SlideShare una empresa de Scribd logo
1 de 14
Descargar para leer sin conexión
UNIVERSIDAD FERMIN TORO
VICE-RECTORADO ACADEMICO
FACULTAD DE INGENIERIA
DIRECCIÓN SAIA
RESUMEN UNIDAD III
Alumno: Wilmer José León Alejos
C.I 8.513.677.
Métodos De Eliminación Gaussiana
Una vez analizado los temas de la unidad III podemos indicar que el
proceso en el método de Eliminación de Gaussisana o de Gauss, radica en efectuar
transformaciones elementales en el sistema inicial (intercambio de filas,
intercambio de columnas, multiplicación de filas o columnas por constantes,
operaciones con filas o columnas, ), destinadas a transformarlo en un sistema
triangular superior, que resolveremos por remonte. En forma general este método
propone la eliminación progresiva de variables en el sistema de ecuaciones, hasta
tener sólo una ecuación con una incógnita. Una vez resuelta esta, se procede por
sustitución regresiva hasta obtener los valores de todas las variables.
Descomposición LU
El método de Descomposición LU se basa en demostrar que una matriz A se
puede factorizar como el producto de una matriz triangular inferior L con una
matriz triangular superior U, donde en el paso de eliminación sólo se involucran
operaciones sobre los coeficientes de la matriz, permitiendo así evaluar los
términos independientes bi de manera eficiente.
La implementación del algoritmo de la Descomposición LU tiene sus
variantes en cuanto a los valores iniciales de la diagonal que tomen las matrices L
y U, es decir si los valores de la diagonal de la matriz L tiene números 1,
formalmente esto se refiere a la Descomposición de Doolitle. Pero si los valores de
la diagonal de la matriz U tiene números 1, formalmente esto se refiere a la
Descomposición de Crout
Factorización De Cholesky
Una matriz simétrica es aquella donde Aij = Aji para toda i y j, En otras
palabras, [A] =[A] T. Tales sistemas ocurren comúnmente en problemas de ambos
contextos: el matemático y el de ingeniería. Ellos ofrecen ventajas
computacionales ya que sólo se necesita la mitad de almacenamiento y, en la
mayoría de los casos, sólo se requiere la mitad del tiempo de cálculo para su
solución. Al contrario de la Descomposición LU, no requiere de pivoteo. El método
de Factorización de Cholesky se basa en demostrar que si una matriz A es
simétrica y definida positiva en lugar de factorizarse como LU, puede ser
factorizada como el producto de una matriz triangular inferior y la traspuesta de la
matriz triangular inferior, es decir los factores triangula es resultantes son la
traspuesta de cada uno.
Factorización de QR, Householder
Anteriormente analizamos la factorización LU de una matriz el cual conduce
aun método muy eficiente para resolver un sistema lineal. Otro método de
factorización de una A, llamada factorización QR de A. Esta factorización se usa
ampliamente en los programas de computadora para determinar valores propios
de una matriz, para resolver sistemas lineales y para determinar aproximaciones
por mínimos cuadrados
SISTEMAS DE ECUACIONES LINEALES
La solución de los sistemas de ecuaciones lineales encuentra una amplia
aplicación en la ciencia y la tecnología. En particular, se puede afirmar, que en
cualquier rama de la Ingeniería existe al menos una aplicación que requiera del
planteamiento y solución de tales sistemas.
MÉTODO DE ITERATIVO DE GAUSS – SEIDEL.
Los valores que se van obtenido desde el inicio de la sustitución, se van
sustituyen a las siguiente ecuaciones (iteraciones).
Ejemplo:
10X1 + 1X2 = 11
2X1 + 10X2 = 12
Despeje de X1 en la ecuación 1 Despeje de X1 en la ecuación 2
1 Iteración
2 Iteración
3 Iteración
X1 = 11 - 1 X2
10
X2 = 12 - 2 X2
10
X2 = 0
X1 = 11 - 1 (0) = 1.1
10
X2 = 12 - 2 (1.1) = .98
10
X1 = 11 - 1 (.98) = 1.002
10
X2 = 12 - 2 (1.002) = .9996
10
X1 = 11 - 1 (.9996) = 1.00002
10
X2 = 12 - 2 (1.00002) = .999992
10
Sustitución de valores en la ecuación 1 y 2.
10X1 + 1X2 = 11
10(1)+1 (1) = 11
11 = 11
Error aproximado
a = 1.00004-1.002 * 100 = -1.959 = .1959 %
1.00004
SOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES.
A) SISTEMAS CON SOLUCION UNICA
1) Resolver el siguiente sistema de ecuaciones lineales mediante el método de
Gauss-Jordán.
Solución.
a) Escribimos la matriz aumentada del sistema.
Debemos llevar a dicha matriz a su forma escalonada reducida mediante
operaciones elementales en los renglones de la matriz, para ésto, escribiremos la
matriz y a continuación una flecha. Encima de esta flecha indicaremos la(s)
operación(es) que estamos efectuando para que el lector pueda seguir el
desarrollo.
Notación para las operaciones elementales en renglones
Nuevo renglón i de la matriz aumentada.
2X1 + 10X2 = 12
2(1) +10(1) = 12
12 = 12
Intercambio del renglón i con el renglón j.
Nuevo renglón j de la matriz aumentada.
b) Desarrollo para obtener la forma escalonada reducida.
2) Resuelva el siguiente sistema de ecuaciones lineales
Solución.
Escribiendo la matriz aumentada del sistema y reduciendo de acuerdo a la
operación indicada tenemos:
B) SISTEMAS CON INFINIDAD DE SOLUCIONES
1) Obtener la solución del siguiente sistema de ecuaciones lineales.
Solución.
La última matriz está en su forma escalonada reducida, ya no se puede reducir
más, de donde obtenemos:
Despejando x, y
Luego x, y dependen de z, si z = t, t •¸ R, tenemos
Es decir, el sistema de ecuaciones tiene una infinidad de soluciones ya que para
cada valor de t habrá un valor para x, y, z.
Por ejemplo:
Si T=0 entonces, es una solución para el sistema de ecuaciones.
Si T=1 entonces es otra solución para el sistema de ecuaciones.
