SlideShare una empresa de Scribd logo
1 de 30
Descargar para leer sin conexión
Random graph process models of large
networks
Colin Cooper
Department of Informatics
King’s College London

28th October 2013
Yandex
Random graph process
Graph process: at each step the existing graph is modified by
making a small number of structural changes, e.g.
Add a new vertex with edges incident to existing graph
Add edges within the existing graph
Delete some edges or vertices
Exchange some existing edges for others
If these changes are random then some asymptotic structural
properties may emerge as the process evolves. For example
The degree sequence has a power law with parameter γ
Outline
Introduction

Various web graph models

Degree distribution: Undirected model

Hub-Authority model: Directed

Web-graphs of increasing degree
Experimental studies
Large-scale dynamic networks such as the Internet and the
World Wide Web
Barabási and Albert, Emergence of scaling in random
networks, (1999).
Broder, Kumar, Maghoul, Raghavan, Rajagopalan, Stata,
Tomkins and Wiener, Graph Structure in the Web, (2000).

M. Faloutsos and P. Faloutsos and C. Faloutsos, On
Power-law Relationships of the Internet Topology, (1999)
Power law degree sequence
Proportion of vertices of a given degree k follows an
approximate inverse power law
nk ∼ Ck −γ
for some constants C, γ
Various explanatory models e.g.
Bollobás, Riordan, Spencer and Tusnády, The degree
sequence of a scale-free random graph process, (2001)
Aiello, Chung and Lu, A random graph model for massive
graphs, (2000)
Kumar, Raghavan, Rajagopalan, Sivakumar, Tomkins and
Upfal. Stochastic models for the web graph, (2000)
Dorogovtsev, Mendes and Samukhin, Structure of growing
networks with preferential linking (2000)
Preferential attachment
One approach: generate graphs via a preferential attachment
PA: attach to a vertex proportional to degree
PA gives a power law distribution parameter γ = 3
The preferential attachment model dates back to Yule
G. Yule. A mathematical theory of evolution based on the
conclusions of Dr. J.C. Willis, Philosophical Transactions of the
Royal Society of London (Series B) (1924).
Yule model: Random tree. Each point independently
generates children with rate 1 in time interval ∆t. Early points
have most children
PA was proposed as a random graph model for the web by
Barabási and Albert. Emergence of scaling in random
networks, (1999)
Publications relevant to this talk
Cooper and Frieze, A general model of web graphs, RSA
(2003)
An analysis of the recurrence for the expected number of
vertices of degree k , combined with concentration results and
bounds for maximum degree.
Uses Laplace’s method to solve recurrences with rational
coefficients
Cooper. The age specific degree distribution of web-graphs,
CPC (2006)
Derives degree distribution directly, and uses this to obtain
expected number of vertices of degree k
Cooper, Pralat. Scale-free graphs of increasing degree, RSA
(2011)
Adapts the degree distribution method to obtain results for
growth model
Web-graph models
Simple undirected or directed process models where a mixture
of vertices and edges are added at each step either
preferentially or uniformly at random
For undirected web-graph processes, as the degree k tends to
infinity, the expected proportion of vertices of degree k tends to
Nk ∝ k −γ . The power law parameter is given by
γ = 1 + 1/η.
Here η is the limiting ratio of the expected number of edge
endpoints inserted in the process by preferential attachment to
the expected total degree
The maximum degree ∆ in this model is a.s.
∆ = O (nη )
where n is the number of vertices
Surprisingly, these results seem to hold for other types of
process model and can be useful as a general heuristic
Some examples of the power law heuristic
Standard preferential attachment: Make G(t) from G(t − 1) by
adding a new vertex vt with (an average of) m neighbours
chosen preferentially from G(t − 1)
η=

Power law

1
m
=
2m
2

γ =1+

Maximum degree

1
=1+2=3
η

∆ = O n1/2
Experimental evidence PA model
Rapid convergence for PA graphs γ = 3
20, 000 vertices is enough (see light blue plot data)

Thanks to Yiannis Siantos for the figure
Non-standard triangle closing model
Make G(t) from G(t − 1) by adding a new vertex vt
with one neighbour u chosen u.a.r from G(t − 1)
and one edge from vt to a random neighbour w of u

Pr(w chosen) ∝ d(w)
One edge in 4 is chosen preferentially
Proportion of edges added preferentially is
η=

1
4

So heuristically
Power law

γ =1+

Maximum degree

1
=1+4=5
η
∆ = O n1/4

Experimentally this seems to be true in the limit (see next slide)
The model seems difficult to analyze formally
Heuristic gives no information on convergence rate
Slow convergence: Large experiments up to 4 × 108 vertices
Still not quite arrived at γ = 5, ∆ = O n1/4

