SlideShare una empresa de Scribd logo
1 de 9
Descargar para leer sin conexión
01
1 (UF Vale do Sapucaí-MG) Um dentista precisava obter
uma solução aquosa de fluoreto de sódio (flúor) na con-
centração de 20 g/L para ser usada por um paciente no
combate e na prevenção da cárie. Ele dispunha no consul-
tório de 250 mL de uma solução aquosa a 40 g/L.
Para obter a solução desejada, ele deveria:
a) dobrar o volume da solução disponível em seu consul-
tório com água destilada.
b) adicionar à sua solução somente meio litro de água
destilada.
c) tomar cem mililitros da solução disponível e reduzir o
volume de água à metade pela evaporação.
d) tomar cinqüenta mililitros da solução disponível e adi-
cionar mais duzentos e cinqüenta mililitros de água
destilada.
e) usar diretamente no paciente 125 mL da solução já
disponível.
C = 20 g/L
Cinicial · Vinicial = Cfinal · Vfinal
20 · Vinicial = 40 · 250
Vinicial =
40 · 250
= 500 mL
20
É necessário adicionar 250 mL de água destilada, dobrando seu volume,
para obter uma solução de concentração 20 g/L.
a) 36 mol/L
b) 18 mol/L
c) 0,036 mol/L
d) 0,36 mol/L
e) 0,018 mol/L
X
X
X
2 (FEP-PA) O volume de solvente (água) que se deve
adicionar a 500 mL de uma solução aquosa 2 mol/L de
ácido sulfúrico para que esta solução se transforme em
uma solução 0,5 N é igual a:
a) 4 000 mL
b) 3 500 mL
c) 3 000 mL
d) 2 500 mL
e) 2 000 mL
3 (Fesp-PE) Adiciona-se 1,0 mL de uma solução con-
centrada de ácido sulfúrico, H2SO4, 36 N a um balão
volumétrico contendo exatamente 1 000 mL de água des-
tilada. A concentração em mol/L da solução resultante é:
(Admita que não há variação de volume.)
Dados: H = 1 u; S = 32 u e O = 16 u.
4 (EEM-SP) Misturaram-se 100,0 mL de uma solução
aquosa de uma substância A, de concentração igual a
10,0 g/L, com 100,0 mL de outra solução aquosa da mes-
ma substância A, mas de concentração igual a 2,0 g/L.
A concentração da solução resultante é igual a 6,5 g/L.
Sabendo-se que não houve variação de temperatura, cal-
cule, com três algarismos significativos, a variação de vo-
lume ocorrida na mistura das duas soluções.
V’ · C’ + V’’ · C’’ = Vfinal · Cfinal
Vfinal =
100 · 10,0 + 100 · 2,0
r 184,6 mL
6,5
Vinicial = 200 mL
Variação de volume = 200 – 184,6 r 15,4 mL
5 (Unicamp-SP) Um dos grandes problemas das navega-
ções do século XVI referia-se à limitação de água potável
que era possível transportar numa embarcação.
Imagine uma situação de emergência em que restaram
apenas 300 litros (L) de água potável (considere-a comple-
tamente isenta de eletrólitos).
A água do mar não é apropriada para o consumo devido à
grande concentração de NaCL (25 g/L), porém o soro fisio-
lógico (10 g de NaCL/L) é.
Se os navegantes tivessem conhecimento da composição
do soro fisiológico, poderiam usar a água potável para di-
luir água do mar de modo a obter soro e assim teriam um
volume maior de líquido para beber.
Para H2SO4 o k = 2.
N = k · M V M =
N
k
M =
0,5
V M = 0,25 mol/L
2
Minicial · Vinicial = Mfinal · Vfinal
2 · 500 = 0,25 · Vfinal
Vfinal =
2 · 500
= 4000 mL
0,25
Volume acrescentado = 4000 – 500 = 3500 mL
Para H2SO4 o k = 2.
N = k · M V M =
N
k
M =
36
V M = 18 mol/L
2
Minicial · Vinicial = Mfinal · Vfinal
18 · 1 = Mfinal · 1000
Mfinal =
18· 1
= 0,018 mol/L
1000
Misturas// sem RRRRRreação
Mistura e Soluções Ideais - Série Concursos Públicos
Curso Prático & Objetivo
a) Que volume total de soro seria obtido com a diluição
se todos os 300 litros de água potável fossem usados
para este fim?
b) Considerando-se a presença de 50 pessoas na embar-
cação e admitindo-se uma distribuição equitativa do
soro, quantos gramas de NaCL teriam sido ingeridos
por cada pessoa?
c) Uma maneira que os navegadores usavam para obter
água potável adicional era recolher água de chuva.
Considerando-se que a água da chuva é originária, em
grande parte, da água do mar, como se explica que ela
possa ser usada como água potável?
a) Cágua do mar = 25 g/L
Csoro = 10 g/L
Vinicial · Cinicial = Vfinal · Cfinal
1 · 25 = Vfinal · 10
Vfinal = 2,5 L
Volume acrescentado = 2,5 – 1,0 = 1,5 L de água potável a cada litro de
água do mar.
1,5 L de água potável @@@ 1 L de água do mar
300 L de água potável @@@ x
x =
300 · 1
V x = 200 L
1,5
Volume de soro = 300 + 200
Volume de soro = 500 L
b) 10 g de NaCL @@@@ 1 L de soro
y @@@@@@@@@ 500 L de soro
y =
500 · 10
V y = 5000 g de NaCL
1
5000
= 100 g de NaCL/pessoa
50
c) A água evapora enquanto o sal continua dissolvido no mar.
8 (UFPI) Quais das afirmações a respeito de soluções
são corretas?
I. Quando diluímos uma solução, estamos aumentando
o número de mol do soluto.
II. Quando diluímos uma solução, estamos aumentando
o número de mol do solvente.
III. Na evaporação de uma solução aquosa de um com-
posto iônico, o número de mol do soluto não se al-
tera.
IV. Quando misturamos duas soluções de mesmo soluto,
porém com molaridades diferentes, a solução final
apresenta uma molaridade com valor intermediário
às molaridades iniciais.
V. Ao misturarmos soluções de solutos diferentes, sem
que ocorra reação, na verdade o que ocorre é uma
simples diluição de cada um dos solutos.
a) Todas.
b) Nenhuma.
c) Somente I, III e IV.
d) Somente II, III, IV e V.
e) Somente II, III e IV.
X
X
X
6 (Unesp-SP) Na preparação de 500 mL de uma solução
aquosa de H2SO4 de concentração 3 mol/L, a partir de uma
solução de concentração 15 mol/L do ácido, deve-se diluir
o seguinte volume da solução concentrada:
a) 10 mL
b) 100 mL
c) 150 mL
d) 300 mL
e) 450 mL
7 (Uni-Rio-RJ) Para efetuar o tratamento de limpeza de
uma piscina de 10 000 L, o operador de manutenção nela
despejou 5 L de solução 1 mol/L de sulfato de alumínio,
AL2(SO4)3. Após agitar bem a solução, a concentração do
sulfato de alumínio, em g/L, na piscina é de:
9 (UFCE) No recipiente A, temos 50 mL de uma solu-
ção 1 mol/L de NaCL.
No recipiente B, há 300 mL de uma solução que possui
30 g de NaCL por litro de solução.
Juntou-se o conteúdo dos recipientes A e B e o volume
foi completado com água até formar 1 litro de solução.
Determine a concentração final da solução obtida.
Massa molar: NaCL = 58,5 g/mol.
Mistura de soluções de mesmo soluto
MNaCL = 58,5 g/mol
M =
30
V M r 0,5 mol/L
58,5
Minicial · Vinicial + M2 · V2 = M3 · V3
1 · 50 + 0,5 · 300 = M3 · 350 V M3 r 0,57 mol/L
Diluição de soluções
Minicial · Vinicial = Mfinal · Vfinal
0,57 · 350 = Mfinal · 1000 V Mfinal r 0,20 mol/L
Massas atômicas: O = 16 u; AL = 27 u e S = 32 u.
a) 0,171
b) 1,46 · 10
–6
c) 5 · 10
–4
d) 1710
e) 684 · 10
3
Minicial · Vinicial = Mfinal · Vfinal
3 · 500 = 15 · Vfinal
Vfinal =
3 · 500
= 100 mL
15
Minicial · Vinicial = Mfinal · Vfinal
1 · 5 = Mfinal · 10000
Mfinal = 5 · 10
–4
mol/L
MAL2(SO4)3 = 342 g/mol
342 g @@@@@ 1 mol
x @@@@@@@ 5 · 10
–4
mol
x =
5 · 10
–4
· 342
= 0,171 g/L
1
I. Falsa. A quantidade de matéria do soluto não se altera.
Mistura e Soluções Ideais - Série Concursos Públicos
Curso Prático & Objetivo
02
11 (UFMG) Considere uma solução contendo íons
sódio e íons cobre II, cada um deles na concentração
0,10 mol/L. A concentração dos íons negativos pode ser
qualquer uma das seguintes, exceto:
a) 0,15 mol/L de íons nitrato.
b) 0,15 mol/L de íons sulfato.
c) 0,30 mol/L de íons cloreto.
d) 0,30 mol/L de íons nitrito.
e) 0,30 mol/L de íons acetato.
X
X
X
X
X
12 (Cesgranrio-RJ) Uma solução 0,05 mol/L de
glicose, contida em um béquer, perde água por evapora-
ção até restar um volume de 100 mL, passando a concen-
tração para 0,5 mol/L. O volume de água evaporada é,
aproximadamente:
a) 50 mL
b) 100 mL
c) 500 mL
d) 900 mL
e) 1 000 mL
13 (UFES) 1 L de uma solução 0,5 mol/L de CaCL2 é
adicionado a 4 L de solução 0,1 mol/L de NaCL. As con-
centrações em quantidade de matéria dos íons Ca
2+
, Na
1+
e CL
1–
na mistura são, respectivamente:
a) 0,16; 0,04 e 0,25
b) 0,10; 0,08 e 0,28
c) 0,04; 0,08 e 0,25
d) 0,20; 0,25 e 0,16
e) 0,10; 0,08 e 0,04
14 (Fesp-PE) O volume de uma solução de hidróxido
de sódio, NaOH, 1,5 mol/L que deve ser misturado a
300 mL de uma solução 2 mol/L da mesma base, a fim de
torná-la solução 1,8 mol/L, é:
a) 200 mL
b) 20 mL
c) 2 000 mL
d) 400 mL
e) 350 mL
15 (EEM-SP) Considere uma solução 0,4 mol/L de um
ácido que se deseja transformar em solução 0,5 mol/L pela
mistura com uma solução 2 mol/L do mesmo ácido.
Calcule o volume de solução 2 mol/L a ser utilizado para
se obter 200 mL de solução 0,5 mol/L.
M1 · V1 + M2 · V2 = Mfinal · Vfinal
I) 0,4 · V1 + 2,0 · V2 = 0,5 · 200 e II) V1 + V2 = 200 V V1 = 200 – V2
Substituindo II em I, temos:
0,4 · (200 – V2) + 2,0 · V2 = 0,5 · 200
80 – 0,4 V2 + 2,0 · V2 = 100
1,6 · V2 = 20
V2 = 12,5 mL
10 (Fameca-SP) Um volume igual a 250 mL de solu-
ção aquosa de cloreto de sódio (solução 1) é misturado a
250 mL de solução aquosa de cloreto de sódio (solução 2)
de densidade 1,40 g · mL
–1
e título igual a 20% em massa.
A concentração final de cloreto de sódio é igual a
0,8 g · mL
–1
. Calcule a massa de cloreto de sódio existente
na solução 1.
a) 330 g
b) 130 g
c) 50 g
d) 100 g
e) 120 g
C2 = d · T = 1,4 · 0,2 = 0,28 g/mL
Mistura de soluções
V1 · C1 + V2 · C2 = Vfinal · Cfinal
250 · C1 + 250 · 0,28 = 500 · 0,8 V C1 = 1,32 g/mL
1,32 g @@@@@ 1 mL
x @@@@@@@ 250 mL
x =
250 · 1,32
V x = 330 g
1
Como toda solução é eletricamente neutra, seria necessário 0,30 mol/L de
íons nitrato, NO3(
1–
aq), para cancelar a carga positiva dos íons Na(a
1+
q) e Cu(a
2+
q).
Minicial · Vinicial = Mfinal · Vfinal
0,05 · Vinicial = 0,5 · 100
Vinicial =
0,5 · 100
= 1000 mL
0,05
Água evaporada = 1000 – 100 = 900 mL
Em 1 L: 1 CaCL # 1 Ca
2+
+ 2 CL
1–
0,5 mol/L 0,5 mol/L 2 · 0,5 mol/L
Em 4 L: 1 NaCL # 1 Na
1+
+ 1 CL
1–
0,1 mol/L 0,1 mol/L 0,1 mol/L
Íon cálcio:
Minicial · Vinicial = Mfinal · Vfinal
0,5 · 1 = Mfinal · 5 V Mfinal = 0,1 mol/L
Íon sódio:
Minicial · Vinicial = Mfinal · Vfinal
0,1 · 4 = Mfinal · 5 V Mfinal = 0,08 mol/L
Íon cloreto:
M1 · V1 + M2 · V2 = M3 · V3
2 · 0,5 · 1 + 0,1 · 4 = M3 · 5 V M3 = 0,28 mol/L
V = ? + Vinicial = 300 mL V Vfinal = 300 + V
M = 1,5 mol/L Minicial = 2,0 mol/L Mfinal = 1,8 mol/L
M · V + Minicial · Vinicial = Mfinal · Vfinal
1,5 · V + 2 · 300 = 1,8 · (V + 300)
1,5 V + 600 = 1,8 V + 540
0,3 V = 60
V = 200 mL
Mistura e Soluções Ideais - Série Concursos Públicos
Curso Prático & Objetivo
03
1 (UFPA) Um volume igual a 200 mL de uma solução
aquosa de HCL 0,20 mol/L neutralizou completamente
50 mL de uma solução aquosa de Ca(OH)2.
Determine a concentração em quantidade de matéria da
solução básica.
HCL: V = 200 mL
+
Ca(OH)2: V = 50 mL
M = 0,20 mol/L M = ?
2 HCL(aq) + 1 Ca(OH)2(aq) # 1 CaCL2(aq) + 2 H2O(L)
a
=
MA · VA(L)
b MB · VB(L)
2
=
0,20 · 0,2
1 MB · 0,05
MB = 0,4 mol/L
b) Escreva a equação balanceada da citada reação que ori-
gina o escurecimento das pinturas a óleo.
a) 1 PbS(s) + 4 H2O2(aq) # PbSO4(s) + 4 H2O(L)
1 · 239 g @@@ 4 · 34 g
0,24 g @@@@@ x
x =
0,24 · 4 · 34
V x r 0,137 g de H2O2
1 · 239
1 mol @@@@@ 34 g
0,1 mol @@@@ 3,4 g
1 L @@@@@@ 3,4 g de H2O2
y @@@@@@@ 0,137 g de H2O2
y =
0,137 · 1
V y r 0,04 L de solução
3,4
b) PbO(s) + H2S(aq) # PbS(s) + H2O(L)
X
2 (Vunesp-SP) O eletrólito empregado em baterias de
