SlideShare una empresa de Scribd logo
1 de 26
Descargar para leer sin conexión
333
                                     T g ‰ 3 ‰ 3 6e dQa 7
                                                                         cb
                                                    ‰ ˆ ƒ„…‚ 'e dQa        cb                                                e:
                                                                                                                                    …„ƒ‚   então
                                                                                                                                                 ‘ ’ ‰
,          . Por outro lado observamos que se                                                , temos que                                    Fazendo
    ‘ #
                                                   …„ƒ‚ © †    ‡ © 3 ‰                                               ‡ © † ©  3 ‰
                                             ‡
                                           T © † ©       …„ƒ‚ ˆ 'e r€dQa7
                                                                     3  c b ca b
                                                 ‡ © † ©                  6e
                                        Solução : Primeiramente reescrevamos o expoente da expressão:
                                                                                                                      w
                                                                                                                     fxs
                                                                                            vutsvutsq iprehq ipyihf gP  X§¨§ ¦ ¥ ©
                                                                                                 .                                             
                                                                                                                                        [2] Calcule:
                                                                                                                          cb
                                                                                                                          'e dQ$aA
                                              
                    T ` 3 @6   $54I  Y §¨§ ¦ ¥ © 3                         ( F                                    §¨§¦ ¥ ©
     ; então:                            X                                         
                                                                                  '   $210S                                                        V(
                                                                                                                                                        W3  
Logo, a condição necessária para que o limite exista é que a primeira parcela seja nula, isto é,
                         T     
                          U@6   $54I  @6   $54IS  R
                                                                                                             3
                                      (                        EC
                                                               D
                                              P      (
                                               Q@6   $54I HGF A                                               3
                                                                 D
                                                        (     EC B
                    (     
      @'   $940  8) 3 6   %$540%                      (                                             3              (
                 
           ( 6   %$270%                  
                                    6   %$540%  '   $210                                                          
                                                                                                                         '   $210 
                                                                  Solução : Primeiramente racionalizemos a expressão:
                                                                                                                                                limite.
e calcule o             ( )                 §¨§ ¦ ¥ ©   para que exista      £ ¡
                                                                                   ¤¢       [1] Determine o valor da constante
                   
                '   %$#! 
                                                                                                                             9.1 Limites
por ceder, gentilmente estes exercícios.
Agradecemos ao Professor Silvio Pinha Gomes do Departameneto de Análise do IME-UERJ,
                                                                            Exemplos Diversos
                                                                                                                       Capítulo 9
$
                               ¤ ¦VP © E  V © D        S ¤ © $ H© ©  H©
                             T                                    3  1$ 1 I 3
                                         V©     E 
                                                   D                          1
                                                                         © $ © H© 
                                
                                     4 G 4 E          3        G 4 E 3    
                                    4 G                      1  4 F 
                                                                         G
                  P            F  EG              P            E                       E
                                              G
                                F  E A                7  4 F  D A 3   7    F                           D
                                                               Solução : Primeiramente racionalizemos a expressão:
                                                   T   7  4 F                      3 1
                                                                                           42    
                                                                                           §¨§¦¥ ©
                                                               E                     D
                                                                                                                              [5] Calcule:
                                                                                                                                        .              )
                                                                                                                                            ‘ 3
   e
        3  , ou seja            e
                          ‘ 3) ‘ 3¢               . Logo, @ 9     A          @ 9       31
                                                                                         ' 42©
                                                       7  C  £ B 8  £  £ ‘ 3 'ee 87 §¨§¦¥   se                     Sabemos que
                                                                                         
T                ¤ 65655                  3                   ¤ 65655                      
                                                                                           3 P ¤ 65655                            )
   # )     65655  )  2   @@ V  # @@ V  )  65655  ) 4   @@ V   ¤ @@ V 
                                                                                                                                        4  A
                                                                Solução : Primeiramente reescrevamos a expressão:
                                                                      5
                                                        T ‘ 3 P ¤S65650 )    A 42¥§¦1§¨ © 3 
                                                                   ¤ @@ V 
                                                                           tais que                  ) '
                                                                                                £ ¡ 0(        [4] Determine as constantes
                                           $                                                
                                                                            ¤    
                          T ( ¥ b 3 ¡ ¥ V %P P ¤ #‰ C !A X§¨§¦ ¥¡ 3 w ¢¤ P ‰ C A X§¨§¦ ¥¡ 3 © ¡ P 'e ‰ A ©§ §¨§¦¥ ©
                                                                                                       ‡ †( 
                                                          e:           , então                 Por outro lado observamos que se
                                                                          ‘ ’ ‰         
                                                                              
                                                       T ‰ ‰ 3 6e ( ‰ C 3  ‰
                                que               e             D 'e ‰ D 6 D
                                                                                                                      ‰ ˆ  3 'e ‰
   , temos                      Solução : Primeiramente reescrevamos o expoente da expressão. Fazendo                              
              6e ( ‰ 6 3 ‰
                                                                                                           .                 © ¨©
                                                                                                                               § 
                                                                                                                              [3] Calcule:
                                                                                                           ‡ 
                                                                                                            © P 6e ‰ A ¨ §¦¥
                                                                                                q f w †( ¡
                                                                                           X vutsipq ehyfxs              
                                                                                                                           ©
                         ¥
                         TV b 3 V  ¥                ¢¤                            ¥ ¢¤
                                         ‰ ˆ$ £ ‰ ˆ$ §¨ ¥¦ ¡ 3 V ¦£ ‰ ˆ$ §¨§¦¥¡ 3 vutsripihgP 'e  dQ Aa ¨ §¦¥
                                                                                                                cb                     Logo:
   CAPÍTULO 9. EXEMPLOS DIVERSOS                                                                                                              334
.
                                                  D ( ¨  (  c b $   X©                                              [8] Calcule:
                                                     )g¨ D ¦ '  '!''e r€a $%G'e a #!„ §¨§¦¥
                .   V ( „ „ 3 c   c  D c  ddrddT ˆ gS 3 $ 7
                                                           TTTTT   D                                             Por outro lado,
               „ ‡ 1 † „  # 5  E 9
                                 V ©
                                                                                          V ©
                                                                                             
       T                                                    
           $ 7 3 'e 7 §¨ ¥¦ 3 c   T T T T T #1 „  „  „ ¨ §¦¥
                                         1I ( 0 ddrddT  ( ¥ „ 0 V ¥ „ 0  „                      „
              . Logo:
                                                       TT
                                                 D  ddT                                                                     7
                                                                                                                                    onde
                         „ c   g c ¤ (   E c 9  ¥ „   ( „¥  g V ¥  3 'e
                                                                                     D„
                 '
                                           TTTTT
                   6e 7 #!e 3 c 7I ( 0 ddddT  ( ¥  V ¥ 0            
                                                                                        Solução : Dividindo os polinômios:
                            T                                               V © 
                                               
                                     TTTTTT                   
                              c 70 ( 0 ddrdd#7 ( ¥ „ 0 V ¥ „ I „  §¨ ¥¦
                                                                                                                           [7] Calcule:
                                          T #A                      se
                                            D                        se
                                                                             (
                                              D 3                   se
                                                                                           
                                                                         D  D   3 'e ¡
                              D ¥  ¨
                               2g¦‘                                            ‘                                             Então:
            „   ©                                „ „        ©                           „ „ „                      „
      T                  3
              ( ( S E 41 §¨§¦¥  3 ( ( p  3                                                                   3
        ( 3 (                                                     p© S E 42¥¦1 §¨  3 ( 01 „  ( D  42¥§¦1 §¨ 
                                                                 § ©                                  (
                                                          :          . Agora estudemos o caso                     se                logo
                             „ 2A             D                                                         D ¥  ¨
                                                                                                          2¤g©‘ ‘ 3 6e ¡
                                  
                     '
                                       (© p S E 42¥§¦1 §¨  „ „ „ „ 41 §¨§¦¥  „
                       ‘ 3 ( (p
                                                  3 3 ) ( D  3              (
                                          § ©                                       (1                    , temos:                  Se
                                „                         „        „ „                             „                   D ¤g¦‘
                                                                                                                         ¥  ¥
                T                   D 41           3                  D                     3 1
                                                                                              42
                                     D
                   D  D 3 „ GD ( D  §¨§¦¥ 3 ( g 1 „ D ( D  §¨§¦¥ 3  D ¡
                                                                          (
                                              temos:                     ; se        , então      Solução : Observe que, se
                                                   D „ 3  „ ‘ 3  i‘ ¡ „                        ‘ 3 
                           T                                                3 1
                                                                             42
                                #¤ ¢ F01 „  ( D  §¨ ¥¦ 3 6e ¡
                               ‘ £ ( (                                                       
                                                                                       [6] Determine a função definida por:
                     5 P V ©        E        V©             
        TD 3                                          D                  341 ¨ §¥ © 3
                                                                               ¦    7    E          3 1
                                                                                                              42    
                                                                                                              §¨§¦¥ ©
                                V©       E     S                                                     D
                                                          D
                                                                                                                                Logo:
335                                                                                                                      9.1. LIMITES
se
                                                                                    …„…‚
                                                 T ‘#A 
                                                              se
                                                                           ‡ © † ©
                                                    ‘ 3      se
                                                                                                 
                                                                                  …„…‚    3 6e ¡
                                                     ‘ #¥              ‡ © † © 
é contínua em . Reescrevamos a função:                                 Solução : Claramente, o problema é determinar se
                                       ‘                           ¡
                                                                                                          T‘ 3     se
                                                                                                                                       ƒ„…‚ 3    [1]
                                                                                                                    se
                                                                                                            ‘ 
                                                                                                              ¨3           ‡ ©  † ©   6e ¡
                                                                            Analise a continuidade das seguintes funções:
                                                                                                              9.2 Continuidade
                                                                        3
                       T Y D 3     6e ‰ # 'e ‰ # D ¡§ §¨§¦¥ © X'e ‰   8'edQb a ‰ # ¡§ §¨§¦¥ ©
                                                                                    ¤
                                                                                               c 
                                          cb
                                           6e dQa                                   #¢  
                                                                                                                                             Logo:
                                                 