Thanks to Yiannis Siantos for the figure
Web-graph model generative choices
Web-graph model: Power law degree sequence
For undirected web-graph process, as the vertex degree k
tends to infinity, the expected proportion of vertices of degree k
tends to Nk ∝ k −γ . The power law parameter is given by
γ = 1 + 1/η
where η is the limiting ratio of the expected number of edge
endpoints inserted by preferential attachment to the expected
total degree
Any γ > 2 can be obtained by suitable choices of parameters
Undirected Web-graph model parameters
At each step either NEW vertex (+edges) is added with
probability α
or extra edges added between OLD vertices with prob.
β =1−α
For convenience edges are regarded as "directed out" from
new vertex
The number of edges is sampled from a distribution
depending on the choice made (NEW, OLD)
Each edge endpoint makes independent UAR or PA
choices:
A. New vertex v , choice for edges directed OUT from v
B. Old vertex v , choice for extra edge directed OUT from v
C. Old vertex v , choice for extra edge directed IN to v
Undirected model continued
NEW procedure.
All edges are "directed out" from new vertex.
Each edge of v chooses independently using probability
mixture (parameter A)
Pr(w is selected) = A1

1
d(w, t)
+ A2
2|E(t)|
|V (t)|

where
Pr(w is selected by ei ) = A1 + A2 = 1
w

In all OLD cases Z = A, B, C we have
pZ (v , t) = Z1

1
d(v , t − 1)
+ Z2
2|E(t − 1)|
|V (t − 1)|
Result of these choices
At each step with prob. α, NEW vertex (+edges) is added,
with prob. β = 1 − α extra edges are added between OLD
vertices
The number of edges m, M (NEW, OLD) sampled from a
probability distribution. Expected number of edges m, M
A. New vertex v , edges directed OUT from v
B. Old vertex v , edges directed OUT from v
C. Old vertex v , edges directed IN to v
Degree distribution depends on two parameters η, ν

PA

UAR

η=

αmA1 + βM(B1 + C1 )
2(αm + βM)

ν=

αmA2 + βM(B2 + C2 )
α
Degree distribution: Undirected model

η =

αmA1 + βM(B1 + C1 )
2(αm + βM)

PA

ν =

αmA2 + βM(B2 + C2 )
α

Uar

Vertex v of initial degree m added at step v
Distribution of degree d(v , t), of v at step t
P(d(v , t) = m+ |m) ∼

+m+ ν −1
η

v
t

m η +ν

1−

Assumes t → ∞ and v is added after time v0 → ∞, and
= o(t 1/4 )

v η
t
Illustration: Pr (degree increases by 2)
Prob. of change p, no change q at step t
η(m + j) ν
+
t
t
Change points τ1 , τ2
p(j, t) ∼

q(j, t) = 1 − p(j, t)

v | − − − − − −|τ1 − − − − − −|τ2 − − − − − − − −|t
Prob of exactly 2 changes at τ1 , τ2
q(0, v + 1) · · · q(0, τ1 − 1)p(0, τ1 )
×q(1, τ1 + 1) · · · q(1, τ2 − 1)p(1, τ2 )
×q(2, τ2 + 1) · · · q(2, t)

first change at τ1
second change at τ2

no further changes

This evaluates to
v
F (τ1 , τ2 ) ∼ ((ηm+ν)(η(m+1)+ν))
t

m+ν

η−1
ητ1
tη

η−1
ητ2
tη
This evaluates to
F (τ1 , τ2 ) ∼ ((ηm+ν)(η(m+1)+ν))

v
t

m+ν

η−1
ητ1
tη

η−1
ητ2
tη

Add over all possible τ1 , τ2
F (τ1 , τ2 ) ∼
∼

(ηm+ν)(η(m+1)+ν)
2!
(ηm+ν)(η(m+1)+ν)
2!

v
t
v
t

m+ν

m+ν

t

ητ η−1
dτ
tη
v
v η 2
1−
t

2
From deg. distn we can obtain..
n( | m) expected proportion of vertices of degree m +
n( | m) =

(( + m − 1)η + ν) · · · (mη + ν)
(( + m)η + ν + 1) · · · (mη + ν + 1)

Proportion, Nt ( | m) of vertices of degree m +
concentrated around n( | m) provided t → ∞, and not
too large
As → ∞, n( | m) ∼ K −(1+1/η)
Range of η is 0 < η < 1. Power law coefficient γ ≥ 2
η=

αmA1 + βM(B1 + C1 )
2(αm + βM)

As η → 0. Geometric degree sequence random graph
lim nη ( | m) ∼

η→0

1
ν+1

ν
ν+1
Hub-Authority model: Directed
Hub: Vertex with a lot of edges directed out (opinionated page)
Authority: Vertex with a lot of edges directed in (popular page)
The initial in- and out-degree is given by a distribution (P − , P + )
How does a new vertex v added at step t + 1 choose its
IN-neighbours?
Pr(w points to v ) = D1