automóvel é uma solução aquosa de ácido sulfúrico. Uma
amostra de 7,50 mL da solução de uma bateria re-
quer 40,0 mL de hidróxido de sódio 0,75 mol/L para sua
neutralização completa.
a) Calcule a concentração em quantidade de matéria do
ácido na solução da bateria.
b) Escreva a equação balanceada da reação de neutrali-
zação total do ácido, fornecendo os nomes dos produ-
tos formados.
a) Cálculo da concentração em mol/L do H2SO4 na bateria.
1 H2SO4(aq) + 2 NaOH(aq) # 1 Na2SO4(aq) + 2 H2O(L)
a
=
MH2SO4(aq) · VH2SO4(aq) (L) V
b MNaOH · VNaOH (L)
V MH2SO4(aq)
=
a · MNaOH · VNaOH
V
b · VH2SO4(aq)
V MH2SO4(aq)
=
1 · 0,75 · 40,0
V MH2SO4(aq)
= 2,0 mol/L
2 · 7,50
b) 1 H2SO4(aq) + 2 NaOH(aq) # 1 Na2SO4(aq) + 2 H2O(L)
Os produtos formados são sulfato de sódio e água.
3 (UFCE) Pinturas a óleo escurecem com o decorrer
do tempo, devido à reação do óxido de chumbo, PbO,
usado como pigmento branco das tintas, com o gás
sulfídrico, H2S, proveniente da poluição do ar, formando
um produto de cor preta, sulfeto de chumbo, PbS. A re-
cuperação de valorosos trabalhos artísticos originais re-
quer o tratamento químico com soluções de peróxido de
hidrogênio, H2O2, o qual atua segundo a reação:
PbS(s) + 4 H2O2(aq) # PbSO4(s) + 4 H2O(L)
preto branco
a) Que volume de solução 0,1 mol/L de H2O2 deve ser
utilizado para remover, completamente, uma camada
contendo 0,24 g de PbS?
4 (Ufop-MG) O bicarbonato de sódio freqüentemente
é usado como antiácido estomacal. Considerando que o
suco gástrico contenha cerca de 250,0 mL de solução de
HCL 0,1 mol/L, conclui-se que a massa, em gramas, de
NaHCO3 necessária para neutralizar o ácido clorídrico
existente no suco gástrico é:
a) 1,2
b) 1,4
c) 1,8
d) 2,1
e) 2,6
V = 250,0 mL; MHCL = 0,1 mol/L; MHCL = 36,5 g/mol
massa de NaHCO3 = ?; MNaHCO3 = 84 g/mol
HCL(aq) + NaHCO3(aq) # NaCL(aq) + H2O(L) + CO2(g)
1 · 36,5 g @ 1 · 84 g
1 mol de HCL @@@@ 36,5 g
0,1 mol de HCL @@@ 3,65 g
3,65 g @@@@@@@ 1000 mL
x @@@@@@@@@ 250,0 mL
x =
250,0 · 3,65
V x r 0,91 g de HCL
1000
1 · 36,5 g de HCL @@ 1 · 84 g de NaHCO3
0,91 g de HCL @@@ y
y =
0,91 · 1 · 84
V y r 2,1 g de NaHCO3
1 · 36,5
5 (UFRJ) A tabela a seguir representa o volume, em mL,
e a concentração, em diversas unidades, de três soluções
diferentes. Algumas informações não estão disponíveis na
tabela, mas podem ser obtidas a partir das relações entre
as diferentes unidades de concentração:
Solução Volume eq/L mol/L g/L
I. Mg(OH)2 100 ----- 2,0 A
II. Mg(OH)2 400 1,0 ----- 29
III. Monoácido ----- 0,1 B C
Misturas com reação
Mistura e Soluções Ideais - Série Concursos Públicos
Curso Prático & Objetivo
04
a) Qual a concentração em quantidade de matéria da so-
lução resultante da mistura das soluções I e II?
b) O sal formado pela reação entre os compostos presen-
tes nas soluções I e III é o Mg(BrO3)2. Determine os
valores desconhecidos A, B e C.
c) Qual o volume do ácido brômico, HBrO3, necessário
para reagir completamente com 200 mL da solução I?
Massasmolaresemg/mol:Mg = 24; O = 16; H = 1 e Br = 80.
a) Cálculo da concentração em mol/L da solução II:
N = k · M2 V M2 =
N
V M2 =
1,0
V M2 = 0,5 mol/L
k 2
M1 · V1 + M2 · V2 = M3 · V3
M3 =
M1 · V1 + M2 · V2
=
2,0 · 100 + 0,5 · 400
= M3 = 0,8 mol/L
V3 500
b) Cálculo de A:
M =
C
V C = M · M1 V C = 2,0 · 58,3 V C = 116,6 g/L
M1
Cálculo de B: Monoácido = HBrO3, ácido brômico
N = k · M V M =
N
V M =
0,1
V M = 0,1 mol/L
k 1
Cálculo de C: MHBrO3 = 129 g/mol
C = M · M1 V C = 0,1 · 129 V C = 12,9 g/L
c) 1 Mg(OH)2(aq) + 2 HBrO3(aq) # Mg(BrO3)2(aq) + 2 H2O(L)
a
=
MA · VA(L)
V
2
=
0,1 · VA(L)
b MB · VB(L) 1 2,0 · 0,2
VA(L) =
2 · 2,0 · 0,2
V VA(L) = 8 L
0,1
7 (Faap-SP) Calcule o grau de pureza de uma amostra
de 4,80 g de hidróxido de sódio, sabendo que uma alíquota
de 10 mL de uma solução de 100 mL desse material con-
sumiu, na titulação, 20,0 mL de uma solução 0,25 mol/L
de H2SO4(aq). Considere que as impurezas presentes na
massa da amostra são inertes ao ácido.
1 H2SO4(aq) + 2 NaOH(aq) # 1 Na2SO4(aq) + 2 H2O(L)
a
=
MH2SO4(aq) · VH2SO4(aq) (L)
V
b MNaOH · VNaOH (L)
MNaOH =
MH2SO4(aq) · VH2SO4(aq) (L) · b
V
VNaOH (L) · a
MNaOH =
0,25 · 20 · 2
V MNaOH = 1,0 mol/L
10 · 1
Cálculo da concentração em mol/L para uma pureza igual a 100%.
M =
m1
V M =
4,80
V M = 1,2 mol/L
M1 · V(L) 40 · 0,1
1,2 mol de NaOH @@@@@@@ 100% de pureza
1,0 @@@@@@@@@@@@@ x
1,2
=
100
V x =
1,0 · 100
V x r 83,3% de pureza
1,0 x 1,2
X
X
6 (Fuvest-SP) O rótulo de um produto de limpeza diz
que a concentração de amônia, NH3, é de 9,5 g/L. Com o
intuito de verificar se a concentração de amônia cor-
responde à indicada no rótulo, 5,00 mL desse produto
foram titulados com ácido clorídrico de concentração
0,100 mol/L. Para consumir toda a amônia dessa amos-
tra foram gastos 25,00 mL do ácido.
Com base nas informações fornecidas indique a alternati-
va que responde corretamente às seguintes questões:
I. Qual a concentração da solução, calculada com os
dados da titulação?
II. A concentração indicada no rótulo é correta?
I II
a) 0,12 mol/L sim
b) 0,25 mol/L não
c) 0,25 mol/L sim
d) 0,50 mol/L não
e) 0,50 mol/L sim
8 Calcule os volumes de soluções aquosas de H2SO4,
respectivamente 2 eq/L (solução x) e 3,5 eq/L (solução y),
necessários para a preparação de um volume igual a
750 mL de solução aquosa 3 eq/L desse ácido.
Solução x: 2 normal de H2SO4(aq)
Solução y: 3,5 normal de H2SO4(aq)
Solução final: 3 normal de H2SO4(aq)
Volume final: 750 mL V Vx + Vy = 750 mL
Com as informações do exercício montamos o sistema de equações:
I. Vx + Vy = 750 mL V Vx = 750 – Vy
II. Nf · Vf = Nx · Vx + Ny · Vy
3 · 750 = 2 · Vx + 3,5 · Vy
Substituindo I em II, temos:
3 · 750 = 2 · (750 – Vy) + 3,5 · Vy
2 250 = 1 500 – 2 Vy + 3,5 Vy
2 250 = 1 500 + 1,5 Vy
1,5 Vy = 750 V Vy = 500 mL V Vx = 250 mL
9 (UFES) A partir da reação balanceada:
2 KMnO4(aq) + 10 FeSO4(aq) + 8 H2SO4(aq) #
# 5 Fe2(SO4)3(aq) + 1 K2SO4(aq) + 2 MnSO4(aq) + 8 H2O(L),
podemos concluir que 1 litro de uma solução de perman-
ganato de potássio, KMnO4, contendo 158 g de soluto por
litro, reage com um volume de uma solução de sulfato
ferroso, FeSO4, contendo 152 g do soluto por litro, exata-
mente igual a:
a) 1 litro.
b) 3 litros.
c) 5 litros.
d) 7 litros.
e) 10 litros.
CNH3 = 9,5 g/L
VNH3 = 5,00 mL
MHCL = 0,100 mol/L
VHCL = 25,00 mL
M =
C
V M =
9,5
V MNH3 (no rótulo) = 0,56 mol/L
M1 17
1 NH3(g) + 1 HCL(aq) # 1 NH4CL(aq)
a
=
MA · VA(L)
V
1
=
0,100 · 25,00
b MB · VB(L) 1 MNH3 · 5,00
MNH3 =
0,100 · 25,00
V MNH3 = 0,5 mol/L i rótulo
5,00
KMnO4: V = 1L FeSO4: V = ?
C = 158 g/L C = 152 g/L
M =
C
=
158
= 1 mol/L M =
C
=
152
= 1 mol/L
M 158 M 152
2 KMnO4 + 10 FeSO4
a
=
MA · VA(L)
V
2
=
1 · 1
b MB · VB(L) 10 1 · VB(L)
VB(L) =
10
V VB(L) = 5 L
2
Mistura e Soluções Ideais - Série Concursos Públicos
Curso Prático & Objetivo
05
10 (ITA-SP) Fazendo-se borbulhar gás cloro através
de 1,0 litro de uma solução de hidróxido de sódio, verifi-
cou-se ao final do experimento que todo hidróxido de
sódio foi consumido e que na solução resultante foram
formados 2,5 mol de cloreto de sódio. Considerando que
o volume da solução não foi alterado durante todo o pro-
cesso e que na temperatura em questão tenha ocorrido
apenas a reação correspondente à equação química, não-
balanceada, esquematizada a seguir, qual deve ser a con-
centração inicial de hidróxido de sódio?
OH
1–
(aq) + CL2(g) # CL
1–
(aq) + CLO
1–
3(aq) + H2O(L)
a) 6,0 mol/L
b) 5,0 mol/L
c) 3,0 mol/L
d) 2,5 mol/L
e) 2,0 mol/L
MNaCL = 2,5 mol/L
–2 +1 0 –1 +5 –2 +1 –2
OH(a
1–
q) + CL2(g) # CL(a
1–
q) + CLO3(
1–
aq) + H2O(L)
0
redução
–1
d = 1
0
oxidação
+5
d = 5
CL1–
: coeficiente = d · x V coeficiente = 1 · 1 = 1 5
CLO3
1–
: coeficiente = d · x V coeficiente = 5 · 1 = 5 1
x OH(a
1–
q) + 3 CL2(g) # 5 CL(a
1–
q) + 1 CLO3(
1–
aq) + y H2O(L)
(x · 1–) + 3 · 0 = (5 · 1–) + (1 · 1–) + y · 0
– x = –6 V x = 6
6 OH(a
1–
q) + 3 CL2(g) # 5 CL(a
1–
q) + 1 CLO3(
1–
aq) + 3 H2O(L)
6 OH(a
1–
q) @@@@@@@@@ 5 CL(a
1–
q)
a
=
Minicial · Vinicial(L)
V
6
=
Minicial · 1
b Mfinal · Vfinal(L) 5 2,5 · 1
Minicial =
2,5 · 6
V Minicial = 3,0 mol/L
5
X
X
11 (UnB-DF) Uma remessa de soda cáustica está sob
suspeita de estar adulterada. Dispondo de uma amostra
de 0,5 grama, foi preparada uma solução aquosa de 50 mL.
Esta solução foi titulada, sendo consumidos 20 mL de uma
solução 0,25 mol/L de ácido sulfúrico. Determine a por-
centagem de impureza existente na soda cáustica, admi-
tindo que não ocorra reação entre o ácido e as impurezas.
Massa molar: NaOH = 40 g/mol.
1 H2SO4(aq) + 2 NaOH(aq) # 1 Na2SO4(aq) + 2 H2O(L)
a
=
MA · VA(L)
V
1
=
0,25 · 0,020
b MB · VB(L) 2 MB · 0,050
MB =
0,25 · 0,020 · 2
V MB = 0,2 mol/L
1 · 0,050
1 mol de NaOH @@@@@@@ 40 g de NaOH
0,2 mol de NaOH @@@@@@ x
x = 8 g de NaOH
8 g de NaOH @@@@@@@@ 1000 mL
y @@@@@@@@@@@@@ 50 mL
y = 0,4 g de NaOH
T =
m1
V T =
0,4
V T = 0,8 ou T% = 80%
m 0,5
Logo, 20% de impurezas.
12 (UFPI) Desejando-se verificar o teor de ácido
acético, CH3COOH, em um vinagre obtido numa peque-
na indústria de fermentação, pesou-se uma massa de 20 g
do mesmo e diluiu-se a 100 cm
3
com água destilada em
balão volumétrico. A seguir, 25 cm
3
desta solução foram
pipetados e transferidos para erlenmeyer, sendo titulados
com solução 0,100 mol/L de hidróxido de sódio, da qual
foram gastos 33,5 cm
3
. A concentração em massa do áci-
do no vinagre em % é:
Massa molar do ácido acético = 60 g/mol.
a) 4,0%
b) 3,3%
c) 2,0%
d) 2,5%
e) 0,8%
1 CH3COOH + 1 NaOH # CH3COONa + HOH
a
=
MA · VA(L)
V
1
=
MA · 0,025
b MB · VB(L) 1 0,100 · 0,0335
MA =
0,0335 · 0,100
V MA = 0,134 mol/L
0,025
1 mol de CH3COOH @@@@@ 60 g
0,134 mol de CH3COOH @@@ x
x = 8,04 g de CH3COOH
8,04 g de CH3COOH @@@@@ 1000 mL
y @@@@@@@@@@@@@ 100 mL
y =
100 · 8,04
V y = 0,804 g de CH3COOH
1000
T =
m1
V T =
0,804
V T r 0,04 ou T% r 4%
m 20
13 (UCG-GO) Para determinar a porcentagem de pra-
ta, Ag, em uma liga, um analista dissolve uma amostra de
0,800 g da liga em ácido nítrico. Isto causa a dissolução da
prata como íons Ag1+
. A solução é diluída com água e titu-
lada com solução 0,150 mol/L de tiocianato de potássio,
KSCN. É formado, então, um precipitado:
Ag
1+
(aq) + SCN(a
1–
q) # AgSCN(ppt)
Ele descobre que são necessários 42 mL de solução de
KSCN para a titulação. Qual é a porcentagem em massa
de prata na liga?
Massa molar do Ag = 108 g · mol
–1
.
1 mol de SCN
1–
@@@@@@@ 58 g de SCN
1–
0,150 mol de SCN
1–
@@@@@ x
x = 8,7 g de SCN
1–
8,7 g de SCN
1–
@@@@@@@ 1000 mL
y @@@@@@@@@@@@@ 42 mL
y =
4,2 · 8,7
V y r 0,3654 g de SCN1–
1000
Ag(a
1–
q) + SCN(
1–
g) # AgSCN(ppt)
1 · 108 @@@@ 1 · 58
z @@@@@@ 0,3654
z r 0,68 g de prata
0,8 g de Ag @@@@@@@@@ 100% de prata na liga
0,68 g de Ag @@@@@@@@ w
w r 85% de prata na liga
Mistura e Soluções Ideais - Série Concursos Públicos
Curso Prático & Objetivo
1 (UCDB-MS) As propriedades coligativas das soluções
dependem:
a) da pressão máxima de vapor do líquido.
b) da natureza das partículas dispersas na solução.
c) da natureza do solvente, somente.
d) do número de partículas dispersas na solução.
e) da temperatura de ebulição do líquido.