Si T=4 entonces también es solución para el sistema de ecuaciones.
Así una vez más, remarcamos, el sistema tiene una infinidad de soluciones.
2) Resolver el sistema de ecuaciones:
Solución.
Si w = t, tenemos:
Hay infinidad de soluciones.
C) SISTEMAS SIN SOLUCION
1) Resolver el siguiente sistema de ecuaciones.
Solución.
No hay necesidad de seguir reduciendo, del segundo renglón se tiene que da la
igualdad (¡contradicción!), por lo tanto, el sistema no tiene solución.
2) Resolver el siguiente sistema de ecuaciones.
Solución.
Del tercer renglón se tiene que da la igualdad 0=3, luego el sistema no tiene
solución.
D) SISTEMAS HOMOGENEOS
Un sistema de ecuaciones lineales se dice HOMOGENEO si cada una de las
ecuaciones está igualada a cero es decir
Los sistemas homogéneos SIEMPRE tienen solución ya que
Es solución del sistema, ésta solución es llamada la solución trivial, así un sistema
homogéneo de ecuaciones lineales tiene solución única o tiene una infinidad de
soluciones.
1) Resolver el siguiente sistema de ecuaciones
Solución.
Luego x=y=z=0, el sistema tiene solución única, la solución trivial.
Algo más para agregar
Hay dos temas adicionales que se deben de mencionar: La interpolación con los
datos igualmente espaciados y la Extrapolación.
Ya que los métodos de Newton y de LaGrange son compatibles con los datos
espaciados en forma arbitraria, se debe de preguntar por qué se aborda el caso de
los datos igualmente espaciados. Antes del advenimiento de las computadoras
digitales, estos métodos tuvieron gran utilidad en la interpolación de tablas con
datos igualmente espaciados. De hecho se desarrolla un esquema conocido como
tabla de diferencias divididas para facilitar la implementación de estas técnicas.
Sin embargo, y debido a que las fórmulas son un subconjunto de los esquemas de
Newton y LaGrange compatibles con la computadora y ya que se dispone de
muchas funciones tabulares como rutinas de biblioteca, la necesidad de puntos
equidistantes se fue perdiendo. En particular, se puede emplear en la derivación
de fórmulas de integración numérica que emplean comúnmente datos
equidistantes.
La extrapolación es el proceso de calcular un valor de f(X) que cae fuera del rango
de los puntos base conocidos X0, X1,..., Xn. La interpolación más exacta
usualmente se obtiene cuando las incógnitas caen cerca de los puntos base.
Obviamente, esto no sucede cuando las incógnitas caen fuera del rango, y
por lo tanto, el error en la extrapolación puede ser muy grande. La naturaleza
abierta en los extremos de la extrapolación representa un paso en la incógnita
porque el proceso extiende la curva más allá de la región conocida. Como tal, la
curva verdadera diverge fácilmente de la predicción. Por lo tanto, se debe tener
cuidado extremo en casos donde se deba extrapolar.
MÉTODO ITERATIVO DE JACOBI
Este método consiste en despejar las variables X1, X2, X3 … X4 por cada
reglón según el numero de ecuaciones dadas, después se le asigna un valor de
cero, y se sustituye en la ecuación del despeje para encontrar el valor de la
primera iteración y posteriormente, estos valores se sustituyen para encontrar el
valor de la segunda ecuación, y así sucesivamente hasta encontrar el valor.
Ejemplo:
10X1 + 1X2 = 11
2X1 + 10X2 = 12
Despeje de X1 en la ecuación 1 Despeje de X1 en la ecuación 2
X1 = 11 - 1 X2
10
X2 = 12 - 2 X2
10
El valor de las
incógnitas
Convergente: Se a próxima
al valor real.
Divergente: Se aleja del
valor real.
1 Iteración
2 Iteración
3 Iteración
Sustitución de valores en la ecuación 1 y 2.
10X1 + 1X2 = 11
10(1)+1 (1) = 11
11 = 11
COMPARACIONES: MÉTODO DE JACOBI Y GAUSS-SEIDEL: (CON VISUAL
BASIC).
Son dos métodos numéricos, que nos permite hallar soluciones a sistemas con el
mismo número de ecuaciones que incógnitas.
X 1 = X2 = 0
X1 = 11 - 1 (0) = 11/10
10
X2 = 12 - 2 (0) = 12/10
10
X1 = 11 - 1 (12/2) = .98
10
X2 = 12 - 2 (11/10) = .98
10
X1 = 11 - 1 (.98) = 1.002
10
X2 = 12 - 2 (.98) = 1.004
10
2X1 + 10X2 = 12
2(1) +10(1) = 12
12 = 12
En los dos métodos se realiza el siguiente proceso, con una pequeña variación en
Gauss-Seidel
Tenemos estas ecuaciones:
5X-2Y+Z=3
-X-7Y+3Z=-2
2X-Y+8Z=1
1. Despejar cada incógnita en función de las demás.
X= (3+2Y-Z)/5
Y= (X-3Z-2)/-7
Z= (1-2X+Y)/8
2. Dar valores iníciales a las incógnitas
X1= 0
Y1= 0
Z1= 0
Por Jacobi:
Reemplazar en cada ecuación los valores iníciales, esto nos dará nuevos valores
que serán usados en la próxima iteración
X= (3+2*0-0)/5 = 0,60
Y= (0-3*0-2)/-7 = 0,28
Z= (1-2X+Y)/8 = 0,12
Por Gauss-Seidel
Reemplazar en cada ecuación los valores más próximos hallados.
X= (3+2*0-0)/5 = 0,6
Y= (0,6-3*0-2)/-7 = 0,2
Z= (1-2*0,6+0,2)/ 8=0
Se realiza cuantas iteraciones se desee, usando como valores iníciales los nuevos
valores hallados. Se puede detener la ejecución del algoritmo al calcular el error
del cálculo, el cual lo podemos hallar con esta fórmula: sqr( (x1-x0)^2 + (y1-
y0)^2 +(z1-z0)^2 )
Con jacobi
Con Gauss-Seidel
La principal diferencia, es que como el método de gauss_seidel utiliza los valores
inmediatamente encontrados, entonces hace que todo el proceso sea más rápido,
y como consecuencia hace de éste, un método más eficaz.
Las fórmulas usadas en la hoja de Excel para el método de Jacobi son
= (3+2*D5-E5)/5
=(C5-3*E5-2)/-7
=(1-2*C5+D5)/8
=(RAIZ((C6-C5)^2+ (D6-D5)^2 + (E6-E5)^2)
Que corresponde a la variable X,Y,Z y Error respectivamente.
Y para el método de Gauss-Seidel:
= (3+2*J5-K5)/5
= (I6-3*K5-2)/-7
= (1-2*I6+J6)/8
= (RAIZ((I6-I5)^2+ (J6-J5)^2 + (K6-K5)^2)