1
d + (w, t)
+ D2
|E(t)|
|V (t)|

It is most likely a hub vertex will point an edge to v
How does a new vertex added at step t + 1 choose its
OUT-neighbours?
Pr(v points to w) = A1

d − (w, t)
1
+ A2
,
|E(t)|
|V (t)|

it is most likely v will point to an authority vertex
Results summary
Undirected model
√
( ) Age dependent degree distribution
√
( ) Number of vertices with given degree
√
( ) Asymptotic degree sequence n(k ) ∼ k −x
Hub-Authority model
√
( ) Age dependent in- and out-degree distribution
√
( , ×) Number of vertices with given in- & out-degree (as an
integral)
√
( ) Asymptotic degree sequence
n(k , l) ∼ k −x

−

−x +

, x = x(k , )

General Directed model
(×) The in- and out-degree distribution is not obtainable
explicitly
Sum of path dependent integrals (order of events matters)
Directed model. Definition only
In general, the choice type can be made on a mixture of IN and
OUT degree
E.g. How does a new vertex added at step t choose its
OUT-neighbours?

Pr(v points to w) =
A(1,+)

d − (w, t − 1)
1
d + (w, t − 1)
+ A(1,−)
+ A2
,
|E(t − 1)|
|E(t − 1)|
|V (t − 1)|

where
A(1,+) + A(1,+) + A2 = 1
An in-degree of 2 at w could be made up of various choices
(++), (+−), (−+), (−−) at w by subsequent vertices t > w
Results: Hub-Authority model
Degree distribution: Explicit distribution (similar to undirected)
Power law: Number of vertices n(r , s) of in-degree r ,
out-degree s is of the form
−

n(r , s | m− , m+ ) = Cr ,s r −x s−x

+

The parameters x − , x + depend on the relative sizes of r , s
+
−
They change as s increases from 1 to s = Θ(r η /η )
Functional form x = f (η + , η − , ν, m+ , m− ) quotient
η + , η − are the preferential attachment parameters
The parameter η − is the limiting ratio of the expected number of
edges whose terminal vertex was chosen by preferential
attachment, to the expected number of edges of the process
η− =

αm+ A1 + βMC1
αm+ + γm− + βM
How does degree sequence differ from Undirected?
Pr(d − (v , t) = r , d + (v , t) = s) ∼ Pr(d − (v , t) = r )Pr(d + (v , t) = s)
Expected proportion of vertices of degree (r , s)
−

+

n(r , s) = Cr −(1−ξ ) s−(1−ξ ) J(r , s)
where ξ + = m+ + ν + /η + and
1

J(r , s) =

x a (1 − x)r (1 − x b )s dx

0

where b = η + /η − and a = η + /η − ξ + + 1/η − + ξ − − 1
Asymptotics for J(r , s) depend on relative sizes of r , s
Increasing degree model: Preferential Attachment
Can we escape from power law γ = 3 by increasing the
number of edges added at each step?
At each step t add NEW vertex with f (t) edges
f (t) = [t c ],
For k

0<c<1

t c the power law we get is
nk = C

t

1+c
1−c

3−c

k 1+c

Need c > 0 constant to escape power law γ = 3 given by PA
models
When c = 1 all vertices have degree ∼ t so no power law
anymore
For 0 < c < 1 the power law is γ(c) = 1 + 2/(1 − c) > 3
Concluding remarks
Good points of web-graph model
Method works well for undirected models
Provides a heuristic for predicting degree sequence power
law and maximum degree in unrelated models
Generalizes to hypergraph models (not covered in this talk)
If 1 ≤ m(t) = t o(1) edges added at step t, power law is 3
Not so good points of web-graph model
Directed models less pleasing, as power law varies as a
function of relative sizes of in-degree and out-degree
General directed model: no closed form for degree
distribution?
Model does not explain/predict power laws with parameter
γ < 2 (As η ≤ 1 it must be that γ = 1 + 1/η ≥ 2)
THANK YOU

QUESTIONS

Más contenido relacionado

La actualidad más candente

Final PhD Seminar
Final PhD SeminarFinal PhD Seminar
Final PhD SeminarMatt Moores
 
Error analysis statistics
Error analysis   statisticsError analysis   statistics
Error analysis statisticsTarun Gehlot
 
Graph Analytics and Complexity Questions and answers
Graph Analytics and Complexity Questions and answersGraph Analytics and Complexity Questions and answers
Graph Analytics and Complexity Questions and answersAnimesh Chaturvedi
 
ADA - Minimum Spanning Tree Prim Kruskal and Dijkstra
ADA - Minimum Spanning Tree Prim Kruskal and Dijkstra ADA - Minimum Spanning Tree Prim Kruskal and Dijkstra
ADA - Minimum Spanning Tree Prim Kruskal and Dijkstra Sahil Kumar
 