2 (FCMSCSP) À mesma temperatura, qual das soluções
aquosas indicadas abaixo tem maior pressão de vapor?
a) Solução 0,01 mol/L de hidróxido de potássio.
b) Solução 0,01 mol/L de cloreto de cálcio.
c) Solução 0,1 mol/L de cloreto de sódio.
d) Solução 0,1 mol/L de sacarose.
e) Solução 0,2 mol/L de glicose.
3 (PUC-MG) Tendo em vista o momento em que um lí-
quido se encontra em equilíbrio com seu vapor, leia aten-
tamente as afirmativas a seguir:
I. A evaporação e a condensação ocorrem com a mesma
velocidade.
II. Não há transferência de moléculas entre o líquido e o
vapor.
III. A pressão de vapor do sistema se mantém constante.
IV. A concentração do vapor depende do tempo.
Das afirmativas citadas, são incorretas:
a) I e III
b) II e IV
c) II e III
d) I e II
e) III e IV
4 (UFSM-RS) Os frascos de éter, se não forem bem fe-
chados, ficam vazios em pouco tempo, porque
I. se forma um composto muito estável entre as molé-
culas de éter e o oxigênio do ar, favorecendo assim a
vaporização.
II. a pressão de vapor do éter é alta.
III. o éter forma uma mistura azeotrópica com o ar, o que
favorece sua vaporização.
Está(ão) correta(s):
a) I apenas.
b) II apenas.
c) I e III apenas.
d) II e III apenas.
e) I, II e III.
5 (UnB-DF) As atividades do químico incluem identifi-
car a composição das substâncias e determinar a sua con-
centração nos materiais. Para a realização de tais ativida-
des, são utilizados atualmente equipamentos analíticos,
entre os quais os instrumentos espectrofotométricos, de
alta precisão e sensibilidade. Esses equipamentos possuem
um sistema computacional acoplado que processa as in-
formações obtidas pelo instrumento, fornecendo ao ana-
lista a identificação dos elementos químicos presentes na
substância, bem como a sua concentração. A instalação e
a manutenção desses equipamentos em laboratório exi-
gem alguns cuidados básicos, em função da existência de
sistemas eletrônicos de microprocessamento. Julgue os
itens que se seguem, relativos ao problema da conserva-
ção desses intrumentos.
1. A necessidade de manter esses equipamentos em com-
partimento fechado, anexo ao laboratório, pode ser
justificada pela utilização de substâncias com baixo
ponto de ebulição e que contaminam o ambiente.
2. A teoria cinético-molecular demonstra que, em dias
quentes, os vapores e gases emitidos no laboratório
poderão atacar o sistema eletrônico dos equipamentos
com maior intensidade do que em dias frios.
3. Em laboratórios situados em regiões geográficas de ele-
vada altitude, a vaporização de substâncias voláteis será
mais rápida do que em laboratórios localizados em re-
giões próximas ao nível do mar.
Corretos: 1, 2 e 3.
X
X
X
X
Quanto menor a concentração de partículas em solução, maior é a sua
pressão de vapor.
IV.Falsa. A concentração depende da temperatura.
Propriedades coligativas
Mistura e Soluções Ideais - Série Concursos Públicos
Curso Prático & Objetivo
07
6 (UEMA) Sobre os estados líquido, sólido e gasoso, é
correto afirmar que:
01. um líquido entra em ebulição somente quando sua
pressão de vapor for maior que duas vezes a pressão
exercida sobre o líquido.
02. o calor de vaporização de um líquido é positivo.
04. um sólido sublimará quando sua pressão de vapor atin-
gir o valor da pressão externa.
08. a densidade de um líquido, à temperatura e pressão
constantes, é sempre maior do que a densidade do seu
vapor.
16. um líquido A é considerado mais volátil que um líqui-
do B, se a pressão de vapor de A for maior que a pres-
são de vapor de B, nas mesmas condições de pressão e
temperatura.
32. a condensação de um gás pode ocorrer por diminui-
ção da temperatura e/ou aumento da pressão.
7 (Fuvest-SP) Em um mesmo local, a pressão de vapor
de todas as substâncias puras líquidas:
a) tem o mesmo valor à mesma temperatura.
b) tem o mesmo valor nos respectivos pontos de ebulição.
c) tem o mesmo valor nos respectivos pontos de congela-
ção.
d) aumenta com o aumento do volume de líquido presen-
te, à temperatura constante.
e) diminui com o aumento do volume de líquido presen-
te, à temperatura constante.
8 (FEI-SP) Foram realizadas medidas de pressão de va-
por em experiências com o tubo de Torricelli utilizando
os líquidos puros: água, álcool, éter e acetona, todos na
mesma temperatura de 20
o
C e ao nível do mar. Os resul-
tados foram os seguintes:
Substância (líquido) Água Álcool Éter Acetona
Pressão de vapor/mmHg 17,5 43,9 184,8 442,2
Considerando os mesmos líquidos, a 20 o
C, quais entrariam
em ebulição na referida temperatura num ambiente onde
a pressão fosse reduzida a 150 mmHg?
a) Nenhum dos líquidos.
b) Apenas a acetona.
c) Apenas o éter e a acetona.
d) Apenas a água.
e) Apenas a água e o álcool.
9 (UFRGS-RS) Os pontos normais de ebulição da água,
do etanol e do éter etílico são, respectivamente, 100 °C,
78 °C e 34 °C. Observe as curvas no gráfico de variação de
pressão de vapor do líquido (PV) em função da temperatu-
ra (T).
Pressão de
vapor/mmHg
I
II
III
Temperatura/°C
As curvas I, II e III correspondem, respectivamente, aos
compostos:
a) éter etílico, etanol e água.
b) etanol, éter etílico e água.
c) água, etanol e éter etílico.
d) éter etílico, água e etanol.
e) água, éter etílico e etanol.
10 (UFSC) O gráfico apresenta a variação das pressões
de vapor do n-hexano, da água, do benzeno e do ácido
acético com a temperatura.
Pressão/mmHg
760
0 20 40 60 80 100 120 Temperatura/°C
Assinale a(s) proposição(ões) verdadeira(s).
01. O n-hexano é mais volátil que o ácido acético.
02. Na pressão de 760 mmHg, o benzeno tem ponto de
ebulição de 80 °C.
04. A 76 °C a pressão de vapor da água é aproximadamente
de 760 mmHg.
08. Uma mistura de água e ácido acético, em qualquer
proporção, terá, ao nível do mar, ponto de ebulição
entre 60 °C e 80 °C.
16. A água, a 0 °C, tem pressão de vapor = 760 mmHg.
32. A ordem crescente de volatilidade, a 80 °C, é ácido
acético < água < benzeno < n-hexano.
64. As pressões de vapor aumentam com o aumento da
temperatura.
04. Falsa. É menor que 760 mmHg.
08. Falsa. Acima de 100 °C.
16. Falsa. Bem menor que 760 mmHg.
Resposta: soma = 99
ácido acético
n-hexano
benzeno
água
X
X
X
X
X
X
X
X
X
X
X
X
01. Falso. O líquido entra em ebulição quando sua pressão de vapor se
iguala à pressão externa.
Resposta: soma = 62
Mistura e Soluções Ideais - Série Concursos Públicos
Curso Prático & Objetivo
08
t /o
C Água Etanol Acetona Éter etílico Benzeno
0,0 4,5 12,2 ------ 185,3 28,5
20,0 17,5 43,9 184,8 442,2 76,7
40,0 50,3 135,3 421,5 921,3 179,9
60,0 149,4 352,7 866,0 ------ 384,6
80,0 355,1 812,6 ------ ------ 749,9
a) Construa um gráfico das pressões de vapor em mmHg
da água, do etanol, da acetona, do éter etílico e do
benzeno em função da temperatura.
b) Determine, pelo gráfico: o ponto de ebulição da aceto-
na sob pressão de 500 mmHg, o ponto de ebulição do
éter etílico sob pressão de 600 mmHg e a pressão de
vapor da água a 70,0 °C.
c) Das substâncias relacionadas na tabela, qual a mais
volátil a 40,0 °C? Justifique.
d) Calcule o abaixamento relativo da pressão de vapor da
água a 40,0 °C provocado pela adição de 4,9 g de ácido
fosfórico, H3PO4, 30% ionizado em um litro de água.
a) Gráfico da pressão em função da temperatura:
Pressão/mmHg
1000 éter etílico
900 acetona
800
etanol
700
benzeno
600
500
400
300
água
240
200
100
0 20 28 40 44 60 70 80
Temperatura/°C
b) Pelo gráfico, concluímos que:
_ sob pressão de 500 mmHg, a acetona apresenta ponto de ebulição de
aproximadamente 44 °C;
_ sob pressão de 600 mmHg, o éter etílico apresenta ponto de ebulição
de aproximadamente 28 °C;
_ a pressão de vapor da água a 70 °C é de aproximadamente 240
mmHg.
c) Das substâncias relacionadas, a mais volátil a 40 o
C (a que apresenta
maior pressão de vapor) é o éter etílico.
d) Massas molares em g/mol: H3PO4 = 98 e H2O = 18.
n1 =
m1
V n1 =
4,9
V n1 = 0,05 mol
M1 98
Para soluções ideais (diluídas), nas quais o solvente é a água (cuja
densidade é r 1 g/cm3
a 20 °C) e a quantidade de matéria de soluto
dissolvido não é maior do que 0,1 mol por litro, podemos considerar que a
concentração em quantidade de matéria, M, é aproximadamente igual à
concentração molal (mol/kg de solvente).
M =
n1
e ω =
n1
V (L) m2 (kg)
Logo, a solução possui concentração 0,05 mol/L ou 0,05 mol/kg.
1 H3PO4(aq) # 3 H3O
1+
(aq) + 1 PO
3–
4(aq)
i = 1 + a (q – 1) V i = 1 + 0,30 (4 – 1)
i = 1 + 1,2 – 0,30 V i = 1,9
kt =
18
V kt = 0,018
1000
dp
= kt · w · i V
dp
= 0,018 · 0,05 · 1,9
p2 p2
dp
= 0,00171 ou r 0,002
p2
11 (Fameca-SP) Em um acampamento à beira-mar,
um campista conseguiu preparar arroz cozido utilizando-
se de água, arroz e uma fonte de aquecimento. Quando
este mesmo campista foi para uma montanha a 3000 m
de altitude, observou, ao tentar cozinhar arroz, que a água:
a) fervia, mas o arroz ficava cru, porque a água estava fer-
vendo a uma temperatura inferior a 100 °C devido ao
abaixamento de sua pressão de vapor.
b) fervia rapidamente, porque a temperatura de ebulição
estava acima de 100 °C devido à rarefação do ar e ao
conseqüente aumento de sua pressão de vapor.
c) fervia rapidamente, porque a temperatura de ebulição
estava acima de 100 °C devido à baixa pressão atmosfé-
rica.
d) não fervia, porque a baixa umidade e temperatura au-
mentaram a pressão de vapor do líquido a ponto de
impedir que entrasse em ebulição.
e) fervia tão rapidamente quanto ao nível do mar e apre-
sentava ponto de ebulição idêntico, pois tratava-se do
mesmo composto químico e, portanto, não poderia
apresentar variações em seus “pontos cardeais”, ou seja,
os pontos de fusão e de ebulição e sua densidade.
12 (FMU-SP) Cozinhar alimentos em uma panela de
pressão é mais rápido do que fazê-lo em uma panela co-
mum. Isso ocorre porque:
a) a panela de pressão tem sua estrutura mais reforçada
(mais grossa) do que uma panela comum.
b) na panela de pressão os alimentos são colocados em
pedaços pequenos.
c) quando aumenta a pressão sobre um líquido a tempe-
ratura de evaporação também aumenta.
d) a água no interior da panela de pressão ferve sem for-
mação de bolhas.
e) as bolhas formadas durante a evaporação na panela co-
mum dilatam os alimentos.
13 A volatilidade de uma substância é conseqüência
de sua massa molar e das forças intermoleculares existen-
tes. A acetona, por exemplo, de massa molar 58 g/mol e
forças intermoleculares do tipo dipolo permanente, é mais
volátil que o etanol, de massa molar 46 g/mol e pontes de
hidrogênio.
A explicação para isso é que, como as forças de dipolo per-
manente são menos intensas que as pontes de hidrogênio,
as moléculas de acetona estão menos “atraídas” umas pe-
las outras do que as de etanol e se desprendem mais facil-
mente pelo fornecimento de energia externa. A pressão de
vapor de uma substância é uma conseqüência direta de
sua volatilidade.
Para dada temperatura, quanto mais volátil a substância,
maior será sua pressão de vapor.
A seguir estão relacionadas as pressões de vapor em mmHg
de vários solventes em função da temperatura:
X
X
Mistura e Soluções Ideais - Série Concursos Públicos
Curso Prático & Objetivo
09

