Inteligencia artificial

264 visualizaciones

Publicado el

Tarea sobre la inteligencia artificial.

Publicado en: Educación
0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
264
En SlideShare
0
De insertados
0
Número de insertados
24
Acciones
Compartido
0
Descargas
1
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

Inteligencia artificial

  1. 1. INTELIGENCIA ARTIFICIAL Aspirante: Abel Cabrera Romero Matricula: AS161727486 Etapa 4, eje 4: Lectura y elaboración de textos académicos. Fecha: 20 de Noviembre de 2015 Docente en cargo. Pedro Fernely Uch Puc
  2. 2. 2 Introducción. El presente trabajo de investigación documental trata de la inteligencia artificial (IA). Se describen o enuncian de manera general los antecedentes de este tipo de inteligencia que busca básicamente conocer e imitar el funcionamiento de la mente humana. Así como también las principales aplicaciones para las cuales se utilizan las técnicas de Inteligencia Artificial, partiendo de las técnicas más sencillas y haciendo una breve explicación de su funcionamiento y llegando a aquellas más novedosas y de reciente utilización. Así mismo, se ilustrarán las explicaciones mediante explicaciones de código y de aplicaciones libres disponibles.
  3. 3. 3 Índice. Introducción………………………………………………………………...2 Desarrollo…………………………………………………………………..4 Bases de la inteligencia artificial………………………………………..8 Características de la inteligencia artificial…………………….…….10 Aplicaciones de la inteligencia artificial……………………………...12 Conclusión…………………………………………………………………17 Referencias……………………………………………………………......19 Página
  4. 4. 4 DESARROLLO. Inteligencia artificial. Antecedentes: Realizando un recuento Histórico cabe mencionar que el término de Inteligencia Artificial (IA), aparece por primera vez en agosto de 1956 en el Colegio Dartmouth (EEUU), tuvo lugar en una conferencia sobre la inteligencia de los computadores y donde se reunieron grandes científicos tales como J. McCarthy, M. Minsky, C. Shannon, A. Newell, y H. Simon. Importante mencionar que la inteligencia artificial se define como aquella inteligencia exhibida por artefactos creados por humanos. La inteligencia artificial es la ciencia que investiga la posibilidad de que una computadora simule el proceso de razonamiento humano. También pretende que la PC sea capaz de modificar su programación en función de su experiencia y que pueda “aprender”. La Inteligencia Artificial tiene sus orígenes en 1943 cuando Warren McCulloch y Walter Pitts propusieron un modelo de neurona del cerebro humano y animal. Estas neuronas nerviosas abstractas proporcionaron una representación simbólica de la actividad cerebral. Más adelante, Norbert Wiener elaboró estas ideas junto con otras, dentro del mismo campo, que se llamó "cibernética"; de aquí nacería, sobre los años 50, la Inteligencia Artificial.
  5. 5. 5 Los primeros investigadores de esta innovadora ciencia, tomaron como base la neurona formalizada de McCulloch y postulaban que: "El cerebro es un solucionador inteligente de problemas, de modo que imitemos al cerebro". Pero si consideramos la enorme complejidad del mismo esto es ya prácticamente imposible, ni que mencionar que el hardware de la época ni el software estaban a la altura para realizar semejantes proyectos. Se comenzó a considerar el pensamiento humano como una coordinación de tareas simples relacionadas entre sí mediante símbolos. Se llegaría a la realización de lo que ellos consideraban como los fundamentos de la solución inteligente de problemas, pero lo difícil estaba todavía sin empezar, unir entre sí estas actividades simples. Es en los años 50 cuando se logra realizar un sistema que tuvo cierto éxito, se llamó el Perceptrón de Rossenblatt. Éste era un sistema visual de reconocimiento de patrones en el cual se asociaron esfuerzos para que se pudieran resolver una gama amplia de problemas, pero estas energías se diluyeron enseguida. Fue en los años 60 cuando Alan Newell y Herbert Simon, que trabajando la demostración de teoremas y el ajedrez por ordenador logran crear un programa llamado GPS (General Problem Solver: solucionador general de problemas). Éste era un sistema en el que el usuario definía un entorno en función de una serie de objetos y los operadores que se podían aplicar sobre ellos. Este programa era capaz de trabajar con las torres de Hanoi, así como con criptoaritmética y otros problemas similares, operando, claro está, con microcosmos formalizados que representaban los parámetros dentro de los cuales se podían resolver problemas. Lo que no podía hacer el GPS era resolver problemas ni del mundo real, ni médicos ni tomar decisiones importantes. El GPS manejaba reglas heurísticas