Más contenido relacionado

La actualidad más candente

Métodos de resolución metodo de gauss jordan
Métodos de resolución metodo de gauss jordanMétodos de resolución metodo de gauss jordan
Métodos de resolución metodo de gauss jordanalgebra
 
Método de gauss jordan
Método de gauss jordanMétodo de gauss jordan
Método de gauss jordandjelektro
 
Método de gauss y gauss seidel
Método de gauss y gauss seidelMétodo de gauss y gauss seidel
Método de gauss y gauss seidelLilly Kwang
 
Método de gauss
Método de gaussMétodo de gauss
Método de gaussalgebra
 
Metodo de gauss jordan
Metodo de gauss jordanMetodo de gauss jordan
Metodo de gauss jordanTensor
 
Sistemas de ecuaciones lineales. Métodos Gauss- Jordan y Gauss
Sistemas de ecuaciones lineales. Métodos Gauss- Jordan y GaussSistemas de ecuaciones lineales. Métodos Gauss- Jordan y Gauss
Sistemas de ecuaciones lineales. Métodos Gauss- Jordan y GaussCarlita Vaca
 
Metodo de Gauss y de Gauss-Jordan
Metodo de Gauss y de Gauss-JordanMetodo de Gauss y de Gauss-Jordan
Metodo de Gauss y de Gauss-JordanYoselyn caripa
 
Sistemas de ecuaciones homogéneas por el método de Gauss Jordan
Sistemas de ecuaciones homogéneas por el método de Gauss JordanSistemas de ecuaciones homogéneas por el método de Gauss Jordan
Sistemas de ecuaciones homogéneas por el método de Gauss JordanDaniel Orozco
 
Métodos de solución de un sistema de ecuaciones lineales
Métodos de solución  de un sistema de ecuaciones linealesMétodos de solución  de un sistema de ecuaciones lineales
Métodos de solución de un sistema de ecuaciones linealesAlberto Carranza Garcia
 
Solución de Sistemas de Ecuaciones lineales
Solución de Sistemas de Ecuaciones linealesSolución de Sistemas de Ecuaciones lineales
Solución de Sistemas de Ecuaciones linealesherostara
 
Sistemas de Ecuaciones Lineales y Matriz Inversa por Método de Gauss-Jordan. ...
Sistemas de Ecuaciones Lineales y Matriz Inversa por Método de Gauss-Jordan. ...Sistemas de Ecuaciones Lineales y Matriz Inversa por Método de Gauss-Jordan. ...
Sistemas de Ecuaciones Lineales y Matriz Inversa por Método de Gauss-Jordan. ...JAVIER SOLIS NOYOLA
 
Métodos directos para solución de sistemas ecuaciones lineales
Métodos directos para solución de sistemas ecuaciones linealesMétodos directos para solución de sistemas ecuaciones lineales
Métodos directos para solución de sistemas ecuaciones linealesCesar Mendoza
 
Matriz escalonada
Matriz escalonadaMatriz escalonada
Matriz escalonadaAlex Pareja
 
3.2.3 metodo gauss jordan
3.2.3 metodo gauss jordan3.2.3 metodo gauss jordan
3.2.3 metodo gauss jordanRoger Burgos
 
Solución de sistemas de ecuaciones lineales
Solución de sistemas de ecuaciones linealesSolución de sistemas de ecuaciones lineales
Solución de sistemas de ecuaciones linealesRebeca Oropeza Valdez
 
UNIDAD III. Solución de Sistemas de Ecuaciones Lineales
UNIDAD III. Solución de Sistemas de Ecuaciones LinealesUNIDAD III. Solución de Sistemas de Ecuaciones Lineales
UNIDAD III. Solución de Sistemas de Ecuaciones LinealesCarlos Santos
 
Ejercicios resueltos por cramer
Ejercicios resueltos por cramerEjercicios resueltos por cramer
Ejercicios resueltos por crameralgebra
 

La actualidad más candente (20)

Métodos de resolución metodo de gauss jordan
Métodos de resolución metodo de gauss jordanMétodos de resolución metodo de gauss jordan
Métodos de resolución metodo de gauss jordan
 
Metodo de eliminacion gaussiana
Metodo de eliminacion  gaussianaMetodo de eliminacion  gaussiana
Metodo de eliminacion gaussiana
 
Método de gauss jordan
Método de gauss jordanMétodo de gauss jordan
Método de gauss jordan
 
Método de gauss y gauss seidel
Método de gauss y gauss seidelMétodo de gauss y gauss seidel
Método de gauss y gauss seidel
 
Método de gauss
Método de gaussMétodo de gauss
Método de gauss
 
Metodo de gauss jordan
Metodo de gauss jordanMetodo de gauss jordan
Metodo de gauss jordan
 
Sistemas de ecuaciones lineales. Métodos Gauss- Jordan y Gauss
Sistemas de ecuaciones lineales. Métodos Gauss- Jordan y GaussSistemas de ecuaciones lineales. Métodos Gauss- Jordan y Gauss
Sistemas de ecuaciones lineales. Métodos Gauss- Jordan y Gauss
 
Metodo de Gauss y de Gauss-Jordan
Metodo de Gauss y de Gauss-JordanMetodo de Gauss y de Gauss-Jordan
Metodo de Gauss y de Gauss-Jordan
 
Sistemas de ecuaciones homogéneas por el método de Gauss Jordan
Sistemas de ecuaciones homogéneas por el método de Gauss JordanSistemas de ecuaciones homogéneas por el método de Gauss Jordan
Sistemas de ecuaciones homogéneas por el método de Gauss Jordan
 
Métodos de solución de un sistema de ecuaciones lineales
Métodos de solución  de un sistema de ecuaciones linealesMétodos de solución  de un sistema de ecuaciones lineales
Métodos de solución de un sistema de ecuaciones lineales
 
Solución de Sistemas de Ecuaciones lineales
Solución de Sistemas de Ecuaciones linealesSolución de Sistemas de Ecuaciones lineales
Solución de Sistemas de Ecuaciones lineales
 
Sistemas de Ecuaciones Lineales y Matriz Inversa por Método de Gauss-Jordan. ...
Sistemas de Ecuaciones Lineales y Matriz Inversa por Método de Gauss-Jordan. ...Sistemas de Ecuaciones Lineales y Matriz Inversa por Método de Gauss-Jordan. ...
Sistemas de Ecuaciones Lineales y Matriz Inversa por Método de Gauss-Jordan. ...
 