                                                     
                                                                                                              
  T     6e ‰ # 'e ‰  D 3     'e ‰ #    8'e ‰ # 'e ‰  D 3 6e ‰ #  6erc €b a ‰ #
                                                                                                                 ¤
                c
                'e rb€a                                          cb
                                                           G6e ‰ #! 'e dQa                                 
                                                                                                                   #¢ 4
                                                                                                                    , então:                   pois
                                                                                                                     ‘ ©'e dQa
                                                                                                                       ¨3  c b
                                                               ' P
                                                                               
                                                                     'e ‰  A 'e D r€a 3       cb
                     cb                                           cb                        cb
             P'e r€a   8'e a  A D 3 6e a #  ( § ¥ dQa   ( § ¥ a # 'e r€a 3  ( § ¦  dQa     ¥ cb
                                                               Solução : Primeiramente reescrevamos o numerador:
                                                                                   §
                                                  
                                             T 6e ‰ #  G'edc Qb a ‰  ¡¨§¨§¦¥ ©
                                                        ¤
                                                          ¢ 
                                                          #£4                                                                      [9] Calcule:
                                                          não existe.             cb                      
                                                                                                           ©           Consequentemente,
                                                                 w '!'6e $%8'e #
                                                                             dQa $ w  a  §¨§¦¥
                                                                                            §¦§¨ ¥ ©
                                        T D 3 5 'e a  §¦¨ ¥ © 3
                                                  
                                                    '                
                                                                   © 6e ¡ ©
                                                3 'e a # § §¨§¦¥ 3 6e ¡ § ¨ §¦¥
                                                                               
                                                                                                                                             Então
                                                               se T( 3                      X
                                                               se
                                                            ( ¤ g¦‘
                                                               se
                                                                 ¥  ¨                
                                                                                     6e a #   3 6e ¡
                                                     ‘ ¥ 
                                                      2¤g¨ (                     
                                                                                 ¤ 6e a # 
                                            . Logo                        3 (
                                                                            e         3  ( r€a   cb           ( 3
                                                                                                          , então                        . Se
                                                                                                                                            a 3
, logo          3 cb          e
                           r€a $                             cb 
                                                              então                              . Se
                                                              dQa X  ¡ (  ''  $$  6e a  #
                                                                    ¨ ‘         ¥  ¨ ‘                                     , logo
                                                                                                                            3 6e '¡ e  X'e 3¡
                                                                                                                                             
                  e                            , então
  3 '!''e‘  r€a $'$!''e #¥ $6e dc Qa ¥ ¨ 6Xe                      . Se                                      Solução : Seja
         cb ‘  b                                                      ‘ ¥ 
                                                                         ##¨ ( '!''e r€a $%G'e a # 3
                                                                                               cb $                     6e ¡
CAPÍTULO 9. EXEMPLOS DIVERSOS                                                                                                                   336
§ ¨
                                                                                                                                  b
                                                                                                                                  ¡ @       3                                       [3]
                                                                                                                                               § ¨
                                                                                                                                         ¥ 4§¨1 §¦¥  ¡ 3 6e ¡
                                                                                                                                                            
                                                                                                                                 ¡ © b  ¥
                                                                                                                                        
                                                      ¥
                                                       s¦
                                         .                                    Figura 9.2: Gráfico de
                                                        ¥ ¦      
                                                 VV ¥1 s ¢¢ (( 3 6e ¡
                                                                                    -1
                                                                                    -0.5
                                             2                        1                              -1               -2
                                                                                    0.5
                                                                                    1
                                                                                                                           não é contínua em .                                    Então,
                                                                                                                    ‘ w
                         ¡                                                                                          ¡
                                                                                                                                                                   w ¡ ©
                                                                                                                                                                     
                                              
      T  3 P ¤ © V D ˆ A § §¦§¨ ¥ © 3 6e ¡ § §¦§¨ ¥ © X          e                             
                                                                                                      3 P 5 © V D C A §¦¨ ¥ © 3 6e
                                                                                                                                                                ¡ §¨§¦¥
                  D                                                                                             D
                                                                  , temos:
                                                                      3 V©        ¢ ¤
                                                                                                               e
                                                                                                     § © §¨§¦¥          ¢ £
                                                                                                                                  
                                                                                                                       3 V © w © §¨§¦¥                   Sabendo que
                                           ¡                                          ¡                           ¡
                        T ¤ © V D                                V                      ¡                     ¡
                                                                                                       3 ¤ © V D 3 
                                     D       C 3 E ¤5©  © D V D
                                                     D                                                   # © V D 'e ¡
                                                                                                               Solução : Reescrevamos a função:
                                                                                                                                                             ¡
                                                                                                                                          .   5            ¡
                                                                                                                                                          © VD 3                    [2]
                                                                                                                                                2         © V D 6e ¡
                                                              Figura 9.1: Gráfico de .
                                                                  ¡
                                                                                    -1
                                                                                    -0.5
                                                 6            4           2                     -2        -4     -6
                                                                                    0.5
                                                                                    1
                                                                                                                           não é contínua em .                                    Então
                                                                                                                 ‘                                    w                       ¡
               T                  
                                  ©              
                                                   X©                         e                            
                                                                                                            ©                                 
                                                                                                                                                ©
                                          
                  3 'e  r€a § ¨ §¦¥ 3 'e ¡ § ¨ §¦¥
                      cb                                                                   cb                    
                                                                                           X 3 6e  dQa § §¨§¦¥ 3 6e                      ¡ §¨§¦¥
                                                                                                                                                                                  Logo,
337                                                                                                                                  9.2. CONTINUIDADE
¥  ©        
                                        ¥ ©                                                                                                  w 
                                                                                         ¤                   ¤
                                                             e                                                             ¥¦
    T                          
       X 3    ( a # §¨§¦¥ 3 'e ¡ § §¨§¦¥                           3                                     §¨¥ © 3 6e ¡ §¨¥ ¥¦ ©
                                                                                                                                         
                                 . Por outro lado:                                                           , então                           Solução : Se
                                                                    3  ( $ a  3   $ ¡                     se
                                                                                                                                   3 
                                                                                         
                                                                                       T %A 
                                                                                                                 se            
                                                                                                                                    4 c                     [1]
                                                                               %¨g©
                                                                                    ¨                                                                
                                                                                                                                    ©   a    3 6e ¡
                                                                                                                                           ¤
                                                                                                                 se
                                                                                       9¤¥                                      
                                                                                                                                  4 
                          Determine as constantes tais que as seguintes funções sejam contínuas:
                                        Figura 9.3: Gráfico de .
                                          ¡
                                   3                                                                   -3
                                                                       3
                                                                                                 £               é contínua em .                          Então,
                                                                                                                                                      ¡
                                                T‘                se
                                                   2A  '  3   se
                                                   ‘#¨¤ ‘  'e ¡
                                                                                                                              § ¨
                                       . Reescrevendo a função:
                                                                                    b             3
                                                                                          ¥ 4¨1 §¦¥  ¡                              , então                  Se
                                   h                                           ‘ 3 ¡    D                                                           ‘ 3 
                                                                                                     § ¨
                                      ¡V
                                              ¢ £¡                                     3
                       T  ¤ ¢ 1                     3 1 §¥
                                                         4¨ 2 ¡
                                                            ¦                                         § ¨
                                                                 3   ¡ b b S ¥ ¥ 4§¨2¥§¦1  ¡
                                                ¢ £¡

                         3  ¤ ¢s h ¡ 1 V 4                        ¡ © Sv   
                                                                                                                                                          Logo:
                             §
                 T¡b  ¥ ‰ 3 ¡b                           § ¨   ¥               
                                                                                          b  §                          § ¨                     § ¨
               b    b  %                                                                               
                                                                         ¡ b ¥ 3 ¦b ¡   ¡ b ¥ 3  ¡ b S ¥
         ¡ ©       § ¨                                § ¨                § ¨                                    § ¨                           § ¨
                 ¥ ‰ 3 ¡©  ¥                                    ¡                                       
               Sv    v                                       © b ¥ 3   ¡ © S ¡ © b ¥ 3  ¡ © b Sv ¥
                                                                                                                                     , então:                  Se
                                                                                                                                                      ‘ #A 
                                                                                 § ¨
                                          T  b  ¥ 42             3 1
                                            ‘ 3  ¡ ¡ © b v ¥ §¨ ¥¦ ¡           § ¨
                                                            
                            . Logo,                            3 1
                                                                42         3 41                e               , então,                      Solução : Se
                                        ¢ ¤ 3  ¡ b %$ §¨ ¥¦ ¡ ‘ 3 ¡ © b §¨§¦¥ ¡
                                                                                                                                   ‘ ¥
                                                                                                                                     #
CAPÍTULO 9. EXEMPLOS DIVERSOS                                                                                                                               338
T  3 ¤  § ( §¨§¦¥ ©             3 Y SF        (                                    ©                ©
                                       y ¡                           w § D                        ¥   § ( §¨ ¥¦ 3 'e ¡ w§ ( §¨ ¥¦
                                     3P ‰                                   y (    w   D                                               ¥
                                            