  6. 6. 6 (aprender a partir de sus propios descubrimientos) que la conducían hasta el destino deseado mediante el método del ensayo y el error. En los años 70, un equipo de investigadores dirigido por Edward Feigenbaum comenzó a elaborar un proyecto para resolver problemas de la vida cotidiana o que se centrara, al menos, en problemas más concretos. Así es como nació el sistema experto. El primer sistema experto fue el denominado Dendral, un intérprete de espectrograma de masa construido en 1967, pero el más influyente resultaría ser el Mycin de 1974. El Mycin era capaz de diagnosticar trastornos en la sangre y recetar la correspondiente medicación, todo un logro en aquella época que incluso fueron utilizados en hospitales (como el Puff, variante de Mycin de uso común en el Pacific Medical Center de San Francisco, EEUU). Ya en los años 80, se desarrollaron lenguajes especiales para utilizar con la Inteligencia Artificial, tales como el LISP o el PROLOG. De acuerdo con Ray Kurzweil, experto en inteligencia artificial y autor de The age of intelligent machines, en el año 2030 la inteligencia artificial superará a la inteligencia humana. Según Kurzweil, los robots igualarán las capacidades intelectuales del hombre dentro de 30 años en el ámbito de laboratorio y dentro de 50 formarán parte de la vida cotidiana. El experto trabaja en los avances de los procesos computacionales y sus predicciones se refieren a la asimilación de nuevas máquinas superinteligentes para los próximos 100 años. Para finalizar el apartado de antecedentes es necesario mencionar que la finalidad de la inteligencia artificial consiste en crear teorías y modelos que muestren la organización y funcionamiento de la inteligencia. Actualmente, el mayor esfuerzo en la búsqueda de la inteligencia artificial se centra en el desarrollo de sistemas de procesamientos de datos que sean
  7. 7. 7 capaces de imitar a la inteligencia humana, realizando tareas que requieran aprendizaje, solución de problemas y decisiones. A veces llamada inteligencia de máquina, la inteligencia artificial o AI (Artificial Intelligence) cubre una vasta gama de teorías y prácticas.
  8. 8. 8 Bases de la inteligencia artificial. La inteligencia artificial se basa en dos áreas de estudio: el cuerpo humano y el ordenador electrónico. Puesto que la meta es copiar la inteligencia humana, es necesario entenderla. Sin embargo, a pesar de todos los progresos en Neurología y Psicología, la inteligencia del hombre se conoce poco, exceptuando sus manifestaciones externas. Muchos estudiosos de la inteligencia artificial se han vuelto – para obtener su modelo de inteligencia – hacia el estudio de la Psicología cognoscitiva, que aborda la forma de percibir y pensar de los seres humanos. Después comprueban sus teorías programando los ordenadores para simular los procesos cognoscitivos en el modelo. Otros investigadores intentan obtener teorías generales de la inteligencia que sean aplicables a cualquier sistema de inteligencia y no solo al del ser humano. De manera general se presentan algunas de las principales bases de la inteligencia artificial, teniendo en cuenta las siguientes: Filosofía: Leyes que gobiernan el pensamiento en donde la mente está ligada al mundo físico; en donde las acciones se basan en la conexión entre conocimiento y objetivos y el conocimiento es fruto de la percepción. Conocimiento = teorías lógicas. Matemáticas: lógica, complejidad y probabilidad. Economía: Teoría de la decisión/Teoría de juegos/Investigación operativa Neurociencia: Neuronas/Especialización del cerebro.
