex Lezuo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-1 14.1Combined-Cycle Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-1 14.2Combined-Cycle Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-2 14.3Combined-Cycle Arrangements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-4 14.4Combined Heat and Power from Combined-Cycle Plants . . . . . . . . . . . . . . . . . . . . . . . . . 14-7 14.5Environmental Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-8 15 Energy Storage Technologies Roel Hammerschlag and Christopher P. Schaber . . . . . . . . . . . . . 15-1 15.1 Overview of Storage Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-1 15.2 Principal Forms of Stored Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-3 15.3 Applications of Energy Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-3 15.4 Specifying Energy Storage Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-4 15.5 Specifying Fuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-6 15.6 Direct Electric Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-7 15.7 Electrochemical Energy Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-8 15.8 Mechanical Energy Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-13 15.9 Direct Thermal Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-15 15.10Thermochemical Energy Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-18 16 Nuclear Power Technologies Edwin A. Harvego and Kenneth D. Kok . . . . . . . . . . . . . . . . . . . . . 16-1 16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-1 16.2 Development of Current Power-Reactor Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-2 16.3 Next-Generation Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-8 q 2007 by Taylor & Francis Group, LLC
  • 34. 16.4 Generation-IV Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-11 16.5 Fuel Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-20 16.6 Nuclear Waste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-26 16.7 Nuclear Power Economics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-29 16.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-29 17 Nuclear Fusion Thomas E. Shannon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-1 17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-1 17.2 Fusion Fuel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-1 17.3 Confinement Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-2 17.4 Tokamak Reactor Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-2 17.5 Fusion Energy Conversion and Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-4 18 Solar Thermal Energy Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-1 18.1 Active Solar Heating Systems T. Agami Reddy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-1 18.2 Solar Heat for Industrial Processes Riccardo Battisti, Hans Schweiger, and Werner Weiss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-49 18.3 Passive Solar Heating, Cooling, and Daylighting Jeffrey H. Morehouse . . . . . . . . . . . . 18-59 18.4 Solar Cooling D. Yogi Goswami and Sanjay Vijayaraghavan . . . . . . . . . . . . . . . . . . . . . . 18-121 19 Concentrating Solar Thermal Power Manuel Romero-Alvarez and Eduardo Zarza . . . . . . . 19-1 19.1 Introduction and Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-2 19.2 Solar Concentration and CSP Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-6 19.3 Solar Concentrator Beam Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-9 19.4 Solar Concentration Ratio: Principles and Limitations of CSP Systems . . . . . . . . . . 19-13 19.5 Solar Thermal Power Plant Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-15 19.6 Parabolic Trough Solar Thermal Power Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-18 19.7 Central Receiver Solar Thermal Power Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-50 19.8 Volumetric Atmospheric Receivers: PHOEBUS and Solair . . . . . . . . . . . . . . . . . . . . . . . 19-80 19.9 Solar Air Preheating Systems for Combustion Turbines: The SOLGATE Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-82 19.10 Dish/Stirling Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-85 19.11 Market Opportunities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-91 19.12 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-92 20 Photovoltaics Fundamentals, Technology and Application . . . . . . . . . . . . . . . . . . . . . . . . . . 20-1 20.1 Photovoltaics Roger Messenger and D. Yogi Goswami . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-1 20.2 Thin-Film PV Technology Hari M. Upadhyaya, Takhir M. Razykov, and Ayodhya N. Tiwari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-28 20.3 Concentrating PV Technologies Roland Winston, Robert McConnell, and D. Yogi Goswami . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-54 21 Wind Energy Conversion Dale E. Berg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-1 21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-1 21.2 Wind Turbine Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-4 21.3 Wind Turbine Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-16 21.4 Wind Turbine Structural Dynamic Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-16 21.5 Peak Power Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-18 21.6 Turbine Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-20 21.7 Other Wind-Energy Conversion Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-23 q 2007 by Taylor & Francis Group, LLC