                                                                            ¨§¦§¥ ¡ 3  E!eC ( §¨§¦¥ © 3 'e ¡ ( §¨§¦©         
                                   y     ‰ y y dQa A y 
                                                  cb                                   @ DE e y dQa
                                                                                                      cb
                                                                                                                                         ¤
                                                                                                                       . Logo:              3  D ¡      , então                     Se
                                                                                                                                                                          D 3 
                           TP ‰
                              ‰
                                    y  3 ‰  c b                                                D 
                                                                                       3  E!eC c b 3 § 7  b
                                  c 
                                  y rb€a A y  ‰ y dQa                                      D
                                                                                            @ E!e y r€a  yE!'y$ „ d‚c Qa    DD                 e:
,   ¥            , então                   , temos que                              , fazendo                         ¥  ƒ…„‚            ¥  …ƒ        Por outro lado:
        ‘ ’ ‰             ¥ D                       D E! 3 ‰                                        ‡‡ ( ‡ ¥ ( © † @V© †V 3 ‡ @(( ¥¤ © @V© V †
                                           T ¤ e ( 1e
                                                           D                                  (
                                                                                       3 Y )   
                                                              D
                                               ¡ e (  1e                           D
                                                                                        §   y (  ¥   
                                                                                   Solução : Primeiramente fatoremos os polinômios:
                                                                                                          T D2A      se                          ¥
                                                                                                                      se
                                                                                                                                   ¤  H1 © 1 (  © ¥  © P ¢ © 1 P ©
                                                                                                                                                            ¤
                                                                                                                                                                                      [2]
                                                                                                             D 3     se                                  ¥  …ƒ           
                                                                                                                                                                    „ ‚  3 6e ¡
                                                                                                              D ¥
                                                                                                               2¤                          ‡ @(( ¥¤ © @V© V † 
                                                            Figura 9.4: Gráfico de .
                                                                 ¡
                                                                                          -1
                                                                 3                                         -3
                                                                                          1
                                                                                 se                    
                                                        
                                                      T %A 
                                                                                 se
                                                                                                ©
                                                                                                  a   3
                                         ¤g©
                                           ¨  ¨                                 se
                                                                                                               
                                                                                                  ©  #  6e ¡
                                                      9  ¥                                        ©  
. Logo:           3 c     , isto é,                         Como os limites laterais devem ser iguais, temos que                                                                 e
                  
                                   
                                   X 3  c                                                                                            w  ©
                                                                                               e
                                                                                                                         ©               
                      
                    T  c  3   4 c  §¨§¦ ¥ © 3 6e ¡ §  §¨§¦¥ ©
                                                                                                                              
                                                                                                        X 3    ( a # ¨§§¦¥ 3 6e ¡ §¨§¦¥
                                                                              então                     . Por outro lado:
,            . Se     3      ¤
                                    , isto é,                        ¤
                                                                                                                           X 3  ( a  3   ¡
                                                                              Como os limites laterais devem ser iguais, temos que
     3             
                                                 
                                                 X 3 % 
339                                                                                                                                     9.2. CONTINUIDADE
V           V        ¡
                                                                  se
                                                                               5
                                      T %A                   ¢ V HH©11 ©  ¥ ¥   © ©  @V¥ P 1 © P ©
                                                                                                                        ¦ ¤
                                                                                                                         §¥
                                                                  se
                                ¨  ¨
                                %#©‘                             se
                                                                                  ‡
                                                                     ¢(   ( q   3 
                                                                                      V©  ¥† vuts©ipehf ‚   6e ¡
                                          ‘ ¥
                                           #
                                                                                                                                                               ¤
                                                                                                                                    .           e                  que tem soluções
                                                                                                                    ¢( 3 c ( 3
                                                     '                                                      ¤
                                                         Y 3 c 
                                                                                                                    ¤
                                                         3 c  
                                                                                                                                                                                        ¤
                                                                                                                . Então, temos o sistema:                                                           logo,
                                                                                                                                                                Y 3 c 
                 '         D   © D                                                                      ©                                ©
                   Y 3 g4 § §¨¦§¥ 3  g e (  !e § §¨§¦¥ 3  § §¨§¦¥
                            ¤   ¢ £                                        ¢ £
                                                       y ¤ e (   1e w  © 'e ¡ w  ©
                                  ' c                    ¤
                                                                                                                           ¤
                                                                                                                                                     
                                            3  c  ' (  a # §¨§¦¥ 3 6e ¡ §¨§¦¥
                                                                                                                                
                                                                                                                ¤                                                                               ¤
                                                                         c  3   ¡, e:                                                , então 3            . Se          3 c                    logo,
                                                                           ¤                                                    ¤
                                              ' c             3c ( a                                                     §¨  ¥¦    §¨  ¥¦ 
                                                                                                                      § X© 3 ¡ § X©
           '
                                                  cb w  
                                              dQa ©          66  # w © 'e w X©                               
                     cb  ‡
              3 P 'e  dQ…aA P #6e© † ƒ„…‚ $bA §¨¦§¥ 3 g © † „…ƒ‚ b §¨§¦¥ 3 'e ¡ §¨§¦¥ ‡                                       
                                                                                                                                                          ¤
                                                                                                                                         , e:
                                                                                                                                     c  3  i‘ ¡                   , então                          Se
                                                                                                                                                                                            ‘ 3 
                                D
                          T  g e (  1e 3 ` ¤   (  Y                   
                                       ¢ £
                              y ¤ e (   1e  ¥ ¤     ( 'y¤                                             
                                                                                     Solução : Primeiramente fatoremos os polinômios:
                                                                                                                                          V1  V      ¡
                                                                                                                                    se
                                                                                                             
                                                                                                           T %A                     ¢ V 1 H©  ¥ ¥  © @V¥ P ©
                                                                                                                                                                          ¤
                                                                                                                                    se                                                                [3]
                                                                                                        %¨g¦‘  ¨                 se
                                                                                                                                         c H© '5   ( ©  a 1 P © 
                                                                                                                                                       V ¥ vutsrq© ipihf ‚  
                                                                                                                                                                                    3 6e ¡
                                                                                                                                                                                      
                                                                                                               ‘ ¥
                                                                                                                #¤
                                                             Figura 9.5: Gráfico de .
                                                              ¡
                                                                                                                                -1
                                               6        5              4             3           2                      1                -1
                                                                                                                                1
                                                                                                                                2
                                                                                                                                3
                                                                                                                                4
                                               T D2A        se                                       ¥
                                                             se
                                                                                 ¤  H1 © 1 (  © ¥  © P ¢ ©
                                                  D 3       se                                         ¥  ƒ…                     
                                                                                                                 @V1 „ V P ‚ ©  3 'e ¡
                                                   D ¥
                                                    2                                   ‡ @(( ¥¤ © @V© V † 
                                                                                                                                                                                            ¤
                                                                                                                                                                   e:   @V V 3                 Então,
CAPÍTULO 9. EXEMPLOS DIVERSOS                                                                                                                                                                        340
Figura 9.7: Gráfico de .
                                                                        ¡
                                                         0.1            0.05                                   -0.05            -0.1
                                                 T ‘#A                     se
                                                                           ©‡‡ © @@  V  1 V…„† ƒ‚               ¢ £¡
                                                                            se                 †
                                                                                                 ¤       ¤ ¢
                                                                                                          ¥£
                                                       ‘ 3  ‡                                                  3 
                                                                            se
                                                                    © @VV 1 ¥   'e ¡
                                                     ‘ #¥                       ( † V ¡ H©  
                                                                                      e:                 , temos que                                                     por outro lado,
;   ‘                             , temos,
                                                                 ‘ y‘ s  3 c   § ¨
                                                                                                                    
                                                                                                                                3  § X§¦§¨ ¥ ©
                                                                                                                    ©  i‘ ¡ s 'e ¡ § ¨                                 § ¨
                                                                                                                                                                              
                                                                                                                                                                              X©             Como:
      y‘dc  3 'e ¡ § ¥¦§¨  ©   ‘yd 3  @ V b  ¥ 3  ¢ '8y‘d¤ $ § ¨ §¦¥ ¥ 3 ¢ 68yd5$ ¥ § §¨§¦¥
                                         ‘                                   s ‘                                                  ‘‘ 
                                                                                                                               § ¨
                                                                                          ‘‘ 
                                                                          T P ¢ '8yd¤%$ ¥ A § X¥¦§¨  © c 3
                                                 § ¨                                                     § ¨
                                                                                                          
                       P  ‘‘                                ‘
                         68yd¤$ ¥ A § §¦§¨ ¥ © c 3 P 68‘yd¤c $ ¥ A P c c dQ Aa § X¥¦§¨  © 3 'e ¡ § X¥¦§¨  ©          
                                                                                                            6  c b
                                                                                                                                                                                              ¤
                                                                                                                                               . Por outro lado:                                  isto é,
                                                                                                                           w                                                Y 3
                                                                                                     ¤
                                           '                        ¤
                                                                                                                ¤
                                              # 3  ‘i ¡ 3                     Y ( 6e ¡
                                                                                                            3  §¦§¨ ¥ ©
                                                                                                                                     ¤
                           . Logo, necessáriamente devemos ter que:
                                                                                                                  2 3  i‘ ¡                     , então           3                   Solução : Se
                                                                                                                    T ‘gA                  ‡
                                                                                                                                           se © @‡ ©  „ V ‘ 1ƒ„V…‚†    ¢ £¡
                                                                                                                                           se                  †                     ¤
                                                                                                                                                                                                     [4]
                                                                                                                                                             ¤         ¤ ¢
                                                                                                                                                                        ¥£
                                                                                                                                                                                  
                                                                                                                        ‘ 3  ‡   3   se
                                                                                                                                      @VV #1 ¥  6e ¡
                                                                                                                       ‘ ¥
                                                                                                                        g           ‡©  ¥† ¡ † H©         ¡
                                                                    Figura 9.6: Gráfico de .
                                                                        ¡
                                                          6                 4              2                                   -2
                                                                                                                    1
                                                                                                                    2
                                                                                                                    3
                                                                                                                    4
341                                                                                                                                                 9.2. CONTINUIDADE
.                        , que é paralela à reta                                   [3] Determine a equação da reta normal à curva
     ‘ 3   ¥ D 8 D                                  ¨
                                                       'e c © 3 ¥
                                               T D 3 ¥   D § g!eCD 3                                     ¥
                                                                      