  9. 9. 9 Psicología: Psicología cognitiva/ciencias cognitivas: Teorías sobre la conducta, bases del comportamiento racional. Computación: Para la existencia de la IA es necesario un mecanismo para soportarlo (Hardware). También son necesarias herramientas para desarrollar programas de IA Teoría de control/cibernética: Construcción de sistemas autónomos. Lingüística: Chomsky: Representación del conocimiento, gramática de la lengua. Lingüística computacional
  10. 10. 10 Características de la inteligencia artificial. Una característica fundamental que distingue a los métodos de Inteligencia Artificial de los métodos numéricos es el uso de símbolos no matemáticos, aunque no es suficiente para distinguirlo completamente. Otros tipos de programas como los compiladores y sistemas de bases de datos, también procesan símbolos y no se considera que usen técnicas de Inteligencia Artificial. El comportamiento de los programas no es descrito explícitamente por el algoritmo. La secuencia de pasos seguidos por el programa es influenciado por el problema particular presente. El programa especifica cómo encontrar la secuencia de pasos necesarios para resolver un problema dado (programa declarativo). En contraste con los programas que no son de Inteligencia Artificial, que siguen un algoritmo definido, que especifica, explícitamente, cómo encontrar las variables de salida para cualquier variable dada de entrada (programa de procedimiento). El razonamiento basado en el conocimiento, implica que estos programas incorporan factores y relaciones del mundo real y del ámbito del conocimiento en que ellos operan. Al contrario de los programas para propósito específico, como los de contabilidad y cálculos científicos; los programas de Inteligencia Artificial pueden distinguir entre el programa de razonamiento o motor de inferencia y base de conocimientos dándole la capacidad de explicar discrepancias entre ellas. Aplicabilidad a datos y problemas mal estructurados, sin las técnicas de Inteligencia Artificial los programas no pueden trabajar con este tipo de problemas. Un ejemplo es la resolución de conflictos en tareas orientadas a metas como en planificación, o el diagnóstico de tareas en un sistema del mundo real: con poca información, con una solución cercana y no necesariamente exacta. La Inteligencia Artificial incluye varios campos de desarrollo tales como: la robótica, usada principalmente en el campo industrial; comprensión de lenguajes y traducción; visión en máquinas que distinguen formas y que se usan en líneas de ensamblaje; reconocimiento de palabras y aprendizaje de máquinas; sistemas computacionales expertos.
  11. 11. 11 Los sistemas expertos, que reproducen el comportamiento humano en un estrecho ámbito del conocimiento, son programas tan variados como los que diagnostican infecciones en la sangre e indican un tratamiento, los que interpretan datos sismológicos en exploración geológica y los que configuran complejos equipos de alta tecnología. Tales tareas reducen costos, reducen riesgos en la manipulación humana en áreas peligrosas, mejoran el desempeño del personal inexperto, y mejoran el control de calidad sobre todo en el ámbito comercial. Tipos de inteligencia artificial: Inteligencia artificial convencional: Se conoce también como IA simbólico- deductiva e IA débil. Está basada en el análisis formal y estadístico del comportamiento humano ante diferentes problemas: Razonamiento basado en casos: Ayuda a tomar decisiones mientras se resuelven ciertos problemas concretos. Sistemas expertos: Infieren una solución a través del conocimiento previo del contexto en que se aplica y de ciertas reglas o relaciones. Redes bayesianas: Propone soluciones mediante inferencia estadística. Inteligencia artificial basada en comportamientos: que tienen autonomía y pueden auto-regularse y controlarse para mejorar. Inteligencia artificial computacional: La Inteligencia Computacional (también conocida como IA subsimbólica-inductiva o IA fuerte) implica desarrollo o aprendizaje interactivo (por ejemplo, modificaciones interactivas de los parámetros en sistemas conexionistas). El aprendizaje se realiza basándose en datos empíricos.