Métodos directos para solución de sistemas ecuaciones lineales
Métodos directos para solución de sistemas ecuaciones linealesMétodos directos para solución de sistemas ecuaciones lineales
Métodos directos para solución de sistemas ecuaciones lineales
 
Método de Gauss
Método de GaussMétodo de Gauss
Método de Gauss
 
Matriz escalonada
Matriz escalonadaMatriz escalonada
Matriz escalonada
 
3.2.3 metodo gauss jordan
3.2.3 metodo gauss jordan3.2.3 metodo gauss jordan
3.2.3 metodo gauss jordan
 
Metodo de gauss
Metodo de gaussMetodo de gauss
Metodo de gauss
 
Solución de sistemas de ecuaciones lineales
Solución de sistemas de ecuaciones linealesSolución de sistemas de ecuaciones lineales
Solución de sistemas de ecuaciones lineales
 
UNIDAD III. Solución de Sistemas de Ecuaciones Lineales
UNIDAD III. Solución de Sistemas de Ecuaciones LinealesUNIDAD III. Solución de Sistemas de Ecuaciones Lineales
UNIDAD III. Solución de Sistemas de Ecuaciones Lineales
 
Ejercicios resueltos por cramer
Ejercicios resueltos por cramerEjercicios resueltos por cramer
Ejercicios resueltos por cramer
 

Destacado

Ejercicios resueltos metodo gauss jordan
Ejercicios resueltos metodo gauss jordanEjercicios resueltos metodo gauss jordan
Ejercicios resueltos metodo gauss jordanalgebra
 
Solución de Sistemas Lineales Método de Gauss
Solución de Sistemas Lineales Método de GaussSolución de Sistemas Lineales Método de Gauss
Solución de Sistemas Lineales Método de Gaussinsutecvirtual
 
Ecuaciones de 3 incógnitas
Ecuaciones de 3 incógnitasEcuaciones de 3 incógnitas
Ecuaciones de 3 incógnitaskatia colin
 
Métodos de solución para ecuaciones 2x2
Métodos de solución  para ecuaciones 2x2Métodos de solución  para ecuaciones 2x2
Métodos de solución para ecuaciones 2x2jeidokodfs
 
Metodo Resolucion (Gauss, Eliminacion y Sustitucion)
Metodo Resolucion (Gauss, Eliminacion y Sustitucion)Metodo Resolucion (Gauss, Eliminacion y Sustitucion)
Metodo Resolucion (Gauss, Eliminacion y Sustitucion)briellamem
 
Recopilación Bibliografica
 Recopilación Bibliografica Recopilación Bibliografica
Recopilación BibliograficaIntrod2
 
Intersección línea plano
Intersección línea planoIntersección línea plano
Intersección línea planoBoris Cabrera
 
Solución de Sistemas de Ecuaciones por Eliminación
Solución de Sistemas de Ecuaciones por EliminaciónSolución de Sistemas de Ecuaciones por Eliminación
Solución de Sistemas de Ecuaciones por Eliminaciónoswaldoalvarado
 
Forma escalonada de una matriz
Forma escalonada de una matrizForma escalonada de una matriz
Forma escalonada de una matrizCarlita Vaca
 
Forma escalonada de una matriz
Forma escalonada de una matrizForma escalonada de una matriz
Forma escalonada de una matrizalgebra
 
Las-matrices-en-la-ingenieria-civil-utpl
 Las-matrices-en-la-ingenieria-civil-utpl Las-matrices-en-la-ingenieria-civil-utpl
Las-matrices-en-la-ingenieria-civil-utplArmad Rosales
 
Método de gauss seidel
Método de gauss seidelMétodo de gauss seidel
Método de gauss seidelmariacadena
 
Algebra - Sistemas Método de sustitución
Algebra - Sistemas Método de sustituciónAlgebra - Sistemas Método de sustitución
Algebra - Sistemas Método de sustituciónAna Robles
 

Destacado (20)

Ejercicios resueltos metodo gauss jordan
Ejercicios resueltos metodo gauss jordanEjercicios resueltos metodo gauss jordan
Ejercicios resueltos metodo gauss jordan
 
Gauss jordan
Gauss jordanGauss jordan
Gauss jordan
 
Solución de Sistemas Lineales Método de Gauss
Solución de Sistemas Lineales Método de GaussSolución de Sistemas Lineales Método de Gauss
Solución de Sistemas Lineales Método de Gauss
 
Ecuaciones de 3 incógnitas
Ecuaciones de 3 incógnitasEcuaciones de 3 incógnitas
Ecuaciones de 3 incógnitas
 
Métodos de solución para ecuaciones 2x2
Métodos de solución  para ecuaciones 2x2Métodos de solución  para ecuaciones 2x2
Métodos de solución para ecuaciones 2x2
 
Metodo Resolucion (Gauss, Eliminacion y Sustitucion)
Metodo Resolucion (Gauss, Eliminacion y Sustitucion)Metodo Resolucion (Gauss, Eliminacion y Sustitucion)
Metodo Resolucion (Gauss, Eliminacion y Sustitucion)
 
Recopilación Bibliografica
 Recopilación Bibliografica Recopilación Bibliografica
Recopilación Bibliografica
 
Intersección línea plano
Intersección línea planoIntersección línea plano
Intersección línea plano
 
Solución de Sistemas de Ecuaciones por Eliminación
Solución de Sistemas de Ecuaciones por EliminaciónSolución de Sistemas de Ecuaciones por Eliminación
Solución de Sistemas de Ecuaciones por Eliminación
 