                                                                                                             ¥
                                                          D            
                                                   3 ¥ E7 § #!e D 3
                                Logo, as equações da reta tangente e da reta normal são, respectivamente:
                                                                                                  ¥
                                   T D 3 $ (        ¤
                                                                   §                                                         ¤
                                                                              ( D 
                                                                                ) ! gˆ G 3    3 (
                                          D 3 V               ¤
                                                                           §              D
                                                                                   (  ! g   3   ¥ 3 V                   ¤
                                          $                                                
tangente e da reta normal à curva são, respectivamente:
Logo, o único ponto de interseção é        . Por outro lado, os coeficientes angulares da reta
                                                                                            ‘ ' $
                                   T  3  ¦ ‘ 3 2D7                                 ¦
                                                                                                           cb
                                                                                               ‘ 3  2D7 r€a 9  
                                                                                                      
                   , temos:             Solução : Determinemos a interseção da curva com o eixo dos . Se
                                  ‘ 3 ¥ 
                              no ponto onde a curva intersecta o eixo dos .
     V (¥   cb           ¥                                                                    
                              [2] Determine a equação da reta tangente e a equação da reta normal à curva
           © r€a 9   3                                                                                                                           
                                                                                                     .               e            ,         ,          Então
                                                                                                             Y 3 c V 3 V( 3 )  3  
                                                                                        T cb
                                                                                          'e  dQa 3
                                                             Y
                                                    ' D ` ( a        ' DD a   Y 3
                                                                              
                                                        ' Y  a        ' D D a  ` 3 'e ¡
                                                                                                         
                                  , logo:                                                  e                                              Por outro lado,
                                             cb D
                                             'e ( r€a ˆ                           
                                                                          3 6 D a # #8' D ( a # D 3 ' Y  a #
                                                  T `                                                  
                                                       
                                                       6 Y  a #                           
                                                                        6 DD a # ` 3 'e ¡
                                                                                                                                       
                                                                                          ; então:               e
                                                                                                         V 3 V( 3 )  3           ,        cuja solução é
                                            '
                                                 ‘ 3                                          Y )
                                                 3                                      )    
                                                  ‘ 3                                     )          obtemos o sistema:
; logo,                             e                                  ,                                 Solução : Primeiramente note que
                                               
                )   3  ( ¡ Y  ) 3  i‘   ¤¡                                     )    3  i‘ ¡                             e .
                                                                                                                                   c H('   ' )      determine
                  „
,    ¢      ,   pode ser escrita na forma
       £¡ c 'e dQa 3 'e ¡
               cb                                                                      e que
                                                                                                 ¡                                                  
                                                                                                            ‘ 3  i‘ ‡  † ¡ 3  i‘   ¡¡ 3  i‘ ¡¡ 3  i‘ ¡
,                       , onde     )
                             £ ¡ ' 0'    . Sabendo que                                                                           [1] Considere a função
     3  ( ¡                                       '                         Y  a # x' D a  )    3 6e ¡
                                                                                                                       
                                                                                                                                      9.3 Derivada
CAPÍTULO 9. EXEMPLOS DIVERSOS                                                                                                                             342
9.3. DERIVADA                                                                                                                                                             343

Solução : Primeiramente, calculemos os coeficientes angulares que precisamos. O coeficiente
                               3       ‘ 3  ¥ E! D
                                               D
angular da reta                é       . O coeficiente angular da reta normal à curva é:
                                                            ¤


                          V                                                                                        
          S 3   ¥ 3 (                                         ¤
                                                                                                                    T 'e c ¨
                                                                                                                      
                  ( 3V
Como as retas são paralelas, temos que                                       ¤            ¤
                                                                                                           , isto é:

            3 'e c ¨ §  'e  ¨ S
                                    3 c                                                                                   D        §          ¢(¥b 3 
logo, temos que
                           ( ¥ b D 3  ( ¥ b c¨ ( ¥ b 3  ¥                        . A equação da reta normal à curva que passa pelo
ponto                         é:
                                                          ( ¥ b D ' ( ¥ b
                §
                       ( ¥ b 7 3 ( ¥ b g ¥
                                          D                                                                     ¥                   T(¥b  3 
                                                  0.6



                                                  0.4



                                                  0.2




                                                                    0.25            0.5           0.75              1               1.25       1.5



                                                 -0.2



                                                 -0.4




                                                  Figura 9.8: A reta                                   ¥
                                                                                                               (¥b  3                        .

[4] Determine os parâmetros , e                    
                                       tais que a parábola
                                                    )               £ B¡                                                                   ¥
                                                                                                                                                ) (  3   tangencie a reta
¥
     3
      no ponto de abscissa e passe pelo ponto        .
                                                                                                    ‘ ' X$
                                                                                                         
Solução : Como o ponto
                                             ‘ ' X$
                                                           deve pertencer à parábola, substituindo na equação, temos
que:
                                     T ‘ 3  )    $
                                                                                                                                                                    3
Como a parábola deve tangenciar a reta
 3                                       no ponto de abscissa , temos que se
                                                     3 ¥                           , então
                                                                                 ' $                                                                        ¥
    . Isto é, o ponto    é comum à reta e à parábola; substituindo na equação, temos que:
                                    T  3  )     D
O coeficiente angular da reta é                          ¤
                                                            3                    e o coeficiente angular da reta tangente à parábola é
¤
      D 3 ¥ 3 (, logo   )        ( 3V ¤
                                                         )
                                                                V D 3 $ (
                                                                                . Como           :¤                    ¤




                                       T  3 )    D  
Logo, de (1), (2) e (3) temos o sitema:
                                                                                   )
                                                                                                              ‘ 3
                                                                               )                           3
                                                                            )
                                                                                  D                           3               '
344                                                                                                                   CAPÍTULO 9. EXEMPLOS DIVERSOS

cuja solução é:                  V 3 3        e      )   V( 3       .


                                                                                                  2




                                                                                                  1




                                                                                                                  1




                                                                               Figura 9.9: Exemplo [4].

[5] A forma de uma colina numa área de preservação ambiental, pode ser descrita pela equação
¥
      § § B   ‘ ( D C 3
                          ¢
                     , sendo
                             £                              y ¨  ¨ §
                                        . Um caçador, munido de um rifle está localizado no                               yd
                                                                                                                         ‘‘
ponto      . A partir de que ponto da colina, a fauna estará   segura?
                                                                                                                                




                    '

Solução : Denotemos por
                                                     ¥ '  e 3  7
                                       o ponto além do qual a fauna não pode ser vista pelo
caçador, situado no ponto
                                                                  ‘ ' D
                               . A fauna estará a salvo, além do ponto onde a reta que liga
                                                                                                                                   7
                                                                                                                                       
     ‘ ' D
     à colina seja tangente à mesma.




                                                                               2




                                            Figura 9.10: Vista bidimensional do problema.

Observe que
                                     5  D 3   ¥
                                                ¢ £
                                                          é o coeficiente angular de qualquer reta tangente à parábola; logo,
no ponto , temos
                   7       5   D 3   ¥                              ¢ £
                                                                 e a equação da reta tangente é:

                                                                 ¥                 T    !e'y ¤   D $ 3  ¥
                                                                                                   ¢ £



Como a reta passa por
                                             ‘ ' D      , temos:
                                                             $                   T    D 'y 5   D $ 3  ¥
                                                                                                         ¢ £


               7
O ponto                   também pertence à parábola; então:

                                                                               T § §   ¤ ( ˆ 3  ¥  D
                                                                                                    ¢ £
9.3. DERIVADA                                                                                                                                                       345

Igualando (1) e (2):
                             ‘ 3  Y   e' `  e 3 y   Y ( 
                                                       D                                                  §
                                                                                                                       ` 3         e       T§ 3 ¥
Então,
         7             ` A                                       §' ` 3 
                               e a fauna estará a salvo a partir de                                                .
              D ' $
[6] A reta tangente à curva
                                     2 (  D   ˆ 3 ¥
                                                                                   no ponto                                   é também tangente à curva em
um outro ponto. Ache este ponto.

Solução : O coeficiente angular da reta tangente à curva é                     , como                                   ¥
                                                                                                                                 Y Y 3                      D ' $
é um ponto comum à reta e a curva, temos
                                                                             3 $   ¥
                                                                                
                                                    . A equação da reta tangente que passa
pelo ponto       é:
                    D ' $              3
                            . Para determinar os pontos comuns à curva e à reta tangente,
                                 ¥
resolvemos o sistema:
              0 (  #  C 3 ¥ 
              D 
                      '
                         54 3 ¥
                         
obtendo
                           ¡3  ‘ 3 ( # ( e 3 ¤ (  E  
                                                 D           e                   . O ponto procurado é
                                                                                                                                       ‘ ' X$
                                                                                                                                                 .



                                                                                2




                                                               -1                                              1




                                                        Figura 9.11: Exemplo [6]


[7] O ponto
                   7         ' § 3
                     pertence à parábola
                                                                          Y 3(       ¥   . Determine todos os pontos
                                                                                                                                                       8
                                                                                                                                                           da parábola
                         8                          7
tais que a normal em passe por
                                                                                                  
Solução : Um ponto arbitrário da parábola é
                       (© 3 ¤£V ¢ 3                                         8         3
                                                       e o coeficiente angular da reta normal
                                                                                          '   ¢
                                                                                                       
                                                                                                                                         8
à curva é:     ¤
                         . A equação da reta normal à curva no ponto é:
                                    V
                                                                        T    !e D 3 ( Y  
                                                           ¥                         
Mas a normal passa pelo ponto
                                                   ' §       , logo:

                      §  D 3 ( Y                   3 ` Y   ` D    §                                                   T ‘ 3  Y    ' #   ' §
                                                                                                                                          D 
                             
                     3V 8
Os pontos procurados são                          3  8  ' D $ 3 ( 8  Y ' Y $
                                                                   ,                             e                              .
                                                                                                                                                 ' §
346                                                                                                                   CAPÍTULO 9. EXEMPLOS DIVERSOS




                                                                                                          9



                                                                                                          4

                                                                                                          1
                                                                   -4                               -2                           6




                                                             Figura 9.12: Exemplo[7].