R package bayesImageS: Scalable Inference for Intractable Likelihoods
R package bayesImageS: Scalable Inference for Intractable LikelihoodsR package bayesImageS: Scalable Inference for Intractable Likelihoods
R package bayesImageS: Scalable Inference for Intractable LikelihoodsMatt Moores
 
Planetary Science Assignment Help
Planetary Science Assignment HelpPlanetary Science Assignment Help
Planetary Science Assignment HelpEdu Assignment Help
 
A review on structure learning in GNN
A review on structure learning in GNNA review on structure learning in GNN
A review on structure learning in GNNtuxette
 
香港六合彩
香港六合彩香港六合彩
香港六合彩baoyin
 
Solucionario serway cap 3
Solucionario serway cap 3Solucionario serway cap 3
Solucionario serway cap 3Carlo Magno
 
Shortest path (Dijkistra's Algorithm) & Spanning Tree (Prim's Algorithm)
Shortest path (Dijkistra's Algorithm) & Spanning Tree (Prim's Algorithm)Shortest path (Dijkistra's Algorithm) & Spanning Tree (Prim's Algorithm)
Shortest path (Dijkistra's Algorithm) & Spanning Tree (Prim's Algorithm)Mohanlal Sukhadia University (MLSU)
 
Bayesian modelling and computation for Raman spectroscopy
Bayesian modelling and computation for Raman spectroscopyBayesian modelling and computation for Raman spectroscopy
Bayesian modelling and computation for Raman spectroscopyMatt Moores
 
minimum spanning trees Algorithm
minimum spanning trees Algorithm minimum spanning trees Algorithm
minimum spanning trees Algorithm sachin varun
 
QTML2021 UAP Quantum Feature Map
QTML2021 UAP Quantum Feature MapQTML2021 UAP Quantum Feature Map
QTML2021 UAP Quantum Feature MapHa Phuong
 
SPDE presentation 2012
SPDE presentation 2012SPDE presentation 2012
SPDE presentation 2012Zheng Mengdi
 

La actualidad más candente (20)

Final PhD Seminar
Final PhD SeminarFinal PhD Seminar
Final PhD Seminar
 
Intro to ABC
Intro to ABCIntro to ABC
Intro to ABC
 
CLIM Fall 2017 Course: Statistics for Climate Research, Geostats for Large Da...
CLIM Fall 2017 Course: Statistics for Climate Research, Geostats for Large Da...CLIM Fall 2017 Course: Statistics for Climate Research, Geostats for Large Da...
CLIM Fall 2017 Course: Statistics for Climate Research, Geostats for Large Da...
 
Error analysis statistics
Error analysis   statisticsError analysis   statistics
Error analysis statistics
 
Program on Mathematical and Statistical Methods for Climate and the Earth Sys...
Program on Mathematical and Statistical Methods for Climate and the Earth Sys...Program on Mathematical and Statistical Methods for Climate and the Earth Sys...
Program on Mathematical and Statistical Methods for Climate and the Earth Sys...
 
Graph Analytics and Complexity Questions and answers
Graph Analytics and Complexity Questions and answersGraph Analytics and Complexity Questions and answers
Graph Analytics and Complexity Questions and answers
 
ADA - Minimum Spanning Tree Prim Kruskal and Dijkstra
ADA - Minimum Spanning Tree Prim Kruskal and Dijkstra ADA - Minimum Spanning Tree Prim Kruskal and Dijkstra
ADA - Minimum Spanning Tree Prim Kruskal and Dijkstra
 
R package bayesImageS: Scalable Inference for Intractable Likelihoods
R package bayesImageS: Scalable Inference for Intractable LikelihoodsR package bayesImageS: Scalable Inference for Intractable Likelihoods
R package bayesImageS: Scalable Inference for Intractable Likelihoods
 
Planetary Science Assignment Help
Planetary Science Assignment HelpPlanetary Science Assignment Help
Planetary Science Assignment Help
 
A review on structure learning in GNN
A review on structure learning in GNNA review on structure learning in GNN
A review on structure learning in GNN
 
香港六合彩
香港六合彩香港六合彩
香港六合彩
 
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
 
Solucionario serway cap 3
Solucionario serway cap 3Solucionario serway cap 3
Solucionario serway cap 3
 
Shortest path (Dijkistra's Algorithm) & Spanning Tree (Prim's Algorithm)
Shortest path (Dijkistra's Algorithm) & Spanning Tree (Prim's Algorithm)Shortest path (Dijkistra's Algorithm) & Spanning Tree (Prim's Algorithm)
Shortest path (Dijkistra's Algorithm) & Spanning Tree (Prim's Algorithm)
 
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
 
Bayesian modelling and computation for Raman spectroscopy
Bayesian modelling and computation for Raman spectroscopyBayesian modelling and computation for Raman spectroscopy
Bayesian modelling and computation for Raman spectroscopy
 
minimum spanning trees Algorithm
minimum spanning trees Algorithm minimum spanning trees Algorithm
minimum spanning trees Algorithm
 