Más contenido relacionado

La actualidad más candente

Lista 2.3 concentração das soluções
Lista 2.3   concentração das soluçõesLista 2.3   concentração das soluções
Lista 2.3 concentração das soluçõescarlosrbd
 
Lista de exercícios V Estudo das Soluções
Lista de exercícios V Estudo das SoluçõesLista de exercícios V Estudo das Soluções
Lista de exercícios V Estudo das SoluçõesCarlos Priante
 
Soluções Revisão para Prova
Soluções Revisão para ProvaSoluções Revisão para Prova
Soluções Revisão para ProvaJúlio Morais
 
Lista de exercicios - solucoes
Lista de exercicios - solucoesLista de exercicios - solucoes
Lista de exercicios - solucoesSavio Troglio
 
Lista de Exercícios: Concentração de Soluções
Lista de Exercícios: Concentração de SoluçõesLista de Exercícios: Concentração de Soluções
Lista de Exercícios: Concentração de SoluçõesHebertty Dantas
 
Lista 4 titulacao_tq
Lista 4 titulacao_tqLista 4 titulacao_tq
Lista 4 titulacao_tqDebora Alvim
 
Gabarito da Lista de Exercícios: Solucões
Gabarito da Lista de Exercícios: SolucõesGabarito da Lista de Exercícios: Solucões
Gabarito da Lista de Exercícios: SolucõesHebertty Dantas
 
04.equilíbrio e titulação de precipitação(prova)
04.equilíbrio e titulação de precipitação(prova)04.equilíbrio e titulação de precipitação(prova)
04.equilíbrio e titulação de precipitação(prova)Diego Lima
 
Lista de Exercícios: Solucões
Lista de Exercícios: SolucõesLista de Exercícios: Solucões
Lista de Exercícios: SolucõesHebertty Dantas
 

La actualidad más candente (19)

exercicios de solucao
exercicios de solucao exercicios de solucao
exercicios de solucao
 
Misturas
MisturasMisturas
Misturas
 
Lista 2.3 concentração das soluções
Lista 2.3   concentração das soluçõesLista 2.3   concentração das soluções
Lista 2.3 concentração das soluções
 
Lista de exercícios V Estudo das Soluções
Lista de exercícios V Estudo das SoluçõesLista de exercícios V Estudo das Soluções
Lista de exercícios V Estudo das Soluções
 
Soluções Revisão para Prova
Soluções Revisão para ProvaSoluções Revisão para Prova
Soluções Revisão para Prova
 
Gama módulo 26
Gama   módulo 26Gama   módulo 26
Gama módulo 26
 
Lista de exercicios - solucoes
Lista de exercicios - solucoesLista de exercicios - solucoes
Lista de exercicios - solucoes
 
Exercícios sobre ph e poh
Exercícios sobre ph e pohExercícios sobre ph e poh
Exercícios sobre ph e poh
 
Lista de Exercícios: Concentração de Soluções
Lista de Exercícios: Concentração de SoluçõesLista de Exercícios: Concentração de Soluções
Lista de Exercícios: Concentração de Soluções
 
Cap8
Cap8Cap8
Cap8
 
Soluções
SoluçõesSoluções
Soluções
 
Cálculos químicos i soluções
Cálculos químicos i   soluçõesCálculos químicos i   soluções
Cálculos químicos i soluções
 
Lista 4 titulacao_tq
Lista 4 titulacao_tqLista 4 titulacao_tq
Lista 4 titulacao_tq
 
Soluções lista
Soluções lista Soluções lista
Soluções lista
 
Soluções share
Soluções shareSoluções share
Soluções share
 
Gabarito da Lista de Exercícios: Solucões
Gabarito da Lista de Exercícios: SolucõesGabarito da Lista de Exercícios: Solucões
Gabarito da Lista de Exercícios: Solucões
 
04.equilíbrio e titulação de precipitação(prova)
04.equilíbrio e titulação de precipitação(prova)04.equilíbrio e titulação de precipitação(prova)
04.equilíbrio e titulação de precipitação(prova)
 
Lista de Exercícios: Solucões
Lista de Exercícios: SolucõesLista de Exercícios: Solucões
Lista de Exercícios: Solucões
 
Analítica
AnalíticaAnalítica
Analítica
 

Similar a Misturas de solucoes ideais

Titulo, porcentagem, diluição aula e cálculos.ppt
Titulo, porcentagem, diluição aula e cálculos.pptTitulo, porcentagem, diluição aula e cálculos.ppt
Titulo, porcentagem, diluição aula e cálculos.pptssuser2b53fe
 
www.centroapoio.com - Química - Soluções - Vídeo Aula
www.centroapoio.com - Química - Soluções - Vídeo Aulawww.centroapoio.com - Química - Soluções - Vídeo Aula
www.centroapoio.com - Química - Soluções - Vídeo AulaVídeo Aulas Apoio
 
2016 aulas 17 e 18 - soluções - progressao ext noite
2016   aulas 17 e 18 - soluções - progressao ext noite2016   aulas 17 e 18 - soluções - progressao ext noite
2016 aulas 17 e 18 - soluções - progressao ext noitepaulomigoto
 
Questões revisão - Prova
Questões revisão - ProvaQuestões revisão - Prova
Questões revisão - ProvaRodrigo Sampaio
 
Exercícios de soluções (Revisão)
Exercícios de soluções (Revisão)Exercícios de soluções (Revisão)
Exercícios de soluções (Revisão)Estude Mais
 
Soluções show
Soluções showSoluções show
Soluções showHallysonf
 
Exercicios segundo
Exercicios segundoExercicios segundo
Exercicios segundoDaiane Gris
 
DILUIÇÃO, MISTURAS DE SOLUÇÕES E TITULAÇÃO ÁCIDO-BASE .pdf
DILUIÇÃO, MISTURAS DE SOLUÇÕES E TITULAÇÃO ÁCIDO-BASE .pdfDILUIÇÃO, MISTURAS DE SOLUÇÕES E TITULAÇÃO ÁCIDO-BASE .pdf
DILUIÇÃO, MISTURAS DE SOLUÇÕES E TITULAÇÃO ÁCIDO-BASE .pdf5n4xgbx477
 
Cálculos de concentração
Cálculos de concentraçãoCálculos de concentração
Cálculos de concentraçãoJoanna de Paoli
 
Aula 2_ QAN_Solucoes_diluicao_20162.ppt
Aula 2_ QAN_Solucoes_diluicao_20162.pptAula 2_ QAN_Solucoes_diluicao_20162.ppt
Aula 2_ QAN_Solucoes_diluicao_20162.pptMarcoReisBrugnerotto
 
Soluções e cálculos químicos (mariana)
Soluções e cálculos químicos (mariana)Soluções e cálculos químicos (mariana)
Soluções e cálculos químicos (mariana)Leonardo Carneiro
 

Similar a Misturas de solucoes ideais (20)

2 ano quimica
2 ano quimica2 ano quimica
2 ano quimica
 
2 ano quimica
2 ano quimica2 ano quimica
2 ano quimica
 
Titulo, porcentagem, diluição aula e cálculos.ppt
Titulo, porcentagem, diluição aula e cálculos.pptTitulo, porcentagem, diluição aula e cálculos.ppt
Titulo, porcentagem, diluição aula e cálculos.ppt
 
www.centroapoio.com - Química - Soluções - Vídeo Aula
www.centroapoio.com - Química - Soluções - Vídeo Aulawww.centroapoio.com - Química - Soluções - Vídeo Aula
www.centroapoio.com - Química - Soluções - Vídeo Aula
 