Metodo de cramer
Metodo de cramerMetodo de cramer
Metodo de cramer
 
Metodos numericos act_3
Metodos numericos act_3Metodos numericos act_3
Metodos numericos act_3
 
Trabajo Range-Kutta
Trabajo Range-KuttaTrabajo Range-Kutta
Trabajo Range-Kutta
 
Forma escalonada de una matriz
Forma escalonada de una matrizForma escalonada de una matriz
Forma escalonada de una matriz
 
Arrabio
ArrabioArrabio
Arrabio
 
Grupo no.131
Grupo no.131Grupo no.131
Grupo no.131
 
Forma escalonada de una matriz
Forma escalonada de una matrizForma escalonada de una matriz
Forma escalonada de una matriz
 
Las-matrices-en-la-ingenieria-civil-utpl
 Las-matrices-en-la-ingenieria-civil-utpl Las-matrices-en-la-ingenieria-civil-utpl
Las-matrices-en-la-ingenieria-civil-utpl
 
ALTO HORNO
ALTO HORNOALTO HORNO
ALTO HORNO
 
Método de gauss seidel
Método de gauss seidelMétodo de gauss seidel
Método de gauss seidel
 
Algebra - Sistemas Método de sustitución
Algebra - Sistemas Método de sustituciónAlgebra - Sistemas Método de sustitución
Algebra - Sistemas Método de sustitución
 

Similar a Métodos de eliminación gaussiana

Metodos de eliminacion gaussiana
Metodos de eliminacion gaussianaMetodos de eliminacion gaussiana
Metodos de eliminacion gaussianawilfredguedez
 
ANALISIS NUMERICO UNIDAD III
ANALISIS NUMERICO UNIDAD IIIANALISIS NUMERICO UNIDAD III
ANALISIS NUMERICO UNIDAD IIIivangobbo94
 
Análisis numérico (josé monsalve). (autoguardado)
Análisis numérico (josé monsalve). (autoguardado)Análisis numérico (josé monsalve). (autoguardado)
Análisis numérico (josé monsalve). (autoguardado)José Monsalve
 
Sistemas de Ecuaciones Lineales.
Sistemas de Ecuaciones Lineales.Sistemas de Ecuaciones Lineales.
Sistemas de Ecuaciones Lineales.christopheradan50
 
Solución de sistemas de ecuaciones lineales
Solución de sistemas de ecuaciones linealesSolución de sistemas de ecuaciones lineales
Solución de sistemas de ecuaciones linealesNiel Velasquez
 
Ecuaciones lineales
Ecuaciones linealesEcuaciones lineales
Ecuaciones linealesJesusS14
 
Analisis numerico
Analisis numericoAnalisis numerico
Analisis numericocesarjmm1
 
Metodos de eliminacion
Metodos de eliminacionMetodos de eliminacion
Metodos de eliminacionk4ndo
 
SISTEMAS DE ECUACIONES LINEALES
SISTEMAS  DE ECUACIONES LINEALESSISTEMAS  DE ECUACIONES LINEALES
SISTEMAS DE ECUACIONES LINEALESjacqueline llamuca
 
Sistema de ecuaciones lineales
Sistema de ecuaciones linealesSistema de ecuaciones lineales
Sistema de ecuaciones linealesyeliadan_16
 
Mapa mental analisis numerico
Mapa mental analisis numericoMapa mental analisis numerico
Mapa mental analisis numericoSergio Alarcón
 
Laura rodríguez
Laura rodríguezLaura rodríguez
Laura rodríguezLauramrb12
 
Analisis Numerico... Jose Manzanilla
Analisis Numerico... Jose Manzanilla Analisis Numerico... Jose Manzanilla
Analisis Numerico... Jose Manzanilla jgmc251
 

Similar a Métodos de eliminación gaussiana (20)

Metodos de eliminacion gaussiana
Metodos de eliminacion gaussianaMetodos de eliminacion gaussiana
Metodos de eliminacion gaussiana
 
ANALISIS NUMERICO UNIDAD III
ANALISIS NUMERICO UNIDAD IIIANALISIS NUMERICO UNIDAD III
ANALISIS NUMERICO UNIDAD III
 
Análisis numérico (josé monsalve). (autoguardado)
Análisis numérico (josé monsalve). (autoguardado)Análisis numérico (josé monsalve). (autoguardado)
Análisis numérico (josé monsalve). (autoguardado)
 
Sistemas de Ecuaciones Lineales.
Sistemas de Ecuaciones Lineales.Sistemas de Ecuaciones Lineales.
Sistemas de Ecuaciones Lineales.
 
Solución de sistemas de ecuaciones lineales
Solución de sistemas de ecuaciones linealesSolución de sistemas de ecuaciones lineales
Solución de sistemas de ecuaciones lineales
 
Froilan Ramos Métodos de Eliminación Gaussiana
Froilan Ramos Métodos de Eliminación GaussianaFroilan Ramos Métodos de Eliminación Gaussiana
Froilan Ramos Métodos de Eliminación Gaussiana
 
Pivote y variada
Pivote y variadaPivote y variada
Pivote y variada
 
Ecuaciones lineales
Ecuaciones linealesEcuaciones lineales
Ecuaciones lineales
 
Clase 8 sistema de ecuaciones
Clase 8 sistema de ecuacionesClase 8 sistema de ecuaciones
Clase 8 sistema de ecuaciones
 
Analisis numerico
Analisis numericoAnalisis numerico
Analisis numerico
 
Asignacion 2
Asignacion 2Asignacion 2
Asignacion 2
 
Ecuaciones de matrices (INFORME)
Ecuaciones de matrices (INFORME)Ecuaciones de matrices (INFORME)
Ecuaciones de matrices (INFORME)
 
Metodos de eliminacion
Metodos de eliminacionMetodos de eliminacion
Metodos de eliminacion
 
SISTEMAS DE ECUACIONES LINEALES
SISTEMAS  DE ECUACIONES LINEALESSISTEMAS  DE ECUACIONES LINEALES
SISTEMAS DE ECUACIONES LINEALES
 