QTML2021 UAP Quantum Feature Map
QTML2021 UAP Quantum Feature MapQTML2021 UAP Quantum Feature Map
QTML2021 UAP Quantum Feature Map
 
SPDE presentation 2012
SPDE presentation 2012SPDE presentation 2012
SPDE presentation 2012
 
Program on Mathematical and Statistical Methods for Climate and the Earth Sys...
Program on Mathematical and Statistical Methods for Climate and the Earth Sys...Program on Mathematical and Statistical Methods for Climate and the Earth Sys...
Program on Mathematical and Statistical Methods for Climate and the Earth Sys...
 

Destacado

Commercial Landlord's Guide to Dealing with Issues in Bankruptcy
Commercial Landlord's Guide to Dealing with Issues in BankruptcyCommercial Landlord's Guide to Dealing with Issues in Bankruptcy
Commercial Landlord's Guide to Dealing with Issues in BankruptcySalene Kraemer
 
5 gusev
5 gusev5 gusev
5 gusevYandex
 
Principal and practical challenges with increasing complexity in the generati...
Principal and practical challenges with increasing complexity in the generati...Principal and practical challenges with increasing complexity in the generati...
Principal and practical challenges with increasing complexity in the generati...IEA DSM Implementing Agreement (IA)
 
Alexander Krot – Limits of Local Algorithms for Randomly Generated Constraint...
Alexander Krot – Limits of Local Algorithms for Randomly Generated Constraint...Alexander Krot – Limits of Local Algorithms for Randomly Generated Constraint...
Alexander Krot – Limits of Local Algorithms for Randomly Generated Constraint...Yandex
 
CISummit 2013: Albert-Laslo Barbasi, How Do You Best Control People Networks?
CISummit 2013: Albert-Laslo Barbasi, How Do You Best Control People Networks?CISummit 2013: Albert-Laslo Barbasi, How Do You Best Control People Networks?
CISummit 2013: Albert-Laslo Barbasi, How Do You Best Control People Networks?Steven Wardell
 
Understanding rules of origin in Trade by Mr. Chea Socheat
Understanding rules of origin in Trade by Mr. Chea SocheatUnderstanding rules of origin in Trade by Mr. Chea Socheat
Understanding rules of origin in Trade by Mr. Chea SocheatSocheat Chea
 
Slideshow Presentation
Slideshow PresentationSlideshow Presentation
Slideshow Presentationshughes
 

Destacado (7)

Commercial Landlord's Guide to Dealing with Issues in Bankruptcy
Commercial Landlord's Guide to Dealing with Issues in BankruptcyCommercial Landlord's Guide to Dealing with Issues in Bankruptcy
Commercial Landlord's Guide to Dealing with Issues in Bankruptcy
 
5 gusev
5 gusev5 gusev
5 gusev
 
Principal and practical challenges with increasing complexity in the generati...
Principal and practical challenges with increasing complexity in the generati...Principal and practical challenges with increasing complexity in the generati...
Principal and practical challenges with increasing complexity in the generati...
 
Alexander Krot – Limits of Local Algorithms for Randomly Generated Constraint...
Alexander Krot – Limits of Local Algorithms for Randomly Generated Constraint...Alexander Krot – Limits of Local Algorithms for Randomly Generated Constraint...
Alexander Krot – Limits of Local Algorithms for Randomly Generated Constraint...
 
CISummit 2013: Albert-Laslo Barbasi, How Do You Best Control People Networks?
CISummit 2013: Albert-Laslo Barbasi, How Do You Best Control People Networks?CISummit 2013: Albert-Laslo Barbasi, How Do You Best Control People Networks?
CISummit 2013: Albert-Laslo Barbasi, How Do You Best Control People Networks?
 
Understanding rules of origin in Trade by Mr. Chea Socheat
Understanding rules of origin in Trade by Mr. Chea SocheatUnderstanding rules of origin in Trade by Mr. Chea Socheat
Understanding rules of origin in Trade by Mr. Chea Socheat
 
Slideshow Presentation
Slideshow PresentationSlideshow Presentation
Slideshow Presentation
 

Similar a Yandex wg-talk

Large variance and fat tail of damage by natural disaster
Large variance and fat tail of damage by natural disasterLarge variance and fat tail of damage by natural disaster
Large variance and fat tail of damage by natural disasterHang-Hyun Jo
 
Bayesian phylogenetic inference_big4_ws_2016-10-10
Bayesian phylogenetic inference_big4_ws_2016-10-10Bayesian phylogenetic inference_big4_ws_2016-10-10
Bayesian phylogenetic inference_big4_ws_2016-10-10FredrikRonquist
 
Threshold network models
Threshold network modelsThreshold network models
Threshold network modelsNaoki Masuda
 