2016 aulas 17 e 18 - soluções - progressao ext noite
2016   aulas 17 e 18 - soluções - progressao ext noite2016   aulas 17 e 18 - soluções - progressao ext noite
2016 aulas 17 e 18 - soluções - progressao ext noite
 
Soluções EEHG
Soluções EEHGSoluções EEHG
Soluções EEHG
 
Concentração
ConcentraçãoConcentração
Concentração
 
Ficha 1 soluções
Ficha 1  soluçõesFicha 1  soluções
Ficha 1 soluções
 
Questões revisão - Prova
Questões revisão - ProvaQuestões revisão - Prova
Questões revisão - Prova
 
Exercícios de soluções (Revisão)
Exercícios de soluções (Revisão)Exercícios de soluções (Revisão)
Exercícios de soluções (Revisão)
 
Soluções show
Soluções showSoluções show
Soluções show
 
Exercicios segundo
Exercicios segundoExercicios segundo
Exercicios segundo
 
DILUIÇÃO, MISTURAS DE SOLUÇÕES E TITULAÇÃO ÁCIDO-BASE .pdf
DILUIÇÃO, MISTURAS DE SOLUÇÕES E TITULAÇÃO ÁCIDO-BASE .pdfDILUIÇÃO, MISTURAS DE SOLUÇÕES E TITULAÇÃO ÁCIDO-BASE .pdf
DILUIÇÃO, MISTURAS DE SOLUÇÕES E TITULAÇÃO ÁCIDO-BASE .pdf
 
Mistura de soluções
Mistura de soluçõesMistura de soluções
Mistura de soluções
 
Cálculos de concentração
Cálculos de concentraçãoCálculos de concentração
Cálculos de concentração
 
Reagentes
ReagentesReagentes
Reagentes
 
Aula 2_ QAN_Solucoes_diluicao_20162.ppt
Aula 2_ QAN_Solucoes_diluicao_20162.pptAula 2_ QAN_Solucoes_diluicao_20162.ppt
Aula 2_ QAN_Solucoes_diluicao_20162.ppt
 
Soluções
SoluçõesSoluções
Soluções
 
Soluções e cálculos químicos (mariana)
Soluções e cálculos químicos (mariana)Soluções e cálculos químicos (mariana)
Soluções e cálculos químicos (mariana)
 
Pressão osmótica
Pressão osmóticaPressão osmótica
Pressão osmótica
 

Último

COMPETÊNCIA 2 da redação do enem prodção textual professora vanessa cavalcante
COMPETÊNCIA 2 da redação do enem prodção textual professora vanessa cavalcanteCOMPETÊNCIA 2 da redação do enem prodção textual professora vanessa cavalcante
COMPETÊNCIA 2 da redação do enem prodção textual professora vanessa cavalcanteVanessaCavalcante37
 
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdfRecomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdfFrancisco Márcio Bezerra Oliveira
 
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdfPROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdfHELENO FAVACHO
 
migração e trabalho 2º ano.pptx fenomenos
migração e trabalho 2º ano.pptx fenomenosmigração e trabalho 2º ano.pptx fenomenos
migração e trabalho 2º ano.pptx fenomenosLucianoPrado15
 
2° ANO - ENSINO FUNDAMENTAL ENSINO RELIGIOSO
2° ANO - ENSINO FUNDAMENTAL ENSINO RELIGIOSO2° ANO - ENSINO FUNDAMENTAL ENSINO RELIGIOSO
2° ANO - ENSINO FUNDAMENTAL ENSINO RELIGIOSOLeloIurk1
 
GEOGRAFIA - COMÉRCIO INTERNACIONAL E BLOCOS ECONÔMICOS - PROF. LUCAS QUEIROZ.pdf
GEOGRAFIA - COMÉRCIO INTERNACIONAL E BLOCOS ECONÔMICOS - PROF. LUCAS QUEIROZ.pdfGEOGRAFIA - COMÉRCIO INTERNACIONAL E BLOCOS ECONÔMICOS - PROF. LUCAS QUEIROZ.pdf
GEOGRAFIA - COMÉRCIO INTERNACIONAL E BLOCOS ECONÔMICOS - PROF. LUCAS QUEIROZ.pdfRavenaSales1
 
Estudar, para quê? Ciência, para quê? Parte 1 e Parte 2
Estudar, para quê?  Ciência, para quê? Parte 1 e Parte 2Estudar, para quê?  Ciência, para quê? Parte 1 e Parte 2
Estudar, para quê? Ciência, para quê? Parte 1 e Parte 2Maria Teresa Thomaz
 
Slides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptx
Slides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptxSlides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptx
Slides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptxLuizHenriquedeAlmeid6
 
SSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffff
SSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffffSSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffff
SSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffffNarlaAquino
 
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdfProjeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdfHELENO FAVACHO
 
Projeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdf
Projeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdfProjeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdf
Projeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdfHELENO FAVACHO
 
Rota das Ribeiras Camp, Projeto Nós Propomos!
Rota das Ribeiras Camp, Projeto Nós Propomos!Rota das Ribeiras Camp, Projeto Nós Propomos!
Rota das Ribeiras Camp, Projeto Nós Propomos!Ilda Bicacro
 
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptxSlides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptxLuizHenriquedeAlmeid6
 
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEMPRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEMHELENO FAVACHO
 
LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...
LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...
LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...Francisco Márcio Bezerra Oliveira
 
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdfLeloIurk1
 
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...IsabelPereira2010
 
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdfPROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdfHELENO FAVACHO
 
Camadas da terra -Litosfera conteúdo 6º ano
Camadas da terra -Litosfera  conteúdo 6º anoCamadas da terra -Litosfera  conteúdo 6º ano
Camadas da terra -Litosfera conteúdo 6º anoRachel Facundo
 
Os editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptxOs editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptxTailsonSantos1
 

Último (20)

COMPETÊNCIA 2 da redação do enem prodção textual professora vanessa cavalcante
COMPETÊNCIA 2 da redação do enem prodção textual professora vanessa cavalcanteCOMPETÊNCIA 2 da redação do enem prodção textual professora vanessa cavalcante
COMPETÊNCIA 2 da redação do enem prodção textual professora vanessa cavalcante
 
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdfRecomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
 
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdfPROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
 
migração e trabalho 2º ano.pptx fenomenos
migração e trabalho 2º ano.pptx fenomenosmigração e trabalho 2º ano.pptx fenomenos
migração e trabalho 2º ano.pptx fenomenos
 
2° ANO - ENSINO FUNDAMENTAL ENSINO RELIGIOSO
2° ANO - ENSINO FUNDAMENTAL ENSINO RELIGIOSO2° ANO - ENSINO FUNDAMENTAL ENSINO RELIGIOSO
2° ANO - ENSINO FUNDAMENTAL ENSINO RELIGIOSO
 
GEOGRAFIA - COMÉRCIO INTERNACIONAL E BLOCOS ECONÔMICOS - PROF. LUCAS QUEIROZ.pdf
GEOGRAFIA - COMÉRCIO INTERNACIONAL E BLOCOS ECONÔMICOS - PROF. LUCAS QUEIROZ.pdfGEOGRAFIA - COMÉRCIO INTERNACIONAL E BLOCOS ECONÔMICOS - PROF. LUCAS QUEIROZ.pdf
GEOGRAFIA - COMÉRCIO INTERNACIONAL E BLOCOS ECONÔMICOS - PROF. LUCAS QUEIROZ.pdf
 
Estudar, para quê? Ciência, para quê? Parte 1 e Parte 2
Estudar, para quê?  Ciência, para quê? Parte 1 e Parte 2Estudar, para quê?  Ciência, para quê? Parte 1 e Parte 2
Estudar, para quê? Ciência, para quê? Parte 1 e Parte 2
 
Slides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptx
Slides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptxSlides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptx
Slides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptx
 
SSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffff
SSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffffSSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffff
SSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffff
 
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdfProjeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
 
Projeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdf
Projeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdfProjeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdf
Projeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdf
 
Rota das Ribeiras Camp, Projeto Nós Propomos!
Rota das Ribeiras Camp, Projeto Nós Propomos!Rota das Ribeiras Camp, Projeto Nós Propomos!
Rota das Ribeiras Camp, Projeto Nós Propomos!
 
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptxSlides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
 
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEMPRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
 
LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...
LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...
LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...
 
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
 
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
 
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdfPROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
 
Camadas da terra -Litosfera conteúdo 6º ano
Camadas da terra -Litosfera  conteúdo 6º anoCamadas da terra -Litosfera  conteúdo 6º ano
Camadas da terra -Litosfera conteúdo 6º ano
 
Os editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptxOs editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptx
 