[8] Nos pontos de interseção da reta              com a curva
                                                                               , traçam-se as
                                                                                            ¥
                                                                                                     ‘ 3 9
                                                                                                                                    ¥   ¥  Y ( 3
normais à curva. Calcule a área do triângulo formado pelas normais e pela corda que subtende
os referidos pontos de interseção.


Solução : Determinemos os pontos de intersecção da reta
                                                                                                                            ‘ 3 ¤ ¥ 1
                                                                                                                                             com a curva:
                                                                              ¥
                                                                                                               (
                                                                                                     ¥   Y ¤4 3
                                                                               ¥                           T  3
Obtemos
             ‘ 3  Y e' e 3 Y C ¥ ( 
                                                           ; então      e
                                                                                                    Y 3   3 
                                                                                 ; logo temos os pontos
                                                                                                                                                                     7    D ' $ 3
e
        7                                ¥' Y 3 (
                                . Por outro lado, os coeficientes angulares das normais são dados por:
                                                                                                                                                                                     V
                                                                                                                       
                                                               ¤
                                                                           3                           ¢ Y ! D 3  
                                                                                                                          ¥
¤
            V( 3 $
                       e   ¤
                                 V 3  Y    . As equações das normais em                           (7 V7              e       , são respectivamente:
                                                                                        D                      '
                                                                                                                   3  ¥
                                                                                    Y                        T Y D 3 0 ¥
                                                                                                                      
Resolvamos o seguinte sistema para achar os pontos de intersecção das retas normais:

                                                                           D                   ¥
                                                                                                                4 3
                                                                                                                
                                                                           Y                    ¥        ¢ Y #4C 3
                                                                                                             D 
obtemos
            § 3  5( 3 ¥
              e                               . Seja
                                                               5
                                                               '      ( § 37     . A área do triângulo de vértices
                                                                                                                                              7   (7 V
                                                                                                                                                  ,      e
                                                                                                                                                             7
                                                                                                                                                                    é dada por
     
      , onde:
                          (¡  3
                                                                      
                                                ¢   ¥ D  3 ££££ § Y  ££££ 3                                     §
                                                                                                                             
                                                                                                                                T
                                                                                                                                         
                                                                                                                                   T @ ¥Y 3
                                                                £ D ¥  ¥ D £
                                                                     ¤
266877 exercicios-resolvidos-de-calculo-i
266877 exercicios-resolvidos-de-calculo-i
266877 exercicios-resolvidos-de-calculo-i
266877 exercicios-resolvidos-de-calculo-i
266877 exercicios-resolvidos-de-calculo-i
266877 exercicios-resolvidos-de-calculo-i
266877 exercicios-resolvidos-de-calculo-i
266877 exercicios-resolvidos-de-calculo-i
266877 exercicios-resolvidos-de-calculo-i
266877 exercicios-resolvidos-de-calculo-i
266877 exercicios-resolvidos-de-calculo-i
266877 exercicios-resolvidos-de-calculo-i

Más contenido relacionado

La actualidad más candente

Apostila de mecânica aplicada
Apostila de mecânica aplicadaApostila de mecânica aplicada
Apostila de mecânica aplicadaCaio Cesar Cardoso
 
Solução da lista 2
Solução da lista 2Solução da lista 2
Solução da lista 2Ayrton Lira
 
Equações diferenciais dennis g. zill vol 01
Equações diferenciais   dennis g. zill vol 01Equações diferenciais   dennis g. zill vol 01
Equações diferenciais dennis g. zill vol 01ricardoehumasiladabino
 
Cálculo numérico, aspectos teóricos e computacionais 2 edição - márcia a. g...
Cálculo numérico, aspectos teóricos e computacionais   2 edição - márcia a. g...Cálculo numérico, aspectos teóricos e computacionais   2 edição - márcia a. g...
Cálculo numérico, aspectos teóricos e computacionais 2 edição - márcia a. g...Tales Abrantes
 
Mecânica Vetorial Para Engenheiros ( Solucionário Dinâmica )
Mecânica Vetorial Para Engenheiros ( Solucionário Dinâmica )Mecânica Vetorial Para Engenheiros ( Solucionário Dinâmica )
Mecânica Vetorial Para Engenheiros ( Solucionário Dinâmica )iuryanderson
 
Aula 11 associação de resistores
Aula 11   associação de resistoresAula 11   associação de resistores
Aula 11 associação de resistoresMontenegro Física
 
matematica-contato-2-ano-2016.pdf
matematica-contato-2-ano-2016.pdfmatematica-contato-2-ano-2016.pdf
matematica-contato-2-ano-2016.pdfCristiane Silva
 
Mecanica dos Materiais Beer Johnston 7 edicao.pdf
Mecanica dos Materiais Beer Johnston 7 edicao.pdfMecanica dos Materiais Beer Johnston 7 edicao.pdf
Mecanica dos Materiais Beer Johnston 7 edicao.pdfTomCosta18
 
Solucionário Capitulo4 FOX
Solucionário Capitulo4 FOXSolucionário Capitulo4 FOX
Solucionário Capitulo4 FOXMarilza Sousa
 
Teoria de conjuntos fichas de exercícios
Teoria de conjuntos   fichas de exercícios Teoria de conjuntos   fichas de exercícios
Teoria de conjuntos fichas de exercícios wilkerfilipel
 
Equilíbrio do corpo rígido 3 d-aula 2
Equilíbrio do corpo rígido   3 d-aula 2Equilíbrio do corpo rígido   3 d-aula 2
Equilíbrio do corpo rígido 3 d-aula 2Manuela Farinha
 
Física lei de lenz e indução eletromagnética
Física lei de lenz e indução eletromagnéticaFísica lei de lenz e indução eletromagnética
Física lei de lenz e indução eletromagnéticaFelipe Bueno
 
Fluidos problemas resolvidos e propostos
Fluidos problemas resolvidos e propostosFluidos problemas resolvidos e propostos
Fluidos problemas resolvidos e propostosValdineilao Lao
 
Mecânica vetorial para engenheiros (estática) 7ª edição beer
Mecânica vetorial para engenheiros (estática) 7ª edição beerMecânica vetorial para engenheiros (estática) 7ª edição beer
Mecânica vetorial para engenheiros (estática) 7ª edição beerAnderson Carvalho
 
Relatório de carga e descarga de capacitores
Relatório de carga e descarga de capacitoresRelatório de carga e descarga de capacitores
Relatório de carga e descarga de capacitoresAnderson Totimura
 
Combinatória e probabilidade
Combinatória e probabilidadeCombinatória e probabilidade
Combinatória e probabilidade25698491163
 

La actualidad más candente (20)

Apostila de mecânica aplicada
Apostila de mecânica aplicadaApostila de mecânica aplicada
Apostila de mecânica aplicada
 
Rm exerc resolvidos
Rm exerc resolvidosRm exerc resolvidos
Rm exerc resolvidos
 
Solução da lista 2
Solução da lista 2Solução da lista 2
Solução da lista 2
 
flambagem
flambagemflambagem
flambagem
 
Equações diferenciais dennis g. zill vol 01
Equações diferenciais   dennis g. zill vol 01Equações diferenciais   dennis g. zill vol 01
Equações diferenciais dennis g. zill vol 01
 
Cálculo numérico, aspectos teóricos e computacionais 2 edição - márcia a. g...
Cálculo numérico, aspectos teóricos e computacionais   2 edição - márcia a. g...Cálculo numérico, aspectos teóricos e computacionais   2 edição - márcia a. g...
Cálculo numérico, aspectos teóricos e computacionais 2 edição - márcia a. g...
 
Mecânica Vetorial Para Engenheiros ( Solucionário Dinâmica )
Mecânica Vetorial Para Engenheiros ( Solucionário Dinâmica )Mecânica Vetorial Para Engenheiros ( Solucionário Dinâmica )
Mecânica Vetorial Para Engenheiros ( Solucionário Dinâmica )
 
Aula 11 associação de resistores
Aula 11   associação de resistoresAula 11   associação de resistores
Aula 11 associação de resistores
 
matematica-contato-2-ano-2016.pdf
matematica-contato-2-ano-2016.pdfmatematica-contato-2-ano-2016.pdf
matematica-contato-2-ano-2016.pdf
 
Mecanica dos Materiais Beer Johnston 7 edicao.pdf
Mecanica dos Materiais Beer Johnston 7 edicao.pdfMecanica dos Materiais Beer Johnston 7 edicao.pdf
Mecanica dos Materiais Beer Johnston 7 edicao.pdf
 
Solucionário Capitulo4 FOX
Solucionário Capitulo4 FOXSolucionário Capitulo4 FOX
Solucionário Capitulo4 FOX
 
Teoria de conjuntos fichas de exercícios
Teoria de conjuntos   fichas de exercícios Teoria de conjuntos   fichas de exercícios
Teoria de conjuntos fichas de exercícios
 
Aula 09 Medidas de Tendencia Central de Dados Agrupados
Aula 09   Medidas de Tendencia Central de Dados AgrupadosAula 09   Medidas de Tendencia Central de Dados Agrupados
Aula 09 Medidas de Tendencia Central de Dados Agrupados
 
Equilíbrio do corpo rígido 3 d-aula 2
Equilíbrio do corpo rígido   3 d-aula 2Equilíbrio do corpo rígido   3 d-aula 2
Equilíbrio do corpo rígido 3 d-aula 2
 
Física lei de lenz e indução eletromagnética
Física lei de lenz e indução eletromagnéticaFísica lei de lenz e indução eletromagnética
Física lei de lenz e indução eletromagnética
 
Fluidos problemas resolvidos e propostos
Fluidos problemas resolvidos e propostosFluidos problemas resolvidos e propostos
Fluidos problemas resolvidos e propostos
 
Mecânica vetorial para engenheiros (estática) 7ª edição beer
Mecânica vetorial para engenheiros (estática) 7ª edição beerMecânica vetorial para engenheiros (estática) 7ª edição beer
Mecânica vetorial para engenheiros (estática) 7ª edição beer
 