SPSF02 - Graphical Data Representation
SPSF02 - Graphical Data RepresentationSPSF02 - Graphical Data Representation
SPSF02 - Graphical Data RepresentationSyeilendra Pramuditya
 
Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3Fabian Pedregosa
 
Application Of vector Integration and all
Application Of vector Integration and allApplication Of vector Integration and all
Application Of vector Integration and allMalikUmarKhakh
 
International journal of engineering and mathematical modelling vol2 no1_2015_1
International journal of engineering and mathematical modelling vol2 no1_2015_1International journal of engineering and mathematical modelling vol2 no1_2015_1
International journal of engineering and mathematical modelling vol2 no1_2015_1IJEMM
 
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...SYRTO Project
 
Electromagnetic theory EMT lecture 1
Electromagnetic theory EMT lecture 1Electromagnetic theory EMT lecture 1
Electromagnetic theory EMT lecture 1Ali Farooq
 
Problem Solving by Computer Finite Element Method
Problem Solving by Computer Finite Element MethodProblem Solving by Computer Finite Element Method
Problem Solving by Computer Finite Element MethodPeter Herbert
 
Numerical methods for 2 d heat transfer
Numerical methods for 2 d heat transferNumerical methods for 2 d heat transfer
Numerical methods for 2 d heat transferArun Sarasan
 
Treewidth and Applications
Treewidth and ApplicationsTreewidth and Applications
Treewidth and ApplicationsASPAK2014
 

Similar a Yandex wg-talk (20)

Large variance and fat tail of damage by natural disaster
Large variance and fat tail of damage by natural disasterLarge variance and fat tail of damage by natural disaster
Large variance and fat tail of damage by natural disaster
 
Bayesian phylogenetic inference_big4_ws_2016-10-10
Bayesian phylogenetic inference_big4_ws_2016-10-10Bayesian phylogenetic inference_big4_ws_2016-10-10
Bayesian phylogenetic inference_big4_ws_2016-10-10
 
Optimisation random graph presentation
Optimisation random graph presentationOptimisation random graph presentation
Optimisation random graph presentation
 
Threshold network models
Threshold network modelsThreshold network models
Threshold network models
 
SPSF02 - Graphical Data Representation
SPSF02 - Graphical Data RepresentationSPSF02 - Graphical Data Representation
SPSF02 - Graphical Data Representation
 
numerical.ppt
numerical.pptnumerical.ppt
numerical.ppt
 
Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3
 
MUMS: Bayesian, Fiducial, and Frequentist Conference - Model Selection in the...
MUMS: Bayesian, Fiducial, and Frequentist Conference - Model Selection in the...MUMS: Bayesian, Fiducial, and Frequentist Conference - Model Selection in the...
MUMS: Bayesian, Fiducial, and Frequentist Conference - Model Selection in the...
 
Application Of vector Integration and all
Application Of vector Integration and allApplication Of vector Integration and all
Application Of vector Integration and all
 
International journal of engineering and mathematical modelling vol2 no1_2015_1
International journal of engineering and mathematical modelling vol2 no1_2015_1International journal of engineering and mathematical modelling vol2 no1_2015_1
International journal of engineering and mathematical modelling vol2 no1_2015_1
 
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
 
Glossary ib
Glossary ibGlossary ib
Glossary ib
 
Network Theory
Network TheoryNetwork Theory
Network Theory
 
Electromagnetic theory EMT lecture 1
Electromagnetic theory EMT lecture 1Electromagnetic theory EMT lecture 1
Electromagnetic theory EMT lecture 1
 
Problem Solving by Computer Finite Element Method
Problem Solving by Computer Finite Element MethodProblem Solving by Computer Finite Element Method
Problem Solving by Computer Finite Element Method
 
Numerical methods for 2 d heat transfer
Numerical methods for 2 d heat transferNumerical methods for 2 d heat transfer
Numerical methods for 2 d heat transfer
 
ilovepdf_merged
ilovepdf_mergedilovepdf_merged
ilovepdf_merged
 
Treewidth and Applications
Treewidth and ApplicationsTreewidth and Applications
Treewidth and Applications
 
pRO
pROpRO
pRO
 
P1111145969
P1111145969P1111145969
P1111145969
 

Más de Yandex

Предсказание оттока игроков из World of Tanks
Предсказание оттока игроков из World of TanksПредсказание оттока игроков из World of Tanks
Предсказание оттока игроков из World of TanksYandex
 
Как принять/организовать работу по поисковой оптимизации сайта, Сергей Царик,...
Как принять/организовать работу по поисковой оптимизации сайта, Сергей Царик,...Как принять/организовать работу по поисковой оптимизации сайта, Сергей Царик,...
Как принять/организовать работу по поисковой оптимизации сайта, Сергей Царик,...Yandex
 