Sistema de ecuaciones lineales
Sistema de ecuaciones linealesSistema de ecuaciones lineales
Sistema de ecuaciones lineales
 
Mapa mental analisis numerico
Mapa mental analisis numericoMapa mental analisis numerico
Mapa mental analisis numerico
 
Laura rodríguez
Laura rodríguezLaura rodríguez
Laura rodríguez
 
Sistemas de EDOs
Sistemas de EDOsSistemas de EDOs
Sistemas de EDOs
 
Analisis Numerico... Jose Manzanilla
Analisis Numerico... Jose Manzanilla Analisis Numerico... Jose Manzanilla
Analisis Numerico... Jose Manzanilla
 
Resumen
ResumenResumen
Resumen
 

Último

PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADO
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADOPLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADO
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADOMARIBEL DIAZ
 
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOTUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOweislaco
 
libro para colorear de Peppa pig, ideal para educación inicial
libro para colorear de Peppa pig, ideal para educación iniciallibro para colorear de Peppa pig, ideal para educación inicial
libro para colorear de Peppa pig, ideal para educación inicialLorenaSanchez350426
 
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docxEJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docxFabianValenciaJabo
 
FICHA PL PACO YUNQUE.docx PRIMARIA CUARTO GRADO
FICHA  PL PACO YUNQUE.docx PRIMARIA CUARTO GRADOFICHA  PL PACO YUNQUE.docx PRIMARIA CUARTO GRADO
FICHA PL PACO YUNQUE.docx PRIMARIA CUARTO GRADOMARIBEL DIAZ
 
Uses of simple past and time expressions
Uses of simple past and time expressionsUses of simple past and time expressions
Uses of simple past and time expressionsConsueloSantana3
 
MODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docxMODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docxRAMON EUSTAQUIO CARO BAYONA
 
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdfFichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdfssuser50d1252
 
Presentacion minimalista aesthetic simple beige_20240415_224856_0000.pdf
Presentacion minimalista aesthetic simple beige_20240415_224856_0000.pdfPresentacion minimalista aesthetic simple beige_20240415_224856_0000.pdf
Presentacion minimalista aesthetic simple beige_20240415_224856_0000.pdfSarayLuciaSnchezFigu
 
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO YESSENIA 933623393 NUEV...
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO  YESSENIA 933623393 NUEV...IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO  YESSENIA 933623393 NUEV...
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO YESSENIA 933623393 NUEV...YobanaZevallosSantil1
 
Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024Rosabel UA
 
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxc3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxMartín Ramírez
 
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfFichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfssuser50d1252
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Angélica Soledad Vega Ramírez
 
sesión de aprendizaje 4 E1 Exposición oral.pdf
sesión de aprendizaje 4 E1 Exposición oral.pdfsesión de aprendizaje 4 E1 Exposición oral.pdf
sesión de aprendizaje 4 E1 Exposición oral.pdfpatriciavsquezbecerr
 
4º SOY LECTOR PART2- MD EDUCATIVO.p df PARTE
4º SOY LECTOR PART2- MD  EDUCATIVO.p df PARTE4º SOY LECTOR PART2- MD  EDUCATIVO.p df PARTE
4º SOY LECTOR PART2- MD EDUCATIVO.p df PARTESaraNolasco4
 
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxYeseniaRivera50
 

Último (20)

La luz brilla en la oscuridad. Necesitamos luz
La luz brilla en la oscuridad. Necesitamos luzLa luz brilla en la oscuridad. Necesitamos luz
La luz brilla en la oscuridad. Necesitamos luz
 
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADO
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADOPLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADO
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADO
 
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOTUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
 
recursos naturales america cuarto basico
recursos naturales america cuarto basicorecursos naturales america cuarto basico
recursos naturales america cuarto basico
 
libro para colorear de Peppa pig, ideal para educación inicial
libro para colorear de Peppa pig, ideal para educación iniciallibro para colorear de Peppa pig, ideal para educación inicial
libro para colorear de Peppa pig, ideal para educación inicial
 
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docxEJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
 
FICHA PL PACO YUNQUE.docx PRIMARIA CUARTO GRADO
FICHA  PL PACO YUNQUE.docx PRIMARIA CUARTO GRADOFICHA  PL PACO YUNQUE.docx PRIMARIA CUARTO GRADO
FICHA PL PACO YUNQUE.docx PRIMARIA CUARTO GRADO
 
Uses of simple past and time expressions
Uses of simple past and time expressionsUses of simple past and time expressions
Uses of simple past and time expressions
 
MODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docxMODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docx
 
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdfFichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
 
Presentacion minimalista aesthetic simple beige_20240415_224856_0000.pdf
Presentacion minimalista aesthetic simple beige_20240415_224856_0000.pdfPresentacion minimalista aesthetic simple beige_20240415_224856_0000.pdf
Presentacion minimalista aesthetic simple beige_20240415_224856_0000.pdf
 
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO YESSENIA 933623393 NUEV...
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO  YESSENIA 933623393 NUEV...IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO  YESSENIA 933623393 NUEV...
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO YESSENIA 933623393 NUEV...
 
Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024
 
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxc3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
 
VISITA À PROTEÇÃO CIVIL _
VISITA À PROTEÇÃO CIVIL                  _VISITA À PROTEÇÃO CIVIL                  _
VISITA À PROTEÇÃO CIVIL _
 
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfFichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...
 
sesión de aprendizaje 4 E1 Exposición oral.pdf
sesión de aprendizaje 4 E1 Exposición oral.pdfsesión de aprendizaje 4 E1 Exposición oral.pdf
sesión de aprendizaje 4 E1 Exposición oral.pdf
 
4º SOY LECTOR PART2- MD EDUCATIVO.p df PARTE
4º SOY LECTOR PART2- MD  EDUCATIVO.p df PARTE4º SOY LECTOR PART2- MD  EDUCATIVO.p df PARTE
4º SOY LECTOR PART2- MD EDUCATIVO.p df PARTE
 