  12. 12. 12 Aplicaciones de la inteligencia artificial. La Inteligencia Artificial es una de las disciplinas computacionales cuyas técnicas son más demandadas actualmente en diversos entornos, debido a su capacidad para dotar de un comportamiento inteligente a muchas aplicaciones. En ese sentido se puede mencionar por ejemplo, las aplicaciones que incluyen identificación de rostros, identificación de huella digital, reconocimiento de escritura, predicciones del clima, visión de robots, reconocimiento óptico de caracteres, reconocimiento de voz; así como la incorporación de agentes de decisión inteligente, redes neuronales, sistemas expertos, algoritmos genéticos, etc. para la optimización de sistemas de producción es una tendencia activa en el ambiente industrial de países con alto desarrollo tecnológico y con una gran inversión en investigación y desarrollo. Dichos componentes de la Inteligencia Artificial tienen como función principal controlar de manera independiente, y en coordinación con otros agentes, componentes industriales tales como celdas de manufactura o ensamblaje, operaciones de mantenimiento, diagnósticos de sistemas, etc., entre otras. Son variadas las áreas de la IA que se investigan hoy día. Entre ellas, se tienen las siguientes: robótica, campo de la medicina y salud, la Ingeniería Industrial, Civil y Naval, economía, informática, educación, climatología, lingüística computacional, minería de datos (Data Mining), mundos virtuales, procesamiento de lenguaje natural (Natural Language Processing), sistemas de apoyo a la decisión, videojuegos, prototipos informáticos, etc.
  13. 13. 13 Algunas aplicaciones destacables de la Ingeniería Industrial, Civil y Naval son: Métodos para la predicción de fallos y anomalías en sistemas mecánicos como motores o engranajes. Mantenimiento predictivo de componentes mecánicos. Estimación del consumo eléctrico. Distribución de recursos hidráulicos para la producción eléctrica. Sistemas para el control de procesos y de la calidad. Modelos para la predicción de roturas en vigas de hormigón. Diseño de diques verticales. Otro campo de aplicación de la IA en los procesos productivos de la industria a nivel mundial es el diseño de sistemas de soporte para la toma de decisiones. Otra de las áreas en las que las técnicas de Inteligencia Artificial tienen una repercusión importante son las relacionadas con la Medicina y la Salud, y así encontramos aplicaciones que permiten: Monitorización inteligente de pacientes Sistemas de análisis y procesado de imágenes Detección de patrones clínicos en señales biomédicas Sistemas de ayuda al diagnóstico y pronóstico de estados de salud Asesoramiento de actividad deportiva Clasificación en bases de datos de expresiones genéticas. En el campo de la Economía encontramos diversas aplicaciones como: Tratamiento de la información financiera Análisis del fracaso empresarial La estimación de riesgos y rentabilidad de productos financieros Previsión de la evolución de los precios Predicción de los mercados financieros.
  14. 14. 14 Inteligencia Artificial en el Entretenimiento: la inteligencia artificial en los videojuegos es cada vez más indispensable tanto en consolas como en ordenadores aunque los usuarios no la distingan debido a que está muy implícita, la podemos ver reflejada en los famosos avatares, comiquitas y textos. Inteligencia Artificial de Gestión de Información: esta parte es fundamental ya que la inteligencia artificial nos permite extraer información muy difícil de encontrar o quizás que requiera de mucho esfuerzo para conseguirla, un ejemplo de ello son los rastreos web, filtrado de correos y la minería de los datos. Inteligencia Artificial en la Matemática: aunque no se pueda ver a simple vista, todos esos sistemas que complementan el estudio de la materia forman parte de la inteligencia artificial. Inteligencia Artificial en la Biología: en el ámbito de la biología se hace necesario el uso de la inteligencia artificial debido a que existen problemas con mayor complejidad que consumen mucho tiempo y dedicación, sin embargo la inteligencia artificial a logrado reducir la problemática aportando grandes avances como lo es un analizador de ADN, elaboraciones de modelos biológicos, realizar seguimientos de los comportamientos de los diversos organismos, desarrollo de embriones, entre otros. Inteligencia Artificial en la Gestión del Tráfico, Diseño Urbano y Arquitectura: aquí la inteligencia artificial ha realizado aportes como la colaboración para resolver los distintos problemas de diseño que presentan múltiples restricciones, como también predecir el comportamiento de las personas en los nuevos entornos. Inteligencia Artificial en la Ley: además la inteligencia artificial es capaz de crear sistemas para colaborar con los abogados como lo es el asesoramiento jurídico hasta de desarrollar aplicaciones de identificación de personas con solo rasgos similares, huellas, o algún otro dato importante que permita reconocerlo con la mayor exactitud posible.