Структурированные данные, Юлия Тихоход, лекция в Школе вебмастеров Яндекса
Структурированные данные, Юлия Тихоход, лекция в Школе вебмастеров ЯндексаСтруктурированные данные, Юлия Тихоход, лекция в Школе вебмастеров Яндекса
Структурированные данные, Юлия Тихоход, лекция в Школе вебмастеров ЯндексаYandex
 
Представление сайта в поиске, Сергей Лысенко, лекция в Школе вебмастеров Яндекса
Представление сайта в поиске, Сергей Лысенко, лекция в Школе вебмастеров ЯндексаПредставление сайта в поиске, Сергей Лысенко, лекция в Школе вебмастеров Яндекса
Представление сайта в поиске, Сергей Лысенко, лекция в Школе вебмастеров ЯндексаYandex
 
Плохие методы продвижения сайта, Екатерины Гладких, лекция в Школе вебмастеро...
Плохие методы продвижения сайта, Екатерины Гладких, лекция в Школе вебмастеро...Плохие методы продвижения сайта, Екатерины Гладких, лекция в Школе вебмастеро...
Плохие методы продвижения сайта, Екатерины Гладких, лекция в Школе вебмастеро...Yandex
 
Основные принципы ранжирования, Сергей Царик и Антон Роменский, лекция в Школ...
Основные принципы ранжирования, Сергей Царик и Антон Роменский, лекция в Школ...Основные принципы ранжирования, Сергей Царик и Антон Роменский, лекция в Школ...
Основные принципы ранжирования, Сергей Царик и Антон Роменский, лекция в Школ...Yandex
 
Основные принципы индексирования сайта, Александр Смирнов, лекция в Школе веб...
Основные принципы индексирования сайта, Александр Смирнов, лекция в Школе веб...Основные принципы индексирования сайта, Александр Смирнов, лекция в Школе веб...
Основные принципы индексирования сайта, Александр Смирнов, лекция в Школе веб...Yandex
 
Мобильное приложение: как и зачем, Александр Лукин, лекция в Школе вебмастеро...
Мобильное приложение: как и зачем, Александр Лукин, лекция в Школе вебмастеро...Мобильное приложение: как и зачем, Александр Лукин, лекция в Школе вебмастеро...
Мобильное приложение: как и зачем, Александр Лукин, лекция в Школе вебмастеро...Yandex
 
Сайты на мобильных устройствах, Олег Ножичкин, лекция в Школе вебмастеров Янд...
Сайты на мобильных устройствах, Олег Ножичкин, лекция в Школе вебмастеров Янд...Сайты на мобильных устройствах, Олег Ножичкин, лекция в Школе вебмастеров Янд...
Сайты на мобильных устройствах, Олег Ножичкин, лекция в Школе вебмастеров Янд...Yandex
 
Качественная аналитика сайта, Юрий Батиевский, лекция в Школе вебмастеров Янд...
Качественная аналитика сайта, Юрий Батиевский, лекция в Школе вебмастеров Янд...Качественная аналитика сайта, Юрий Батиевский, лекция в Школе вебмастеров Янд...
Качественная аналитика сайта, Юрий Батиевский, лекция в Школе вебмастеров Янд...Yandex
 
Что можно и что нужно измерять на сайте, Петр Аброськин, лекция в Школе вебма...
Что можно и что нужно измерять на сайте, Петр Аброськин, лекция в Школе вебма...Что можно и что нужно измерять на сайте, Петр Аброськин, лекция в Школе вебма...
Что можно и что нужно измерять на сайте, Петр Аброськин, лекция в Школе вебма...Yandex
 
Как правильно поставить ТЗ на создание сайта, Алексей Бородкин, лекция в Школ...
Как правильно поставить ТЗ на создание сайта, Алексей Бородкин, лекция в Школ...Как правильно поставить ТЗ на создание сайта, Алексей Бородкин, лекция в Школ...
Как правильно поставить ТЗ на создание сайта, Алексей Бородкин, лекция в Школ...Yandex
 
Как защитить свой сайт, Пётр Волков, лекция в Школе вебмастеров
Как защитить свой сайт, Пётр Волков, лекция в Школе вебмастеровКак защитить свой сайт, Пётр Волков, лекция в Школе вебмастеров
Как защитить свой сайт, Пётр Волков, лекция в Школе вебмастеровYandex
 
Как правильно составить структуру сайта, Дмитрий Сатин, лекция в Школе вебмас...
Как правильно составить структуру сайта, Дмитрий Сатин, лекция в Школе вебмас...Как правильно составить структуру сайта, Дмитрий Сатин, лекция в Школе вебмас...
Как правильно составить структуру сайта, Дмитрий Сатин, лекция в Школе вебмас...Yandex
 