Relatório de carga e descarga de capacitores
Relatório de carga e descarga de capacitoresRelatório de carga e descarga de capacitores
Relatório de carga e descarga de capacitores
 
Combinatória e probabilidade
Combinatória e probabilidadeCombinatória e probabilidade
Combinatória e probabilidade
 
Fisv407a23
Fisv407a23Fisv407a23
Fisv407a23
 

Destacado (8)

Cap1 Guidorizzi vol1.exercicio 1.2
Cap1 Guidorizzi vol1.exercicio 1.2Cap1 Guidorizzi vol1.exercicio 1.2
Cap1 Guidorizzi vol1.exercicio 1.2
 
Calculo Vol. 1 Guidorizzi
Calculo Vol. 1 GuidorizziCalculo Vol. 1 Guidorizzi
Calculo Vol. 1 Guidorizzi
 
Exercicios-resolvidos-de-calculo-i (1)
Exercicios-resolvidos-de-calculo-i (1)Exercicios-resolvidos-de-calculo-i (1)
Exercicios-resolvidos-de-calculo-i (1)
 
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
 
Guidorizzi - CALCULOS PRANDIANOS
Guidorizzi - CALCULOS PRANDIANOSGuidorizzi - CALCULOS PRANDIANOS
Guidorizzi - CALCULOS PRANDIANOS
 
Aula 01 limites e continuidade
Aula 01   limites e continuidadeAula 01   limites e continuidade
Aula 01 limites e continuidade
 
Aula 02 Cálculo de limites - Conceitos Básicos
Aula 02   Cálculo de limites - Conceitos BásicosAula 02   Cálculo de limites - Conceitos Básicos
Aula 02 Cálculo de limites - Conceitos Básicos
 
Álgebra linear e geometria analítica 2ª edição
Álgebra linear e geometria analítica 2ª ediçãoÁlgebra linear e geometria analítica 2ª edição
Álgebra linear e geometria analítica 2ª edição
 