Misturas de solucoes ideais

  • 1. 01 1 (UF Vale do Sapucaí-MG) Um dentista precisava obter uma solução aquosa de fluoreto de sódio (flúor) na con- centração de 20 g/L para ser usada por um paciente no combate e na prevenção da cárie. Ele dispunha no consul- tório de 250 mL de uma solução aquosa a 40 g/L. Para obter a solução desejada, ele deveria: a) dobrar o volume da solução disponível em seu consul- tório com água destilada. b) adicionar à sua solução somente meio litro de água destilada. c) tomar cem mililitros da solução disponível e reduzir o volume de água à metade pela evaporação. d) tomar cinqüenta mililitros da solução disponível e adi- cionar mais duzentos e cinqüenta mililitros de água destilada. e) usar diretamente no paciente 125 mL da solução já disponível. C = 20 g/L Cinicial · Vinicial = Cfinal · Vfinal 20 · Vinicial = 40 · 250 Vinicial = 40 · 250 = 500 mL 20 É necessário adicionar 250 mL de água destilada, dobrando seu volume, para obter uma solução de concentração 20 g/L. a) 36 mol/L b) 18 mol/L c) 0,036 mol/L d) 0,36 mol/L e) 0,018 mol/L X X X 2 (FEP-PA) O volume de solvente (água) que se deve adicionar a 500 mL de uma solução aquosa 2 mol/L de ácido sulfúrico para que esta solução se transforme em uma solução 0,5 N é igual a: a) 4 000 mL b) 3 500 mL c) 3 000 mL d) 2 500 mL e) 2 000 mL 3 (Fesp-PE) Adiciona-se 1,0 mL de uma solução con- centrada de ácido sulfúrico, H2SO4, 36 N a um balão volumétrico contendo exatamente 1 000 mL de água des- tilada. A concentração em mol/L da solução resultante é: (Admita que não há variação de volume.) Dados: H = 1 u; S = 32 u e O = 16 u. 4 (EEM-SP) Misturaram-se 100,0 mL de uma solução aquosa de uma substância A, de concentração igual a 10,0 g/L, com 100,0 mL de outra solução aquosa da mes- ma substância A, mas de concentração igual a 2,0 g/L. A concentração da solução resultante é igual a 6,5 g/L. Sabendo-se que não houve variação de temperatura, cal- cule, com três algarismos significativos, a variação de vo- lume ocorrida na mistura das duas soluções. V’ · C’ + V’’ · C’’ = Vfinal · Cfinal Vfinal = 100 · 10,0 + 100 · 2,0 r 184,6 mL 6,5 Vinicial = 200 mL Variação de volume = 200 – 184,6 r 15,4 mL 5 (Unicamp-SP) Um dos grandes problemas das navega- ções do século XVI referia-se à limitação de água potável que era possível transportar numa embarcação. Imagine uma situação de emergência em que restaram apenas 300 litros (L) de água potável (considere-a comple- tamente isenta de eletrólitos). A água do mar não é apropriada para o consumo devido à grande concentração de NaCL (25 g/L), porém o soro fisio- lógico (10 g de NaCL/L) é. Se os navegantes tivessem conhecimento da composição do soro fisiológico, poderiam usar a água potável para di- luir água do mar de modo a obter soro e assim teriam um volume maior de líquido para beber. Para H2SO4 o k = 2. N = k · M V M = N k M = 0,5 V M = 0,25 mol/L 2 Minicial · Vinicial = Mfinal · Vfinal 2 · 500 = 0,25 · Vfinal Vfinal = 2 · 500 = 4000 mL 0,25 Volume acrescentado = 4000 – 500 = 3500 mL Para H2SO4 o k = 2. N = k · M V M = N k M = 36 V M = 18 mol/L 2 Minicial · Vinicial = Mfinal · Vfinal 18 · 1 = Mfinal · 1000 Mfinal = 18· 1 = 0,018 mol/L 1000 Misturas// sem RRRRRreação Mistura e Soluções Ideais - Série Concursos Públicos Curso Prático & Objetivo
  • 2. a) Que volume total de soro seria obtido com a diluição se todos os 300 litros de água potável fossem usados para este fim? b) Considerando-se a presença de 50 pessoas na embar- cação e admitindo-se uma distribuição equitativa do soro, quantos gramas de NaCL teriam sido ingeridos por cada pessoa? c) Uma maneira que os navegadores usavam para obter água potável adicional era recolher água de chuva. Considerando-se que a água da chuva é originária, em grande parte, da água do mar, como se explica que ela possa ser usada como água potável? a) Cágua do mar = 25 g/L Csoro = 10 g/L Vinicial · Cinicial = Vfinal · Cfinal 1 · 25 = Vfinal · 10 Vfinal = 2,5 L Volume acrescentado = 2,5 – 1,0 = 1,5 L de água potável a cada litro de água do mar. 1,5 L de água potável @@@ 1 L de água do mar 300 L de água potável @@@ x x = 300 · 1 V x = 200 L 1,5 Volume de soro = 300 + 200 Volume de soro = 500 L b) 10 g de NaCL @@@@ 1 L de soro y @@@@@@@@@ 500 L de soro y = 500 · 10 V y = 5000 g de NaCL 1 5000 = 100 g de NaCL/pessoa 50 c) A água evapora enquanto o sal continua dissolvido no mar. 8 (UFPI) Quais das afirmações a respeito de soluções são corretas? I. Quando diluímos uma solução, estamos aumentando o número de mol do soluto. II. Quando diluímos uma solução, estamos aumentando o número de mol do solvente. III. Na evaporação de uma solução aquosa de um com- posto iônico, o número de mol do soluto não se al- tera. IV. Quando misturamos duas soluções de mesmo soluto, porém com molaridades diferentes, a solução final apresenta uma molaridade com valor intermediário às molaridades iniciais. V. Ao misturarmos soluções de solutos diferentes, sem que ocorra reação, na verdade o que ocorre é uma simples diluição de cada um dos solutos. a) Todas. b) Nenhuma. c) Somente I, III e IV. d) Somente II, III, IV e V. e) Somente II, III e IV. X X X 6 (Unesp-SP) Na preparação de 500 mL de uma solução aquosa de H2SO4 de concentração 3 mol/L, a partir de uma solução de concentração 15 mol/L do ácido, deve-se diluir o seguinte volume da solução concentrada: a) 10 mL b) 100 mL c) 150 mL d) 300 mL e) 450 mL 7 (Uni-Rio-RJ) Para efetuar o tratamento de limpeza de uma piscina de 10 000 L, o operador de manutenção nela despejou 5 L de solução 1 mol/L de sulfato de alumínio, AL2(SO4)3. Após agitar bem a solução, a concentração do sulfato de alumínio, em g/L, na piscina é de: 9 (UFCE) No recipiente A, temos 50 mL de uma solu- ção 1 mol/L de NaCL. No recipiente B, há 300 mL de uma solução que possui 30 g de NaCL por litro de solução. Juntou-se o conteúdo dos recipientes A e B e o volume foi completado com água até formar 1 litro de solução. Determine a concentração final da solução obtida. Massa molar: NaCL = 58,5 g/mol. Mistura de soluções de mesmo soluto MNaCL = 58,5 g/mol M = 30 V M r 0,5 mol/L 58,5 Minicial · Vinicial + M2 · V2 = M3 · V3 1 · 50 + 0,5 · 300 = M3 · 350 V M3 r 0,57 mol/L Diluição de soluções Minicial · Vinicial = Mfinal · Vfinal 0,57 · 350 = Mfinal · 1000 V Mfinal r 0,20 mol/L Massas atômicas: O = 16 u; AL = 27 u e S = 32 u. a) 0,171 b) 1,46 · 10 –6 c) 5 · 10 –4 d) 1710 e) 684 · 10 3 Minicial · Vinicial = Mfinal · Vfinal 3 · 500 = 15 · Vfinal Vfinal = 3 · 500 = 100 mL 15 Minicial · Vinicial = Mfinal · Vfinal 1 · 5 = Mfinal · 10000 Mfinal = 5 · 10 –4 mol/L MAL2(SO4)3 = 342 g/mol 342 g @@@@@ 1 mol x @@@@@@@ 5 · 10 –4 mol x = 5 · 10 –4 · 342 = 0,171 g/L 1 I. Falsa. A quantidade de matéria do soluto não se altera. Mistura e Soluções Ideais - Série Concursos Públicos Curso Prático & Objetivo 02
  • 3. 11 (UFMG) Considere uma solução contendo íons sódio e íons cobre II, cada um deles na concentração 0,10 mol/L. A concentração dos íons negativos pode ser qualquer uma das seguintes, exceto: a) 0,15 mol/L de íons nitrato. b) 0,15 mol/L de íons sulfato. c) 0,30 mol/L de íons cloreto. d) 0,30 mol/L de íons nitrito. e) 0,30 mol/L de íons acetato. X X X X X 12 (Cesgranrio-RJ) Uma solução 0,05 mol/L de glicose, contida em um béquer, perde água por evapora- ção até restar um volume de 100 mL, passando a concen- tração para 0,5 mol/L. O volume de água evaporada é, aproximadamente: a) 50 mL b) 100 mL c) 500 mL d) 900 mL e) 1 000 mL 13 (UFES) 1 L de uma solução 0,5 mol/L de CaCL2 é adicionado a 4 L de solução 0,1 mol/L de NaCL. As con- centrações em quantidade de matéria dos íons Ca 2+ , Na 1+ e CL 1– na mistura são, respectivamente: a) 0,16; 0,04 e 0,25 b) 0,10; 0,08 e 0,28 c) 0,04; 0,08 e 0,25 d) 0,20; 0,25 e 0,16 e) 0,10; 0,08 e 0,04 14 (Fesp-PE) O volume de uma solução de hidróxido de sódio, NaOH, 1,5 mol/L que deve ser misturado a 300 mL de uma solução 2 mol/L da mesma base, a fim de torná-la solução 1,8 mol/L, é: a) 200 mL b) 20 mL c) 2 000 mL d) 400 mL e) 350 mL 15 (EEM-SP) Considere uma solução 0,4 mol/L de um ácido que se deseja transformar em solução 0,5 mol/L pela mistura com uma solução 2 mol/L do mesmo ácido. Calcule o volume de solução 2 mol/L a ser utilizado para se obter 200 mL de solução 0,5 mol/L. M1 · V1 + M2 · V2 = Mfinal · Vfinal I) 0,4 · V1 + 2,0 · V2 = 0,5 · 200 e II) V1 + V2 = 200 V V1 = 200 – V2 Substituindo II em I, temos: 0,4 · (200 – V2) + 2,0 · V2 = 0,5 · 200 80 – 0,4 V2 + 2,0 · V2 = 100 1,6 · V2 = 20 V2 = 12,5 mL 10 (Fameca-SP) Um volume igual a 250 mL de solu- ção aquosa de cloreto de sódio (solução 1) é misturado a 250 mL de solução aquosa de cloreto de sódio (solução 2) de densidade 1,40 g · mL –1 e título igual a 20% em massa. A concentração final de cloreto de sódio é igual a 0,8 g · mL –1 . Calcule a massa de cloreto de sódio existente na solução 1. a) 330 g b) 130 g c) 50 g d) 100 g e) 120 g C2 = d · T = 1,4 · 0,2 = 0,28 g/mL Mistura de soluções V1 · C1 + V2 · C2 = Vfinal · Cfinal 250 · C1 + 250 · 0,28 = 500 · 0,8 V C1 = 1,32 g/mL 1,32 g @@@@@ 1 mL x @@@@@@@ 250 mL x = 250 · 1,32 V x = 330 g 1 Como toda solução é eletricamente neutra, seria necessário 0,30 mol/L de íons nitrato, NO3( 1– aq), para cancelar a carga positiva dos íons Na(a 1+ q) e Cu(a 2+ q). Minicial · Vinicial = Mfinal · Vfinal 0,05 · Vinicial = 0,5 · 100 Vinicial = 0,5 · 100 = 1000 mL 0,05 Água evaporada = 1000 – 100 = 900 mL Em 1 L: 1 CaCL # 1 Ca 2+ + 2 CL 1– 0,5 mol/L 0,5 mol/L 2 · 0,5 mol/L Em 4 L: 1 NaCL # 1 Na 1+ + 1 CL 1– 0,1 mol/L 0,1 mol/L 0,1 mol/L Íon cálcio: Minicial · Vinicial = Mfinal · Vfinal 0,5 · 1 = Mfinal · 5 V Mfinal = 0,1 mol/L Íon sódio: Minicial · Vinicial = Mfinal · Vfinal 0,1 · 4 = Mfinal · 5 V Mfinal = 0,08 mol/L Íon cloreto: M1 · V1 + M2 · V2 = M3 · V3 2 · 0,5 · 1 + 0,1 · 4 = M3 · 5 V M3 = 0,28 mol/L V = ? + Vinicial = 300 mL V Vfinal = 300 + V M = 1,5 mol/L Minicial = 2,0 mol/L Mfinal = 1,8 mol/L M · V + Minicial · Vinicial = Mfinal · Vfinal 1,5 · V + 2 · 300 = 1,8 · (V + 300) 1,5 V + 600 = 1,8 V + 540 0,3 V = 60 V = 200 mL Mistura e Soluções Ideais - Série Concursos Públicos Curso Prático & Objetivo 03