  15. 15. 15 Inteligencia Artificial en Instituciones Militares: ahora vemos a la inteligencia artificial desempeñando un papel más importante ya que de ella pudiera depender mucho la integridad de una nación a través de todos sus mecanismos empleados con la total cobertura que requiere la misma, que va desde armamento inteligente hasta simples sistemas expertos. Inteligencia Artificial en el Espacio: cuando hablamos del espacio tendemos a relacionar inteligencia con robots, y esto se debe a que en los últimos años la NASA ha tenido la necesidad de realizar estudios más profundos en otras partes del Universo, por eso ha mezclado ambos términos logrando conseguir esa información a través de máquinas razonables. Mayormente usan carros robots con cámaras y micrófonos que le permitan al mismo introducirse en lugares de difícil acceso sustrayendo los datos necesarios para el estudio requerido. En campos como la Climatología estos sistemas se pueden aplicar para la predicción de fenómenos naturales y estimación del tiempo. Finalmente, otro campo importante de aplicación es la propia Informática, en donde se puede realizar el diagnóstico de fallos, la detección de intrusiones en redes de ordenadores, etc.
  16. 16. 16 Áreas de trabajo de la inteligencia artificial. Áreas Básicas Representación del conocimiento Resolución de problemas, Búsqueda Áreas Específicas Planificación de tareas Tratamiento del Lenguaje Natural Razonamiento Automático Sistemas Basados en el Conocimiento Percepción Aprendizaje Automático Agentes autónomos
  17. 17. 17 Conclusión. A manera de conclusión se puede decir que si bien es cierto la tecnología y la ciencia especialmente han avanzado mucho,la ficción supera la realidad, y para que estos artefactos artificialesw superen la mente humana se nmececita avanzar aun mas en la rama científica y de la humanidad. Si se llega a lograr un ser ´”pensante “con la IA seria quiizas mas fácil de controlar ya que la mente humana es un sinfín de neuronas y mecanismos complejos que difícilmente se pueden igualar con tal geniuda. La Inteligencia Artificial ha tenido gran auge en nuestros días, teniendo aplicabilidad en la informática, la ciencia, la salud y otros campos. Ha sido un gran reto tratar de acercar la mente de una máquina al pensamiento humano, y sin dudar que en un futuro no muy lejano no sepamos distinguir si estamos en presencia de una Inteligencia Artificial o una verdadera mente humana.
  18. 18. 18 Reflexión. Uno de mis intereses personales y pasatiempos favoritos siempre ha sido todo lo referente a las nuevas tendencias tecnológicas vanguardistas en las que cada vez seres artificiales se igualan literalmente a la capacidad del humano común. La curiosidad y el interés por conocer más acerca de la informática, la robótica y especialmente al computación y sus alcances es el punto de partida de esta investigación
  19. 19. 19 Referencias bibliográficas.  RUSSELLStuart, Inteligencia Artificial.  NORVIG Peter, Intelingencia Artificial, Un Enfoque Humano.  J. K. Gilbert. Educación tecnológica: Una nueva asignatura en todo el mundo. Enseñanza de las Ciencias, 13(1):15 _ 24, 1995.  D. Goleman. Inteligencia emocional. Kairós, 2000.  R. P. Díez, A. G. Gómez, and N. de Abajo Martínez. Introducción a la inteligencia artificial: Sistemas expertos, redes neuronales artificiales y computación evolutiva. Universidad de Oviedo, 2001. o P. A. Calleja. Historia de la Inteligencia Artificial. 2010. Recuperado de: http://www.redalyc.org/pdf/305/30500219.pdf Recuperado de: http://www.cs.upc.edu/~bejar/ia/transpas/teoria/1-IA-introduccion.pdf

×