266877 exercicios-resolvidos-de-calculo-i

  • 1. 333 T g ‰ 3 ‰ 3 6e dQa 7 cb ‰ ˆ ƒ„…‚ 'e dQa cb e: …„ƒ‚ então ‘ ’ ‰ , . Por outro lado observamos que se , temos que Fazendo ‘ #  …„ƒ‚ © † ‡ © 3 ‰ ‡ © † © 3 ‰ ‡ T © † © …„ƒ‚ ˆ 'e r€dQa7 3 c b ca b ‡ © † © 6e Solução : Primeiramente reescrevamos o expoente da expressão: w fxs vutsvutsq iprehq ipyihf gP X§¨§ ¦ ¥ © . [2] Calcule: cb 'e dQ$aA T ` 3 @6   $54I Y §¨§ ¦ ¥ © 3 ( F §¨§¦ ¥ © ; então: X '   $210S V( W3   Logo, a condição necessária para que o limite exista é que a primeira parcela seja nula, isto é, T U@6   $54I @6   $54IS R 3 (    EC D P ( Q@6   $54I HGF A 3 D (     EC B ( @'   $940 8) 3 6   %$540% ( 3 ( ( 6   %$270% 6   %$540% '   $210 '   $210 Solução : Primeiramente racionalizemos a expressão: limite. e calcule o ( ) §¨§ ¦ ¥ © para que exista £ ¡ ¤¢  [1] Determine o valor da constante '   %$#! 9.1 Limites por ceder, gentilmente estes exercícios. Agradecemos ao Professor Silvio Pinha Gomes do Departameneto de Análise do IME-UERJ, Exemplos Diversos Capítulo 9
  • 2. $ ¤ ¦VP © E V © D S ¤ © $ H© © H© T 3 1$ 1 I 3 V© E D 1 © $ © H© 4 G 4 E 3 G 4 E 3 4 G 1 4 F G P F EG P E E G F E A 7 4 F D A 3 7 F D Solução : Primeiramente racionalizemos a expressão: T 7 4 F 3 1 42 §¨§¦¥ © E D [5] Calcule: . ) ‘ 3 e 3 , ou seja e ‘ 3) ‘ 3¢ . Logo, @ 9 A @ 9 31 ' 42© 7 C  £ B 8 £  £ ‘ 3 'ee 87 §¨§¦¥ se Sabemos que T ¤ 65655 3 ¤ 65655 3 P ¤ 65655 ) # ) 65655 ) 2 @@ V # @@ V ) 65655 ) 4 @@ V ¤ @@ V 4 A Solução : Primeiramente reescrevamos a expressão: 5 T ‘ 3 P ¤S65650 ) A 42¥§¦1§¨ © 3 ¤ @@ V tais que ) ' £ ¡ 0( [4] Determine as constantes $ ¤ T ( ¥ b 3 ¡ ¥ V %P P ¤ #‰ C !A X§¨§¦ ¥¡ 3 w ¢¤ P ‰ C A X§¨§¦ ¥¡ 3 © ¡ P 'e ‰ A ©§ §¨§¦¥ © ‡ †( e: , então Por outro lado observamos que se ‘ ’ ‰  T ‰ ‰ 3 6e ( ‰ C 3 ‰ que e D 'e ‰ D 6 D ‰ ˆ 3 'e ‰ , temos Solução : Primeiramente reescrevamos o expoente da expressão. Fazendo 6e ( ‰ 6 3 ‰ . © ¨© § [3] Calcule: ‡ © P 6e ‰ A ¨ §¦¥ q f w †( ¡ X vutsipq ehyfxs © ¥ TV b 3 V ¥ ¢¤ ¥ ¢¤ ‰ ˆ$ £ ‰ ˆ$ §¨ ¥¦ ¡ 3 V ¦£ ‰ ˆ$ §¨§¦¥¡ 3 vutsripihgP 'e dQ Aa ¨ §¦¥ cb Logo: CAPÍTULO 9. EXEMPLOS DIVERSOS 334
  • 3. . D ( ¨ ( c b $ X© [8] Calcule: )g¨ D ¦ ' '!''e r€a $%G'e a #!„ §¨§¦¥ . V ( „ „ 3 c c D c ddrddT ˆ gS 3 $ 7 TTTTT D Por outro lado, „ ‡ 1 † „ # 5 E 9 V © V © T $ 7 3 'e 7 §¨ ¥¦ 3 c T T T T T #1 „ „ „ ¨ §¦¥ 1I ( 0 ddrddT ( ¥ „ 0 V ¥ „ 0 „ „ . Logo: TT D ddT 7 onde „ c g c ¤ ( E c 9 ¥ „ ( „¥ g V ¥ 3 'e D„ ' TTTTT 6e 7 #!e 3 c 7I ( 0 ddddT ( ¥ V ¥ 0 Solução : Dividindo os polinômios: T V © TTTTTT c 70 ( 0 ddrdd#7 ( ¥ „ 0 V ¥ „ I „ §¨ ¥¦ [7] Calcule: T #A se D se ( D 3 se D D 3 'e ¡ D ¥ ¨ 2g¦‘ ‘ Então: „ © „ „ © „ „ „ „ T 3 ( ( S E 41 §¨§¦¥ 3 ( ( p 3 3 ( 3 ( p© S E 42¥¦1 §¨ 3 ( 01 „ ( D 42¥§¦1 §¨ § © ( : . Agora estudemos o caso se logo „ 2A D D ¥ ¨ 2¤g©‘ ‘ 3 6e ¡ ' (© p S E 42¥§¦1 §¨ „ „ „ „ 41 §¨§¦¥ „ ‘ 3 ( (p 3 3 ) ( D 3 ( § © (1 , temos: Se „ „ „ „ „ D ¤g¦‘ ¥ ¥ T D 41 3 D 3 1 42 D D D 3 „ GD ( D §¨§¦¥ 3 ( g 1 „ D ( D §¨§¦¥ 3 D ¡ ( temos: ; se , então Solução : Observe que, se D „ 3 „ ‘ 3 i‘ ¡ „ ‘ 3 T 3 1 42 #¤ ¢ F01 „ ( D §¨ ¥¦ 3 6e ¡ ‘ £ ( ( [6] Determine a função definida por: 5 P V © E V© TD 3 D 341 ¨ §¥ © 3 ¦ 7 E 3 1 42 §¨§¦¥ © V© E S D D Logo: 335 9.1. LIMITES
  • 4. se …„…‚ T ‘#A se ‡ © † © ‘ 3 se …„…‚ 3 6e ¡ ‘ #¥ ‡ © † © é contínua em . Reescrevamos a função: Solução : Claramente, o problema é determinar se ‘ ¡ T‘ 3 se ƒ„…‚ 3 [1] se ‘ ¨3 ‡ © † © 6e ¡ Analise a continuidade das seguintes funções: 9.2 Continuidade 3 T Y D 3 6e ‰ # 'e ‰ # D ¡§ §¨§¦¥ © X'e ‰ 8'edQb a ‰ # ¡§ §¨§¦¥ © ¤ c cb 6e dQa #¢ Logo: T 6e ‰ # 'e ‰ D 3 'e ‰ # 8'e ‰ # 'e ‰ D 3 6e ‰ # 6erc €b a ‰ # ¤ c 'e rb€a cb G6e ‰ #! 'e dQa #¢ 4 , então: pois ‘ ©'e dQa ¨3 c b ' P 'e ‰ A 'e D r€a 3 cb cb cb cb P'e r€a 8'e a A D 3 6e a # ( § ¥ dQa ( § ¥ a # 'e r€a 3 ( § ¦ dQa ¥ cb Solução : Primeiramente reescrevamos o numerador: § T 6e ‰ # G'edc Qb a ‰ ¡¨§¨§¦¥ © ¤ ¢ #£4 [9] Calcule: não existe. cb © Consequentemente, w '!'6e $%8'e # dQa $ w a §¨§¦¥ §¦§¨ ¥ © T D 3 5 'e a §¦¨ ¥ © 3 ' © 6e ¡ © 3 'e a # § §¨§¦¥ 3 6e ¡ § ¨ §¦¥ Então se T( 3 X se ( ¤ g¦‘ se ¥ ¨ 6e a # 3 6e ¡ ‘ ¥ 2¤g¨ ( ¤ 6e a # . Logo 3 ( e 3 ( r€a cb ( 3 , então . Se a 3 , logo 3 cb e r€a $ cb então . Se dQa X ¡ ( '' $$ 6e a # ¨ ‘ ¥ ¨ ‘ , logo 3 6e '¡ e X'e 3¡ e , então 3 '!''e‘ r€a $'$!''e #¥ $6e dc Qa ¥ ¨ 6Xe . Se Solução : Seja cb ‘ b ‘ ¥ ##¨ ( '!''e r€a $%G'e a # 3 cb $ 6e ¡ CAPÍTULO 9. EXEMPLOS DIVERSOS 336
  • 5. § ¨ b ¡ @ 3 [3] § ¨ ¥ 4§¨1 §¦¥ ¡ 3 6e ¡ ¡ © b ¥ ¥ s¦ . Figura 9.2: Gráfico de ¥ ¦ VV ¥1 s ¢¢ (( 3 6e ¡ -1 -0.5 2 1 -1 -2 0.5 1 não é contínua em . Então, ‘ w   ¡   ¡ w ¡ © T 3 P ¤ © V D ˆ A § §¦§¨ ¥ © 3 6e ¡ § §¦§¨ ¥ © X e 3 P 5 © V D C A §¦¨ ¥ © 3 6e ¡ §¨§¦¥ D D , temos: 3 V© ¢ ¤ e § © §¨§¦¥ ¢ £ 3 V © w © §¨§¦¥ Sabendo que   ¡   ¡   ¡ T ¤ © V D V   ¡   ¡ 3 ¤ © V D 3 D C 3 E ¤5© © D V D D # © V D 'e ¡ Solução : Reescrevamos a função:   ¡ . 5   ¡ © VD 3 [2] 2 © V D 6e ¡ Figura 9.1: Gráfico de . ¡ -1 -0.5 6 4 2 -2 -4 -6 0.5 1 não é contínua em . Então ‘ w ¡ T © X© e © © 3 'e r€a § ¨ §¦¥ 3 'e ¡ § ¨ §¦¥ cb cb X 3 6e dQa § §¨§¦¥ 3 6e ¡ §¨§¦¥ Logo, 337 9.2. CONTINUIDADE
  • 6. ¥ © ¥ © w ¤ ¤ e ¥¦ T X 3 ( a # §¨§¦¥ 3 'e ¡ § §¨§¦¥ 3 §¨¥ © 3 6e ¡ §¨¥ ¥¦ © . Por outro lado: , então Solução : Se 3 ( $ a 3 $ ¡ se 3 T %A se 4 c [1] %¨g© ¨ © a 3 6e ¡ ¤ se 9¤¥ 4 Determine as constantes tais que as seguintes funções sejam contínuas: Figura 9.3: Gráfico de . ¡ 3 -3 3 £ é contínua em . Então, ¡ T‘ se 2A ' 3 se ‘#¨¤ ‘ 'e ¡ § ¨ . Reescrevendo a função: b 3 ¥ 4¨1 §¦¥ ¡ , então Se h ‘ 3 ¡ D ‘ 3 § ¨ ¡V ¢ £¡ 3 T ¤ ¢ 1 3 1 §¥ 4¨ 2 ¡ ¦ § ¨ 3 ¡ b b S ¥ ¥ 4§¨2¥§¦1 ¡ ¢ £¡ 3 ¤ ¢s h ¡ 1 V 4 ¡ © Sv Logo: § T¡b ¥ ‰ 3 ¡b § ¨ ¥ b § § ¨ § ¨ b b % ¡ b ¥ 3 ¦b ¡ ¡ b ¥ 3 ¡ b S ¥ ¡ © § ¨ § ¨ § ¨ § ¨ § ¨ ¥ ‰ 3 ¡© ¥ ¡ Sv v © b ¥ 3 ¡ © S ¡ © b ¥ 3 ¡ © b Sv ¥ , então: Se ‘ #A § ¨ T b ¥ 42 3 1 ‘ 3 ¡ ¡ © b v ¥ §¨ ¥¦ ¡ § ¨ . Logo, 3 1 42 3 41 e , então, Solução : Se ¢ ¤ 3 ¡ b %$ §¨ ¥¦ ¡ ‘ 3 ¡ © b §¨§¦¥ ¡ ‘ ¥ # CAPÍTULO 9. EXEMPLOS DIVERSOS 338
  • 7. T 3 ¤ § ( §¨§¦¥ © 3 Y SF ( © © y ¡   w § D ¥ § ( §¨ ¥¦ 3 'e ¡ w§ ( §¨ ¥¦ 3P ‰ y ( w D ¥ ¨§¦§¥ ¡ 3 E!eC ( §¨§¦¥ © 3 'e ¡ ( §¨§¦© y ‰ y y dQa A y cb @ DE e y dQa cb ¤ . Logo: 3 D ¡ , então Se D 3 TP ‰ ‰ y 3 ‰ c b D 3 E!eC c b 3 § 7 b c y rb€a A y ‰ y dQa D @ E!e y r€a yE!'y$ „ d‚c Qa DD e: , ¥ , então , temos que , fazendo ¥ ƒ…„‚ ¥ …ƒ Por outro lado: ‘ ’ ‰ ¥ D  D E! 3 ‰ ‡‡ ( ‡ ¥ ( © † @V© †V 3 ‡ @(( ¥¤ © @V© V † T ¤ e ( 1e D ( 3 Y )   D ¡ e ( 1e D § y ( ¥ Solução : Primeiramente fatoremos os polinômios: T D2A se ¥ se ¤ H1 © 1 ( © ¥ © P ¢ © 1 P © ¤ [2] D 3 se ¥ …ƒ „ ‚ 3 6e ¡ D ¥ 2¤ ‡ @(( ¥¤ © @V© V † Figura 9.4: Gráfico de . ¡ -1 3 -3 1 se T %A se © a 3 ¤g© ¨ ¨ se © # 6e ¡ 9 ¥ © . Logo: 3 c , isto é, Como os limites laterais devem ser iguais, temos que e X 3 c w © e © T c 3 4 c §¨§¦ ¥ © 3 6e ¡ § §¨§¦¥ © X 3 ( a # ¨§§¦¥ 3 6e ¡ §¨§¦¥ então . Por outro lado: , . Se 3 ¤ , isto é, ¤ X 3 ( a 3 ¡ Como os limites laterais devem ser iguais, temos que 3 X 3 % 339 9.2. CONTINUIDADE