  • 4. 1 (UFPA) Um volume igual a 200 mL de uma solução aquosa de HCL 0,20 mol/L neutralizou completamente 50 mL de uma solução aquosa de Ca(OH)2. Determine a concentração em quantidade de matéria da solução básica. HCL: V = 200 mL + Ca(OH)2: V = 50 mL M = 0,20 mol/L M = ? 2 HCL(aq) + 1 Ca(OH)2(aq) # 1 CaCL2(aq) + 2 H2O(L) a = MA · VA(L) b MB · VB(L) 2 = 0,20 · 0,2 1 MB · 0,05 MB = 0,4 mol/L b) Escreva a equação balanceada da citada reação que ori- gina o escurecimento das pinturas a óleo. a) 1 PbS(s) + 4 H2O2(aq) # PbSO4(s) + 4 H2O(L) 1 · 239 g @@@ 4 · 34 g 0,24 g @@@@@ x x = 0,24 · 4 · 34 V x r 0,137 g de H2O2 1 · 239 1 mol @@@@@ 34 g 0,1 mol @@@@ 3,4 g 1 L @@@@@@ 3,4 g de H2O2 y @@@@@@@ 0,137 g de H2O2 y = 0,137 · 1 V y r 0,04 L de solução 3,4 b) PbO(s) + H2S(aq) # PbS(s) + H2O(L) X 2 (Vunesp-SP) O eletrólito empregado em baterias de automóvel é uma solução aquosa de ácido sulfúrico. Uma amostra de 7,50 mL da solução de uma bateria re- quer 40,0 mL de hidróxido de sódio 0,75 mol/L para sua neutralização completa. a) Calcule a concentração em quantidade de matéria do ácido na solução da bateria. b) Escreva a equação balanceada da reação de neutrali- zação total do ácido, fornecendo os nomes dos produ- tos formados. a) Cálculo da concentração em mol/L do H2SO4 na bateria. 1 H2SO4(aq) + 2 NaOH(aq) # 1 Na2SO4(aq) + 2 H2O(L) a = MH2SO4(aq) · VH2SO4(aq) (L) V b MNaOH · VNaOH (L) V MH2SO4(aq) = a · MNaOH · VNaOH V b · VH2SO4(aq) V MH2SO4(aq) = 1 · 0,75 · 40,0 V MH2SO4(aq) = 2,0 mol/L 2 · 7,50 b) 1 H2SO4(aq) + 2 NaOH(aq) # 1 Na2SO4(aq) + 2 H2O(L) Os produtos formados são sulfato de sódio e água. 3 (UFCE) Pinturas a óleo escurecem com o decorrer do tempo, devido à reação do óxido de chumbo, PbO, usado como pigmento branco das tintas, com o gás sulfídrico, H2S, proveniente da poluição do ar, formando um produto de cor preta, sulfeto de chumbo, PbS. A re- cuperação de valorosos trabalhos artísticos originais re- quer o tratamento químico com soluções de peróxido de hidrogênio, H2O2, o qual atua segundo a reação: PbS(s) + 4 H2O2(aq) # PbSO4(s) + 4 H2O(L) preto branco a) Que volume de solução 0,1 mol/L de H2O2 deve ser utilizado para remover, completamente, uma camada contendo 0,24 g de PbS? 4 (Ufop-MG) O bicarbonato de sódio freqüentemente é usado como antiácido estomacal. Considerando que o suco gástrico contenha cerca de 250,0 mL de solução de HCL 0,1 mol/L, conclui-se que a massa, em gramas, de NaHCO3 necessária para neutralizar o ácido clorídrico existente no suco gástrico é: a) 1,2 b) 1,4 c) 1,8 d) 2,1 e) 2,6 V = 250,0 mL; MHCL = 0,1 mol/L; MHCL = 36,5 g/mol massa de NaHCO3 = ?; MNaHCO3 = 84 g/mol HCL(aq) + NaHCO3(aq) # NaCL(aq) + H2O(L) + CO2(g) 1 · 36,5 g @ 1 · 84 g 1 mol de HCL @@@@ 36,5 g 0,1 mol de HCL @@@ 3,65 g 3,65 g @@@@@@@ 1000 mL x @@@@@@@@@ 250,0 mL x = 250,0 · 3,65 V x r 0,91 g de HCL 1000 1 · 36,5 g de HCL @@ 1 · 84 g de NaHCO3 0,91 g de HCL @@@ y y = 0,91 · 1 · 84 V y r 2,1 g de NaHCO3 1 · 36,5 5 (UFRJ) A tabela a seguir representa o volume, em mL, e a concentração, em diversas unidades, de três soluções diferentes. Algumas informações não estão disponíveis na tabela, mas podem ser obtidas a partir das relações entre as diferentes unidades de concentração: Solução Volume eq/L mol/L g/L I. Mg(OH)2 100 ----- 2,0 A II. Mg(OH)2 400 1,0 ----- 29 III. Monoácido ----- 0,1 B C Misturas com reação Mistura e Soluções Ideais - Série Concursos Públicos Curso Prático & Objetivo 04
  • 5. a) Qual a concentração em quantidade de matéria da so- lução resultante da mistura das soluções I e II? b) O sal formado pela reação entre os compostos presen- tes nas soluções I e III é o Mg(BrO3)2. Determine os valores desconhecidos A, B e C. c) Qual o volume do ácido brômico, HBrO3, necessário para reagir completamente com 200 mL da solução I? Massasmolaresemg/mol:Mg = 24; O = 16; H = 1 e Br = 80. a) Cálculo da concentração em mol/L da solução II: N = k · M2 V M2 = N V M2 = 1,0 V M2 = 0,5 mol/L k 2 M1 · V1 + M2 · V2 = M3 · V3 M3 = M1 · V1 + M2 · V2 = 2,0 · 100 + 0,5 · 400 = M3 = 0,8 mol/L V3 500 b) Cálculo de A: M = C V C = M · M1 V C = 2,0 · 58,3 V C = 116,6 g/L M1 Cálculo de B: Monoácido = HBrO3, ácido brômico N = k · M V M = N V M = 0,1 V M = 0,1 mol/L k 1 Cálculo de C: MHBrO3 = 129 g/mol C = M · M1 V C = 0,1 · 129 V C = 12,9 g/L c) 1 Mg(OH)2(aq) + 2 HBrO3(aq) # Mg(BrO3)2(aq) + 2 H2O(L) a = MA · VA(L) V 2 = 0,1 · VA(L) b MB · VB(L) 1 2,0 · 0,2 VA(L) = 2 · 2,0 · 0,2 V VA(L) = 8 L 0,1 7 (Faap-SP) Calcule o grau de pureza de uma amostra de 4,80 g de hidróxido de sódio, sabendo que uma alíquota de 10 mL de uma solução de 100 mL desse material con- sumiu, na titulação, 20,0 mL de uma solução 0,25 mol/L de H2SO4(aq). Considere que as impurezas presentes na massa da amostra são inertes ao ácido. 1 H2SO4(aq) + 2 NaOH(aq) # 1 Na2SO4(aq) + 2 H2O(L) a = MH2SO4(aq) · VH2SO4(aq) (L) V b MNaOH · VNaOH (L) MNaOH = MH2SO4(aq) · VH2SO4(aq) (L) · b V VNaOH (L) · a MNaOH = 0,25 · 20 · 2 V MNaOH = 1,0 mol/L 10 · 1 Cálculo da concentração em mol/L para uma pureza igual a 100%. M = m1 V M = 4,80 V M = 1,2 mol/L M1 · V(L) 40 · 0,1 1,2 mol de NaOH @@@@@@@ 100% de pureza 1,0 @@@@@@@@@@@@@ x 1,2 = 100 V x = 1,0 · 100 V x r 83,3% de pureza 1,0 x 1,2 X X 6 (Fuvest-SP) O rótulo de um produto de limpeza diz que a concentração de amônia, NH3, é de 9,5 g/L. Com o intuito de verificar se a concentração de amônia cor- responde à indicada no rótulo, 5,00 mL desse produto foram titulados com ácido clorídrico de concentração 0,100 mol/L. Para consumir toda a amônia dessa amos- tra foram gastos 25,00 mL do ácido. Com base nas informações fornecidas indique a alternati- va que responde corretamente às seguintes questões: I. Qual a concentração da solução, calculada com os dados da titulação? II. A concentração indicada no rótulo é correta? I II a) 0,12 mol/L sim b) 0,25 mol/L não c) 0,25 mol/L sim d) 0,50 mol/L não e) 0,50 mol/L sim 8 Calcule os volumes de soluções aquosas de H2SO4, respectivamente 2 eq/L (solução x) e 3,5 eq/L (solução y), necessários para a preparação de um volume igual a 750 mL de solução aquosa 3 eq/L desse ácido. Solução x: 2 normal de H2SO4(aq) Solução y: 3,5 normal de H2SO4(aq) Solução final: 3 normal de H2SO4(aq) Volume final: 750 mL V Vx + Vy = 750 mL Com as informações do exercício montamos o sistema de equações: I. Vx + Vy = 750 mL V Vx = 750 – Vy II. Nf · Vf = Nx · Vx + Ny · Vy 3 · 750 = 2 · Vx + 3,5 · Vy Substituindo I em II, temos: 3 · 750 = 2 · (750 – Vy) + 3,5 · Vy 2 250 = 1 500 – 2 Vy + 3,5 Vy 2 250 = 1 500 + 1,5 Vy 1,5 Vy = 750 V Vy = 500 mL V Vx = 250 mL 9 (UFES) A partir da reação balanceada: 2 KMnO4(aq) + 10 FeSO4(aq) + 8 H2SO4(aq) # # 5 Fe2(SO4)3(aq) + 1 K2SO4(aq) + 2 MnSO4(aq) + 8 H2O(L), podemos concluir que 1 litro de uma solução de perman- ganato de potássio, KMnO4, contendo 158 g de soluto por litro, reage com um volume de uma solução de sulfato ferroso, FeSO4, contendo 152 g do soluto por litro, exata- mente igual a: a) 1 litro. b) 3 litros. c) 5 litros. d) 7 litros. e) 10 litros. CNH3 = 9,5 g/L VNH3 = 5,00 mL MHCL = 0,100 mol/L VHCL = 25,00 mL M = C V M = 9,5 V MNH3 (no rótulo) = 0,56 mol/L M1 17 1 NH3(g) + 1 HCL(aq) # 1 NH4CL(aq) a = MA · VA(L) V 1 = 0,100 · 25,00 b MB · VB(L) 1 MNH3 · 5,00 MNH3 = 0,100 · 25,00 V MNH3 = 0,5 mol/L i rótulo 5,00 KMnO4: V = 1L FeSO4: V = ? C = 158 g/L C = 152 g/L M = C = 158 = 1 mol/L M = C = 152 = 1 mol/L M 158 M 152 2 KMnO4 + 10 FeSO4 a = MA · VA(L) V 2 = 1 · 1 b MB · VB(L) 10 1 · VB(L) VB(L) = 10 V VB(L) = 5 L 2 Mistura e Soluções Ideais - Série Concursos Públicos Curso Prático & Objetivo 05
  • 6. 10 (ITA-SP) Fazendo-se borbulhar gás cloro através de 1,0 litro de uma solução de hidróxido de sódio, verifi- cou-se ao final do experimento que todo hidróxido de sódio foi consumido e que na solução resultante foram formados 2,5 mol de cloreto de sódio. Considerando que o volume da solução não foi alterado durante todo o pro- cesso e que na temperatura em questão tenha ocorrido apenas a reação correspondente à equação química, não- balanceada, esquematizada a seguir, qual deve ser a con- centração inicial de hidróxido de sódio? OH 1– (aq) + CL2(g) # CL 1– (aq) + CLO 1– 3(aq) + H2O(L) a) 6,0 mol/L b) 5,0 mol/L c) 3,0 mol/L d) 2,5 mol/L e) 2,0 mol/L MNaCL = 2,5 mol/L –2 +1 0 –1 +5 –2 +1 –2 OH(a 1– q) + CL2(g) # CL(a 1– q) + CLO3( 1– aq) + H2O(L) 0 redução –1 d = 1 0 oxidação +5 d = 5 CL1– : coeficiente = d · x V coeficiente = 1 · 1 = 1 5 CLO3 1– : coeficiente = d · x V coeficiente = 5 · 1 = 5 1 x OH(a 1– q) + 3 CL2(g) # 5 CL(a 1– q) + 1 CLO3( 1– aq) + y H2O(L) (x · 1–) + 3 · 0 = (5 · 1–) + (1 · 1–) + y · 0 – x = –6 V x = 6 6 OH(a 1– q) + 3 CL2(g) # 5 CL(a 1– q) + 1 CLO3( 1– aq) + 3 H2O(L) 6 OH(a 1– q) @@@@@@@@@ 5 CL(a 1– q) a = Minicial · Vinicial(L) V 6 = Minicial · 1 b Mfinal · Vfinal(L) 5 2,5 · 1 Minicial = 2,5 · 6 V Minicial = 3,0 mol/L 5 X X 11 (UnB-DF) Uma remessa de soda cáustica está sob suspeita de estar adulterada. Dispondo de uma amostra de 0,5 grama, foi preparada uma solução aquosa de 50 mL. Esta solução foi titulada, sendo consumidos 20 mL de uma solução 0,25 mol/L de ácido sulfúrico. Determine a por- centagem de impureza existente na soda cáustica, admi- tindo que não ocorra reação entre o ácido e as impurezas. Massa molar: NaOH = 40 g/mol. 1 H2SO4(aq) + 2 NaOH(aq) # 1 Na2SO4(aq) + 2 H2O(L) a = MA · VA(L) V 1 = 0,25 · 0,020 b MB · VB(L) 2 MB · 0,050 MB = 0,25 · 0,020 · 2 V MB = 0,2 mol/L 1 · 0,050 1 mol de NaOH @@@@@@@ 40 g de NaOH 0,2 mol de NaOH @@@@@@ x x = 8 g de NaOH 8 g de NaOH @@@@@@@@ 1000 mL y @@@@@@@@@@@@@ 50 mL y = 0,4 g de NaOH T = m1 V T = 0,4 V T = 0,8 ou T% = 80% m 0,5 Logo, 20% de impurezas. 12 (UFPI) Desejando-se verificar o teor de ácido acético, CH3COOH, em um vinagre obtido numa peque- na indústria de fermentação, pesou-se uma massa de 20 g do mesmo e diluiu-se a 100 cm 3 com água destilada em balão volumétrico. A seguir, 25 cm 3 desta solução foram pipetados e transferidos para erlenmeyer, sendo titulados com solução 0,100 mol/L de hidróxido de sódio, da qual foram gastos 33,5 cm 3 . A concentração em massa do áci- do no vinagre em % é: Massa molar do ácido acético = 60 g/mol. a) 4,0% b) 3,3% c) 2,0% d) 2,5% e) 0,8% 1 CH3COOH + 1 NaOH # CH3COONa + HOH a = MA · VA(L) V 1 = MA · 0,025 b MB · VB(L) 1 0,100 · 0,0335 MA = 0,0335 · 0,100 V MA = 0,134 mol/L 0,025 1 mol de CH3COOH @@@@@ 60 g 0,134 mol de CH3COOH @@@ x x = 8,04 g de CH3COOH 8,04 g de CH3COOH @@@@@ 1000 mL y @@@@@@@@@@@@@ 100 mL y = 100 · 8,04 V y = 0,804 g de CH3COOH 1000 T = m1 V T = 0,804 V T r 0,04 ou T% r 4% m 20 13 (UCG-GO) Para determinar a porcentagem de pra- ta, Ag, em uma liga, um analista dissolve uma amostra de 0,800 g da liga em ácido nítrico. Isto causa a dissolução da prata como íons Ag1+ . A solução é diluída com água e titu- lada com solução 0,150 mol/L de tiocianato de potássio, KSCN. É formado, então, um precipitado: Ag 1+ (aq) + SCN(a 1– q) # AgSCN(ppt) Ele descobre que são necessários 42 mL de solução de KSCN para a titulação. Qual é a porcentagem em massa de prata na liga? Massa molar do Ag = 108 g · mol –1 . 1 mol de SCN 1– @@@@@@@ 58 g de SCN 1– 0,150 mol de SCN 1– @@@@@ x x = 8,7 g de SCN 1– 8,7 g de SCN 1– @@@@@@@ 1000 mL y @@@@@@@@@@@@@ 42 mL y = 4,2 · 8,7 V y r 0,3654 g de SCN1– 1000 Ag(a 1– q) + SCN( 1– g) # AgSCN(ppt) 1 · 108 @@@@ 1 · 58 z @@@@@@ 0,3654 z r 0,68 g de prata 0,8 g de Ag @@@@@@@@@ 100% de prata na liga 0,68 g de Ag @@@@@@@@ w w r 85% de prata na liga Mistura e Soluções Ideais - Série Concursos Públicos Curso Prático & Objetivo