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
 

Métodos de eliminación gaussiana

  • 1. UNIVERSIDAD FERMIN TORO VICE-RECTORADO ACADEMICO FACULTAD DE INGENIERIA DIRECCIÓN SAIA RESUMEN UNIDAD III Alumno: Wilmer José León Alejos C.I 8.513.677.
  • 2. Métodos De Eliminación Gaussiana Una vez analizado los temas de la unidad III podemos indicar que el proceso en el método de Eliminación de Gaussisana o de Gauss, radica en efectuar transformaciones elementales en el sistema inicial (intercambio de filas, intercambio de columnas, multiplicación de filas o columnas por constantes, operaciones con filas o columnas, ), destinadas a transformarlo en un sistema triangular superior, que resolveremos por remonte. En forma general este método propone la eliminación progresiva de variables en el sistema de ecuaciones, hasta tener sólo una ecuación con una incógnita. Una vez resuelta esta, se procede por sustitución regresiva hasta obtener los valores de todas las variables. Descomposición LU El método de Descomposición LU se basa en demostrar que una matriz A se puede factorizar como el producto de una matriz triangular inferior L con una matriz triangular superior U, donde en el paso de eliminación sólo se involucran operaciones sobre los coeficientes de la matriz, permitiendo así evaluar los términos independientes bi de manera eficiente. La implementación del algoritmo de la Descomposición LU tiene sus variantes en cuanto a los valores iniciales de la diagonal que tomen las matrices L y U, es decir si los valores de la diagonal de la matriz L tiene números 1, formalmente esto se refiere a la Descomposición de Doolitle. Pero si los valores de la diagonal de la matriz U tiene números 1, formalmente esto se refiere a la Descomposición de Crout
  • 3. Factorización De Cholesky Una matriz simétrica es aquella donde Aij = Aji para toda i y j, En otras palabras, [A] =[A] T. Tales sistemas ocurren comúnmente en problemas de ambos contextos: el matemático y el de ingeniería. Ellos ofrecen ventajas computacionales ya que sólo se necesita la mitad de almacenamiento y, en la mayoría de los casos, sólo se requiere la mitad del tiempo de cálculo para su solución. Al contrario de la Descomposición LU, no requiere de pivoteo. El método de Factorización de Cholesky se basa en demostrar que si una matriz A es simétrica y definida positiva en lugar de factorizarse como LU, puede ser factorizada como el producto de una matriz triangular inferior y la traspuesta de la matriz triangular inferior, es decir los factores triangula es resultantes son la traspuesta de cada uno. Factorización de QR, Householder Anteriormente analizamos la factorización LU de una matriz el cual conduce aun método muy eficiente para resolver un sistema lineal. Otro método de factorización de una A, llamada factorización QR de A. Esta factorización se usa ampliamente en los programas de computadora para determinar valores propios de una matriz, para resolver sistemas lineales y para determinar aproximaciones por mínimos cuadrados SISTEMAS DE ECUACIONES LINEALES La solución de los sistemas de ecuaciones lineales encuentra una amplia aplicación en la ciencia y la tecnología. En particular, se puede afirmar, que en
  • 4. cualquier rama de la Ingeniería existe al menos una aplicación que requiera del planteamiento y solución de tales sistemas. MÉTODO DE ITERATIVO DE GAUSS – SEIDEL. Los valores que se van obtenido desde el inicio de la sustitución, se van sustituyen a las siguiente ecuaciones (iteraciones). Ejemplo: 10X1 + 1X2 = 11 2X1 + 10X2 = 12 Despeje de X1 en la ecuación 1 Despeje de X1 en la ecuación 2 1 Iteración 2 Iteración 3 Iteración X1 = 11 - 1 X2 10 X2 = 12 - 2 X2 10 X2 = 0 X1 = 11 - 1 (0) = 1.1 10 X2 = 12 - 2 (1.1) = .98 10 X1 = 11 - 1 (.98) = 1.002 10 X2 = 12 - 2 (1.002) = .9996 10 X1 = 11 - 1 (.9996) = 1.00002 10 X2 = 12 - 2 (1.00002) = .999992 10
  • 5. Sustitución de valores en la ecuación 1 y 2. 10X1 + 1X2 = 11 10(1)+1 (1) = 11 11 = 11 Error aproximado a = 1.00004-1.002 * 100 = -1.959 = .1959 % 1.00004 SOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES. A) SISTEMAS CON SOLUCION UNICA 1) Resolver el siguiente sistema de ecuaciones lineales mediante el método de Gauss-Jordán. Solución. a) Escribimos la matriz aumentada del sistema. Debemos llevar a dicha matriz a su forma escalonada reducida mediante operaciones elementales en los renglones de la matriz, para ésto, escribiremos la matriz y a continuación una flecha. Encima de esta flecha indicaremos la(s) operación(es) que estamos efectuando para que el lector pueda seguir el desarrollo. Notación para las operaciones elementales en renglones Nuevo renglón i de la matriz aumentada. 2X1 + 10X2 = 12 2(1) +10(1) = 12 12 = 12
  • 6. Intercambio del renglón i con el renglón j. Nuevo renglón j de la matriz aumentada. b) Desarrollo para obtener la forma escalonada reducida. 2) Resuelva el siguiente sistema de ecuaciones lineales Solución. Escribiendo la matriz aumentada del sistema y reduciendo de acuerdo a la operación indicada tenemos: B) SISTEMAS CON INFINIDAD DE SOLUCIONES 1) Obtener la solución del siguiente sistema de ecuaciones lineales. Solución. La última matriz está en su forma escalonada reducida, ya no se puede reducir más, de donde obtenemos: Despejando x, y Luego x, y dependen de z, si z = t, t •¸ R, tenemos Es decir, el sistema de ecuaciones tiene una infinidad de soluciones ya que para cada valor de t habrá un valor para x, y, z. Por ejemplo: Si T=0 entonces, es una solución para el sistema de ecuaciones. Si T=1 entonces es otra solución para el sistema de ecuaciones.