  • 8. V V   ¡ se 5 T %A ¢ V HH©11 © ¥ ¥ © ©  @V¥ P 1 © P © ¦ ¤ §¥ se ¨ ¨ %#©‘ se ‡ ¢( ( q 3 V© ¥† vuts©ipehf ‚ 6e ¡ ‘ ¥ # ¤ . e que tem soluções ¢( 3 c ( 3 ' ¤ Y 3 c ¤ 3 c ¤ . Então, temos o sistema: logo, Y 3 c ' D © D © © Y 3 g4 § §¨¦§¥ 3 g e ( !e § §¨§¦¥ 3 § §¨§¦¥ ¤ ¢ £ ¢ £ y ¤ e ( 1e w © 'e ¡ w © ' c ¤ ¤ 3 c ' ( a # §¨§¦¥ 3 6e ¡ §¨§¦¥ ¤ ¤ c 3 ¡, e: , então 3 . Se 3 c logo, ¤ ¤ ' c 3c ( a §¨ ¥¦ §¨ ¥¦ § X© 3 ¡ § X© ' cb w dQa © 66 # w © 'e w X© cb ‡ 3 P 'e dQ…aA P #6e© † ƒ„…‚ $bA §¨¦§¥ 3 g © † „…ƒ‚ b §¨§¦¥ 3 'e ¡ §¨§¦¥ ‡ ¤ , e: c 3 i‘ ¡ , então Se ‘ 3 D T g e ( 1e 3 ` ¤ ( Y ¢ £ y ¤ e ( 1e ¥ ¤   ( 'y¤ Solução : Primeiramente fatoremos os polinômios: V1 V   ¡ se T %A ¢ V 1 H© ¥ ¥ © @V¥ P © ¤ se [3] %¨g¦‘ ¨ se c H© '5 ( © a 1 P © V ¥ vutsrq© ipihf ‚ 3 6e ¡ ‘ ¥ #¤ Figura 9.5: Gráfico de . ¡ -1 6 5 4 3 2 1 -1 1 2 3 4 T D2A se ¥ se ¤ H1 © 1 ( © ¥ © P ¢ © D 3 se ¥ ƒ… @V1 „ V P ‚ © 3 'e ¡ D ¥ 2 ‡ @(( ¥¤ © @V© V † ¤ e: @V V 3 Então, CAPÍTULO 9. EXEMPLOS DIVERSOS 340
  • 9. Figura 9.7: Gráfico de . ¡ 0.1 0.05 -0.05 -0.1 T ‘#A se ©‡‡ © @@ V 1 V…„† ƒ‚ ¢ £¡ se † ¤ ¤ ¢ ¥£ ‘ 3 ‡ 3 se © @VV 1 ¥ 'e ¡ ‘ #¥ ( † V ¡ H© e: , temos que por outro lado, ; ‘ , temos, ‘ y‘ s 3 c § ¨ 3 § X§¦§¨ ¥ © © i‘ ¡ s 'e ¡ § ¨ § ¨ X© Como: y‘dc 3 'e ¡ § ¥¦§¨ © ‘yd 3 @ V b ¥ 3 ¢ '8y‘d¤ $ § ¨ §¦¥ ¥ 3 ¢ 68yd5$ ¥ § §¨§¦¥ ‘ s ‘ ‘‘ § ¨ ‘‘ T P ¢ '8yd¤%$ ¥ A § X¥¦§¨ © c 3 § ¨ § ¨ P ‘‘ ‘ 68yd¤$ ¥ A § §¦§¨ ¥ © c 3 P 68‘yd¤c $ ¥ A P c c dQ Aa § X¥¦§¨ © 3 'e ¡ § X¥¦§¨ © 6 c b ¤ . Por outro lado: isto é, w Y 3 ¤ ' ¤ ¤ # 3 ‘i ¡ 3 Y ( 6e ¡ 3 §¦§¨ ¥ © ¤ . Logo, necessáriamente devemos ter que: 2 3 i‘ ¡ , então 3 Solução : Se T ‘gA ‡ se © @‡ © „ V ‘ 1ƒ„V…‚†  ¢ £¡ se † ¤ [4] ¤ ¤ ¢ ¥£   ‘ 3 ‡ 3 se @VV #1 ¥ 6e ¡ ‘ ¥ g ‡© ¥† ¡ † H©   ¡ Figura 9.6: Gráfico de . ¡ 6 4 2 -2 1 2 3 4 341 9.2. CONTINUIDADE
  • 10. . , que é paralela à reta [3] Determine a equação da reta normal à curva ‘ 3 ¥ D 8 D ¨ 'e c © 3 ¥ T D 3 ¥ D § g!eCD 3 ¥ ¥ D 3 ¥ E7 § #!e D 3 Logo, as equações da reta tangente e da reta normal são, respectivamente: ¥ T D 3 $ ( ¤ § ¤ ( D ) ! gˆ G 3   3 ( D 3 V ¤ § D ( ! g 3   ¥ 3 V ¤ $ tangente e da reta normal à curva são, respectivamente: Logo, o único ponto de interseção é . Por outro lado, os coeficientes angulares da reta ‘ ' $ T 3 ¦ ‘ 3 2D7 ¦ cb ‘ 3 2D7 r€a 9   , temos: Solução : Determinemos a interseção da curva com o eixo dos . Se ‘ 3 ¥ no ponto onde a curva intersecta o eixo dos . V (¥ cb ¥ [2] Determine a equação da reta tangente e a equação da reta normal à curva © r€a 9   3     . e , , Então Y 3 c V 3 V( 3 ) 3   T cb 'e dQa 3 Y ' D ` ( a ' DD a Y 3 ' Y a ' D D a ` 3 'e ¡ , logo: e Por outro lado, cb D 'e ( r€a ˆ 3 6 D a # #8' D ( a # D 3 ' Y a # T ` 6 Y a # 6 DD a # ` 3 'e ¡     ; então: e V 3 V( 3 ) 3   , cuja solução é ' ‘ 3 Y ) 3 )   ‘ 3 )   obtemos o sistema: ; logo, e , Solução : Primeiramente note que   )   3 ( ¡ Y ) 3 i‘   ¤¡ )   3 i‘ ¡ e . c H('   ' ) determine „ , ¢ , pode ser escrita na forma £¡ c 'e dQa 3 'e ¡ cb e que ¡     ‘ 3 i‘ ‡ † ¡ 3 i‘   ¡¡ 3 i‘ ¡¡ 3 i‘ ¡ , , onde ) £ ¡ ' 0'   . Sabendo que [1] Considere a função 3 ( ¡ ' Y a # x' D a )   3 6e ¡ 9.3 Derivada CAPÍTULO 9. EXEMPLOS DIVERSOS 342
  • 11. 9.3. DERIVADA 343 Solução : Primeiramente, calculemos os coeficientes angulares que precisamos. O coeficiente 3 ‘ 3 ¥ E! D D angular da reta é . O coeficiente angular da reta normal à curva é: ¤ V S 3   ¥ 3 ( ¤ T 'e c ¨ ( 3V Como as retas são paralelas, temos que ¤ ¤ , isto é: 3 'e c ¨ § 'e ¨ S 3 c D § ¢(¥b 3 logo, temos que ( ¥ b D 3 ( ¥ b c¨ ( ¥ b 3 ¥ . A equação da reta normal à curva que passa pelo ponto é: ( ¥ b D ' ( ¥ b § ( ¥ b 7 3 ( ¥ b g ¥ D ¥ T(¥b 3 0.6 0.4 0.2 0.25 0.5 0.75 1 1.25 1.5 -0.2 -0.4 Figura 9.8: A reta ¥ (¥b 3 . [4] Determine os parâmetros , e   tais que a parábola ) £ B¡ ¥ ) (  3 tangencie a reta ¥ 3 no ponto de abscissa e passe pelo ponto . ‘ ' X$ Solução : Como o ponto ‘ ' X$ deve pertencer à parábola, substituindo na equação, temos que: T ‘ 3 )   $ 3 Como a parábola deve tangenciar a reta 3 no ponto de abscissa , temos que se 3 ¥ , então ' $ ¥ . Isto é, o ponto é comum à reta e à parábola; substituindo na equação, temos que: T 3 )   D O coeficiente angular da reta é ¤ 3 e o coeficiente angular da reta tangente à parábola é ¤  D 3 ¥ 3 (, logo ) ( 3V ¤ )   V D 3 $ ( . Como :¤ ¤ T 3 )   D Logo, de (1), (2) e (3) temos o sitema:   ) ‘ 3 )   3 )  D 3 '
  • 12. 344 CAPÍTULO 9. EXEMPLOS DIVERSOS cuja solução é: V 3 3   e ) V( 3 . 2 1 1 Figura 9.9: Exemplo [4]. [5] A forma de uma colina numa área de preservação ambiental, pode ser descrita pela equação ¥ § § B ‘ ( D C 3 ¢ , sendo £ y ¨ ¨ § . Um caçador, munido de um rifle está localizado no yd ‘‘ ponto . A partir de que ponto da colina, a fauna estará segura?   ' Solução : Denotemos por ¥ ' e 3 7 o ponto além do qual a fauna não pode ser vista pelo caçador, situado no ponto ‘ ' D . A fauna estará a salvo, além do ponto onde a reta que liga 7 ‘ ' D à colina seja tangente à mesma. 2 Figura 9.10: Vista bidimensional do problema. Observe que 5 D 3   ¥ ¢ £ é o coeficiente angular de qualquer reta tangente à parábola; logo, no ponto , temos 7 5 D 3   ¥ ¢ £ e a equação da reta tangente é: ¥ T !e'y ¤ D $ 3 ¥ ¢ £ Como a reta passa por ‘ ' D , temos: $ T D 'y 5 D $ 3 ¥ ¢ £ 7 O ponto também pertence à parábola; então: T § § ¤ ( ˆ 3 ¥ D ¢ £
  • 13. 9.3. DERIVADA 345 Igualando (1) e (2): ‘ 3 Y e' ` e 3 y Y ( D § ` 3 e T§ 3 ¥ Então, 7 ` A §' ` 3 e a fauna estará a salvo a partir de . D ' $ [6] A reta tangente à curva 2 ( D ˆ 3 ¥ no ponto é também tangente à curva em um outro ponto. Ache este ponto. Solução : O coeficiente angular da reta tangente à curva é , como ¥   Y Y 3 D ' $ é um ponto comum à reta e a curva, temos 3 $   ¥ . A equação da reta tangente que passa pelo ponto é: D ' $ 3 . Para determinar os pontos comuns à curva e à reta tangente, ¥ resolvemos o sistema: 0 ( # C 3 ¥ D ' 54 3 ¥ obtendo ¡3 ‘ 3 ( # ( e 3 ¤ ( E   D e . O ponto procurado é ‘ ' X$ . 2 -1 1 Figura 9.11: Exemplo [6] [7] O ponto 7  ' § 3 pertence à parábola Y 3( ¥ . Determine todos os pontos 8 da parábola 8 7 tais que a normal em passe por Solução : Um ponto arbitrário da parábola é (© 3 ¤£V ¢ 3 8   3 e o coeficiente angular da reta normal ' ¢ 8 à curva é: ¤ . A equação da reta normal à curva no ponto é: V T   !e D 3 ( Y   ¥   Mas a normal passa pelo ponto  ' § , logo:   § D 3 ( Y       3 ` Y   ` D   § T ‘ 3 Y   ' #   ' § D   3V 8 Os pontos procurados são 3 8 ' D $ 3 ( 8 Y ' Y $ , e .  ' §
  • 14. 346 CAPÍTULO 9. EXEMPLOS DIVERSOS 9 4 1 -4 -2 6 Figura 9.12: Exemplo[7]. [8] Nos pontos de interseção da reta com a curva , traçam-se as ¥ ‘ 3 9 ¥ ¥ Y ( 3 normais à curva. Calcule a área do triângulo formado pelas normais e pela corda que subtende os referidos pontos de interseção. Solução : Determinemos os pontos de intersecção da reta ‘ 3 ¤ ¥ 1 com a curva: ¥ ( ¥ Y ¤4 3 ¥ T 3 Obtemos ‘ 3 Y e' e 3 Y C ¥ ( ; então e Y 3 3 ; logo temos os pontos 7 D ' $ 3 e 7 ¥' Y 3 ( . Por outro lado, os coeficientes angulares das normais são dados por: V ¤ 3 ¢ Y ! D 3   ¥ ¤ V( 3 $ e ¤ V 3 Y . As equações das normais em (7 V7 e , são respectivamente: D ' 3 ¥ Y T Y D 3 0 ¥ Resolvamos o seguinte sistema para achar os pontos de intersecção das retas normais: D ¥ 4 3 Y ¥ ¢ Y #4C 3 D obtemos § 3 5( 3 ¥ e . Seja 5 ' ( § 37 . A área do triângulo de vértices 7 (7 V , e 7 é dada por   , onde: (¡ 3 ¢ ¥ D 3 ££££ § Y ££££ 3 §   T  T @ ¥Y 3 £ D ¥  ¥ D £ ¤