  • 7. 1 (UCDB-MS) As propriedades coligativas das soluções dependem: a) da pressão máxima de vapor do líquido. b) da natureza das partículas dispersas na solução. c) da natureza do solvente, somente. d) do número de partículas dispersas na solução. e) da temperatura de ebulição do líquido. 2 (FCMSCSP) À mesma temperatura, qual das soluções aquosas indicadas abaixo tem maior pressão de vapor? a) Solução 0,01 mol/L de hidróxido de potássio. b) Solução 0,01 mol/L de cloreto de cálcio. c) Solução 0,1 mol/L de cloreto de sódio. d) Solução 0,1 mol/L de sacarose. e) Solução 0,2 mol/L de glicose. 3 (PUC-MG) Tendo em vista o momento em que um lí- quido se encontra em equilíbrio com seu vapor, leia aten- tamente as afirmativas a seguir: I. A evaporação e a condensação ocorrem com a mesma velocidade. II. Não há transferência de moléculas entre o líquido e o vapor. III. A pressão de vapor do sistema se mantém constante. IV. A concentração do vapor depende do tempo. Das afirmativas citadas, são incorretas: a) I e III b) II e IV c) II e III d) I e II e) III e IV 4 (UFSM-RS) Os frascos de éter, se não forem bem fe- chados, ficam vazios em pouco tempo, porque I. se forma um composto muito estável entre as molé- culas de éter e o oxigênio do ar, favorecendo assim a vaporização. II. a pressão de vapor do éter é alta. III. o éter forma uma mistura azeotrópica com o ar, o que favorece sua vaporização. Está(ão) correta(s): a) I apenas. b) II apenas. c) I e III apenas. d) II e III apenas. e) I, II e III. 5 (UnB-DF) As atividades do químico incluem identifi- car a composição das substâncias e determinar a sua con- centração nos materiais. Para a realização de tais ativida- des, são utilizados atualmente equipamentos analíticos, entre os quais os instrumentos espectrofotométricos, de alta precisão e sensibilidade. Esses equipamentos possuem um sistema computacional acoplado que processa as in- formações obtidas pelo instrumento, fornecendo ao ana- lista a identificação dos elementos químicos presentes na substância, bem como a sua concentração. A instalação e a manutenção desses equipamentos em laboratório exi- gem alguns cuidados básicos, em função da existência de sistemas eletrônicos de microprocessamento. Julgue os itens que se seguem, relativos ao problema da conserva- ção desses intrumentos. 1. A necessidade de manter esses equipamentos em com- partimento fechado, anexo ao laboratório, pode ser justificada pela utilização de substâncias com baixo ponto de ebulição e que contaminam o ambiente. 2. A teoria cinético-molecular demonstra que, em dias quentes, os vapores e gases emitidos no laboratório poderão atacar o sistema eletrônico dos equipamentos com maior intensidade do que em dias frios. 3. Em laboratórios situados em regiões geográficas de ele- vada altitude, a vaporização de substâncias voláteis será mais rápida do que em laboratórios localizados em re- giões próximas ao nível do mar. Corretos: 1, 2 e 3. X X X X Quanto menor a concentração de partículas em solução, maior é a sua pressão de vapor. IV.Falsa. A concentração depende da temperatura. Propriedades coligativas Mistura e Soluções Ideais - Série Concursos Públicos Curso Prático & Objetivo 07
  • 8. 6 (UEMA) Sobre os estados líquido, sólido e gasoso, é correto afirmar que: 01. um líquido entra em ebulição somente quando sua pressão de vapor for maior que duas vezes a pressão exercida sobre o líquido. 02. o calor de vaporização de um líquido é positivo. 04. um sólido sublimará quando sua pressão de vapor atin- gir o valor da pressão externa. 08. a densidade de um líquido, à temperatura e pressão constantes, é sempre maior do que a densidade do seu vapor. 16. um líquido A é considerado mais volátil que um líqui- do B, se a pressão de vapor de A for maior que a pres- são de vapor de B, nas mesmas condições de pressão e temperatura. 32. a condensação de um gás pode ocorrer por diminui- ção da temperatura e/ou aumento da pressão. 7 (Fuvest-SP) Em um mesmo local, a pressão de vapor de todas as substâncias puras líquidas: a) tem o mesmo valor à mesma temperatura. b) tem o mesmo valor nos respectivos pontos de ebulição. c) tem o mesmo valor nos respectivos pontos de congela- ção. d) aumenta com o aumento do volume de líquido presen- te, à temperatura constante. e) diminui com o aumento do volume de líquido presen- te, à temperatura constante. 8 (FEI-SP) Foram realizadas medidas de pressão de va- por em experiências com o tubo de Torricelli utilizando os líquidos puros: água, álcool, éter e acetona, todos na mesma temperatura de 20 o C e ao nível do mar. Os resul- tados foram os seguintes: Substância (líquido) Água Álcool Éter Acetona Pressão de vapor/mmHg 17,5 43,9 184,8 442,2 Considerando os mesmos líquidos, a 20 o C, quais entrariam em ebulição na referida temperatura num ambiente onde a pressão fosse reduzida a 150 mmHg? a) Nenhum dos líquidos. b) Apenas a acetona. c) Apenas o éter e a acetona. d) Apenas a água. e) Apenas a água e o álcool. 9 (UFRGS-RS) Os pontos normais de ebulição da água, do etanol e do éter etílico são, respectivamente, 100 °C, 78 °C e 34 °C. Observe as curvas no gráfico de variação de pressão de vapor do líquido (PV) em função da temperatu- ra (T). Pressão de vapor/mmHg I II III Temperatura/°C As curvas I, II e III correspondem, respectivamente, aos compostos: a) éter etílico, etanol e água. b) etanol, éter etílico e água. c) água, etanol e éter etílico. d) éter etílico, água e etanol. e) água, éter etílico e etanol. 10 (UFSC) O gráfico apresenta a variação das pressões de vapor do n-hexano, da água, do benzeno e do ácido acético com a temperatura. Pressão/mmHg 760 0 20 40 60 80 100 120 Temperatura/°C Assinale a(s) proposição(ões) verdadeira(s). 01. O n-hexano é mais volátil que o ácido acético. 02. Na pressão de 760 mmHg, o benzeno tem ponto de ebulição de 80 °C. 04. A 76 °C a pressão de vapor da água é aproximadamente de 760 mmHg. 08. Uma mistura de água e ácido acético, em qualquer proporção, terá, ao nível do mar, ponto de ebulição entre 60 °C e 80 °C. 16. A água, a 0 °C, tem pressão de vapor = 760 mmHg. 32. A ordem crescente de volatilidade, a 80 °C, é ácido acético < água < benzeno < n-hexano. 64. As pressões de vapor aumentam com o aumento da temperatura. 04. Falsa. É menor que 760 mmHg. 08. Falsa. Acima de 100 °C. 16. Falsa. Bem menor que 760 mmHg. Resposta: soma = 99 ácido acético n-hexano benzeno água X X X X X X X X X X X X 01. Falso. O líquido entra em ebulição quando sua pressão de vapor se iguala à pressão externa. Resposta: soma = 62 Mistura e Soluções Ideais - Série Concursos Públicos Curso Prático & Objetivo 08
  • 9. t /o C Água Etanol Acetona Éter etílico Benzeno 0,0 4,5 12,2 ------ 185,3 28,5 20,0 17,5 43,9 184,8 442,2 76,7 40,0 50,3 135,3 421,5 921,3 179,9 60,0 149,4 352,7 866,0 ------ 384,6 80,0 355,1 812,6 ------ ------ 749,9 a) Construa um gráfico das pressões de vapor em mmHg da água, do etanol, da acetona, do éter etílico e do benzeno em função da temperatura. b) Determine, pelo gráfico: o ponto de ebulição da aceto- na sob pressão de 500 mmHg, o ponto de ebulição do éter etílico sob pressão de 600 mmHg e a pressão de vapor da água a 70,0 °C. c) Das substâncias relacionadas na tabela, qual a mais volátil a 40,0 °C? Justifique. d) Calcule o abaixamento relativo da pressão de vapor da água a 40,0 °C provocado pela adição de 4,9 g de ácido fosfórico, H3PO4, 30% ionizado em um litro de água. a) Gráfico da pressão em função da temperatura: Pressão/mmHg 1000 éter etílico 900 acetona 800 etanol 700 benzeno 600 500 400 300 água 240 200 100 0 20 28 40 44 60 70 80 Temperatura/°C b) Pelo gráfico, concluímos que: _ sob pressão de 500 mmHg, a acetona apresenta ponto de ebulição de aproximadamente 44 °C; _ sob pressão de 600 mmHg, o éter etílico apresenta ponto de ebulição de aproximadamente 28 °C; _ a pressão de vapor da água a 70 °C é de aproximadamente 240 mmHg. c) Das substâncias relacionadas, a mais volátil a 40 o C (a que apresenta maior pressão de vapor) é o éter etílico. d) Massas molares em g/mol: H3PO4 = 98 e H2O = 18. n1 = m1 V n1 = 4,9 V n1 = 0,05 mol M1 98 Para soluções ideais (diluídas), nas quais o solvente é a água (cuja densidade é r 1 g/cm3 a 20 °C) e a quantidade de matéria de soluto dissolvido não é maior do que 0,1 mol por litro, podemos considerar que a concentração em quantidade de matéria, M, é aproximadamente igual à concentração molal (mol/kg de solvente). M = n1 e ω = n1 V (L) m2 (kg) Logo, a solução possui concentração 0,05 mol/L ou 0,05 mol/kg. 1 H3PO4(aq) # 3 H3O 1+ (aq) + 1 PO 3– 4(aq) i = 1 + a (q – 1) V i = 1 + 0,30 (4 – 1) i = 1 + 1,2 – 0,30 V i = 1,9 kt = 18 V kt = 0,018 1000 dp = kt · w · i V dp = 0,018 · 0,05 · 1,9 p2 p2 dp = 0,00171 ou r 0,002 p2 11 (Fameca-SP) Em um acampamento à beira-mar, um campista conseguiu preparar arroz cozido utilizando- se de água, arroz e uma fonte de aquecimento. Quando este mesmo campista foi para uma montanha a 3000 m de altitude, observou, ao tentar cozinhar arroz, que a água: a) fervia, mas o arroz ficava cru, porque a água estava fer- vendo a uma temperatura inferior a 100 °C devido ao abaixamento de sua pressão de vapor. b) fervia rapidamente, porque a temperatura de ebulição estava acima de 100 °C devido à rarefação do ar e ao conseqüente aumento de sua pressão de vapor. c) fervia rapidamente, porque a temperatura de ebulição estava acima de 100 °C devido à baixa pressão atmosfé- rica. d) não fervia, porque a baixa umidade e temperatura au- mentaram a pressão de vapor do líquido a ponto de impedir que entrasse em ebulição. e) fervia tão rapidamente quanto ao nível do mar e apre- sentava ponto de ebulição idêntico, pois tratava-se do mesmo composto químico e, portanto, não poderia apresentar variações em seus “pontos cardeais”, ou seja, os pontos de fusão e de ebulição e sua densidade. 12 (FMU-SP) Cozinhar alimentos em uma panela de pressão é mais rápido do que fazê-lo em uma panela co- mum. Isso ocorre porque: a) a panela de pressão tem sua estrutura mais reforçada (mais grossa) do que uma panela comum. b) na panela de pressão os alimentos são colocados em pedaços pequenos. c) quando aumenta a pressão sobre um líquido a tempe- ratura de evaporação também aumenta. d) a água no interior da panela de pressão ferve sem for- mação de bolhas. e) as bolhas formadas durante a evaporação na panela co- mum dilatam os alimentos. 13 A volatilidade de uma substância é conseqüência de sua massa molar e das forças intermoleculares existen- tes. A acetona, por exemplo, de massa molar 58 g/mol e forças intermoleculares do tipo dipolo permanente, é mais volátil que o etanol, de massa molar 46 g/mol e pontes de hidrogênio. A explicação para isso é que, como as forças de dipolo per- manente são menos intensas que as pontes de hidrogênio, as moléculas de acetona estão menos “atraídas” umas pe- las outras do que as de etanol e se desprendem mais facil- mente pelo fornecimento de energia externa. A pressão de vapor de uma substância é uma conseqüência direta de sua volatilidade. Para dada temperatura, quanto mais volátil a substância, maior será sua pressão de vapor. A seguir estão relacionadas as pressões de vapor em mmHg de vários solventes em função da temperatura: X X Mistura e Soluções Ideais - Série Concursos Públicos Curso Prático & Objetivo 09