  • 7. Si T=4 entonces también es solución para el sistema de ecuaciones. Así una vez más, remarcamos, el sistema tiene una infinidad de soluciones. 2) Resolver el sistema de ecuaciones: Solución. Si w = t, tenemos: Hay infinidad de soluciones. C) SISTEMAS SIN SOLUCION 1) Resolver el siguiente sistema de ecuaciones. Solución. No hay necesidad de seguir reduciendo, del segundo renglón se tiene que da la igualdad (¡contradicción!), por lo tanto, el sistema no tiene solución. 2) Resolver el siguiente sistema de ecuaciones. Solución. Del tercer renglón se tiene que da la igualdad 0=3, luego el sistema no tiene solución. D) SISTEMAS HOMOGENEOS Un sistema de ecuaciones lineales se dice HOMOGENEO si cada una de las ecuaciones está igualada a cero es decir Los sistemas homogéneos SIEMPRE tienen solución ya que
  • 8. Es solución del sistema, ésta solución es llamada la solución trivial, así un sistema homogéneo de ecuaciones lineales tiene solución única o tiene una infinidad de soluciones. 1) Resolver el siguiente sistema de ecuaciones Solución. Luego x=y=z=0, el sistema tiene solución única, la solución trivial. Algo más para agregar Hay dos temas adicionales que se deben de mencionar: La interpolación con los datos igualmente espaciados y la Extrapolación. Ya que los métodos de Newton y de LaGrange son compatibles con los datos espaciados en forma arbitraria, se debe de preguntar por qué se aborda el caso de los datos igualmente espaciados. Antes del advenimiento de las computadoras digitales, estos métodos tuvieron gran utilidad en la interpolación de tablas con datos igualmente espaciados. De hecho se desarrolla un esquema conocido como tabla de diferencias divididas para facilitar la implementación de estas técnicas. Sin embargo, y debido a que las fórmulas son un subconjunto de los esquemas de Newton y LaGrange compatibles con la computadora y ya que se dispone de muchas funciones tabulares como rutinas de biblioteca, la necesidad de puntos equidistantes se fue perdiendo. En particular, se puede emplear en la derivación de fórmulas de integración numérica que emplean comúnmente datos equidistantes. La extrapolación es el proceso de calcular un valor de f(X) que cae fuera del rango de los puntos base conocidos X0, X1,..., Xn. La interpolación más exacta usualmente se obtiene cuando las incógnitas caen cerca de los puntos base.
  • 9. Obviamente, esto no sucede cuando las incógnitas caen fuera del rango, y por lo tanto, el error en la extrapolación puede ser muy grande. La naturaleza abierta en los extremos de la extrapolación representa un paso en la incógnita porque el proceso extiende la curva más allá de la región conocida. Como tal, la curva verdadera diverge fácilmente de la predicción. Por lo tanto, se debe tener cuidado extremo en casos donde se deba extrapolar. MÉTODO ITERATIVO DE JACOBI Este método consiste en despejar las variables X1, X2, X3 … X4 por cada reglón según el numero de ecuaciones dadas, después se le asigna un valor de cero, y se sustituye en la ecuación del despeje para encontrar el valor de la primera iteración y posteriormente, estos valores se sustituyen para encontrar el valor de la segunda ecuación, y así sucesivamente hasta encontrar el valor. Ejemplo: 10X1 + 1X2 = 11 2X1 + 10X2 = 12 Despeje de X1 en la ecuación 1 Despeje de X1 en la ecuación 2 X1 = 11 - 1 X2 10 X2 = 12 - 2 X2 10 El valor de las incógnitas Convergente: Se a próxima al valor real. Divergente: Se aleja del valor real.
  • 10. 1 Iteración 2 Iteración 3 Iteración Sustitución de valores en la ecuación 1 y 2. 10X1 + 1X2 = 11 10(1)+1 (1) = 11 11 = 11 COMPARACIONES: MÉTODO DE JACOBI Y GAUSS-SEIDEL: (CON VISUAL BASIC). Son dos métodos numéricos, que nos permite hallar soluciones a sistemas con el mismo número de ecuaciones que incógnitas. X 1 = X2 = 0 X1 = 11 - 1 (0) = 11/10 10 X2 = 12 - 2 (0) = 12/10 10 X1 = 11 - 1 (12/2) = .98 10 X2 = 12 - 2 (11/10) = .98 10 X1 = 11 - 1 (.98) = 1.002 10 X2 = 12 - 2 (.98) = 1.004 10 2X1 + 10X2 = 12 2(1) +10(1) = 12 12 = 12
  • 11. En los dos métodos se realiza el siguiente proceso, con una pequeña variación en Gauss-Seidel Tenemos estas ecuaciones: 5X-2Y+Z=3 -X-7Y+3Z=-2 2X-Y+8Z=1 1. Despejar cada incógnita en función de las demás. X= (3+2Y-Z)/5 Y= (X-3Z-2)/-7 Z= (1-2X+Y)/8 2. Dar valores iníciales a las incógnitas X1= 0 Y1= 0 Z1= 0 Por Jacobi: Reemplazar en cada ecuación los valores iníciales, esto nos dará nuevos valores que serán usados en la próxima iteración X= (3+2*0-0)/5 = 0,60 Y= (0-3*0-2)/-7 = 0,28 Z= (1-2X+Y)/8 = 0,12
  • 12. Por Gauss-Seidel Reemplazar en cada ecuación los valores más próximos hallados. X= (3+2*0-0)/5 = 0,6 Y= (0,6-3*0-2)/-7 = 0,2 Z= (1-2*0,6+0,2)/ 8=0 Se realiza cuantas iteraciones se desee, usando como valores iníciales los nuevos valores hallados. Se puede detener la ejecución del algoritmo al calcular el error del cálculo, el cual lo podemos hallar con esta fórmula: sqr( (x1-x0)^2 + (y1- y0)^2 +(z1-z0)^2 )
  • 13. Con jacobi Con Gauss-Seidel La principal diferencia, es que como el método de gauss_seidel utiliza los valores inmediatamente encontrados, entonces hace que todo el proceso sea más rápido, y como consecuencia hace de éste, un método más eficaz.
  • 14. Las fórmulas usadas en la hoja de Excel para el método de Jacobi son = (3+2*D5-E5)/5 =(C5-3*E5-2)/-7 =(1-2*C5+D5)/8 =(RAIZ((C6-C5)^2+ (D6-D5)^2 + (E6-E5)^2) Que corresponde a la variable X,Y,Z y Error respectivamente. Y para el método de Gauss-Seidel: = (3+2*J5-K5)/5 = (I6-3*K5-2)/-7 = (1-2*I6+J6)/8 = (RAIZ((I6-I5)^2+ (J6-J5)^2 + (K6-K5)^2)