Технические особенности создания сайта, Дмитрий Васильева, лекция в Школе веб...
Технические особенности создания сайта, Дмитрий Васильева, лекция в Школе веб...Технические особенности создания сайта, Дмитрий Васильева, лекция в Школе веб...
Технические особенности создания сайта, Дмитрий Васильева, лекция в Школе веб...Yandex
 
Конструкторы для отдельных элементов сайта, Елена Першина, лекция в Школе веб...
Конструкторы для отдельных элементов сайта, Елена Першина, лекция в Школе веб...Конструкторы для отдельных элементов сайта, Елена Першина, лекция в Школе веб...
Конструкторы для отдельных элементов сайта, Елена Першина, лекция в Школе веб...Yandex
 
Контент для интернет-магазинов, Катерина Ерошина, лекция в Школе вебмастеров ...
Контент для интернет-магазинов, Катерина Ерошина, лекция в Школе вебмастеров ...Контент для интернет-магазинов, Катерина Ерошина, лекция в Школе вебмастеров ...
Контент для интернет-магазинов, Катерина Ерошина, лекция в Школе вебмастеров ...Yandex
 
Как написать хороший текст для сайта, Катерина Ерошина, лекция в Школе вебмас...
Как написать хороший текст для сайта, Катерина Ерошина, лекция в Школе вебмас...Как написать хороший текст для сайта, Катерина Ерошина, лекция в Школе вебмас...
Как написать хороший текст для сайта, Катерина Ерошина, лекция в Школе вебмас...Yandex
 
Usability и дизайн - как не помешать пользователю, Алексей Иванов, лекция в Ш...
Usability и дизайн - как не помешать пользователю, Алексей Иванов, лекция в Ш...Usability и дизайн - как не помешать пользователю, Алексей Иванов, лекция в Ш...
Usability и дизайн - как не помешать пользователю, Алексей Иванов, лекция в Ш...Yandex
 
Cайт. Зачем он и каким должен быть, Алексей Иванов, лекция в Школе вебмастеро...
Cайт. Зачем он и каким должен быть, Алексей Иванов, лекция в Школе вебмастеро...Cайт. Зачем он и каким должен быть, Алексей Иванов, лекция в Школе вебмастеро...
Cайт. Зачем он и каким должен быть, Алексей Иванов, лекция в Школе вебмастеро...Yandex
 

Más de Yandex (20)

Предсказание оттока игроков из World of Tanks
Предсказание оттока игроков из World of TanksПредсказание оттока игроков из World of Tanks
Предсказание оттока игроков из World of Tanks
 
Как принять/организовать работу по поисковой оптимизации сайта, Сергей Царик,...
Как принять/организовать работу по поисковой оптимизации сайта, Сергей Царик,...Как принять/организовать работу по поисковой оптимизации сайта, Сергей Царик,...
Как принять/организовать работу по поисковой оптимизации сайта, Сергей Царик,...
 
Структурированные данные, Юлия Тихоход, лекция в Школе вебмастеров Яндекса
Структурированные данные, Юлия Тихоход, лекция в Школе вебмастеров ЯндексаСтруктурированные данные, Юлия Тихоход, лекция в Школе вебмастеров Яндекса
Структурированные данные, Юлия Тихоход, лекция в Школе вебмастеров Яндекса
 
Представление сайта в поиске, Сергей Лысенко, лекция в Школе вебмастеров Яндекса
Представление сайта в поиске, Сергей Лысенко, лекция в Школе вебмастеров ЯндексаПредставление сайта в поиске, Сергей Лысенко, лекция в Школе вебмастеров Яндекса
Представление сайта в поиске, Сергей Лысенко, лекция в Школе вебмастеров Яндекса
 
Плохие методы продвижения сайта, Екатерины Гладких, лекция в Школе вебмастеро...
Плохие методы продвижения сайта, Екатерины Гладких, лекция в Школе вебмастеро...Плохие методы продвижения сайта, Екатерины Гладких, лекция в Школе вебмастеро...
Плохие методы продвижения сайта, Екатерины Гладких, лекция в Школе вебмастеро...
 
Основные принципы ранжирования, Сергей Царик и Антон Роменский, лекция в Школ...
Основные принципы ранжирования, Сергей Царик и Антон Роменский, лекция в Школ...Основные принципы ранжирования, Сергей Царик и Антон Роменский, лекция в Школ...
Основные принципы ранжирования, Сергей Царик и Антон Роменский, лекция в Школ...
 
Основные принципы индексирования сайта, Александр Смирнов, лекция в Школе веб...
Основные принципы индексирования сайта, Александр Смирнов, лекция в Школе веб...Основные принципы индексирования сайта, Александр Смирнов, лекция в Школе веб...
Основные принципы индексирования сайта, Александр Смирнов, лекция в Школе веб...
 
Мобильное приложение: как и зачем, Александр Лукин, лекция в Школе вебмастеро...
Мобильное приложение: как и зачем, Александр Лукин, лекция в Школе вебмастеро...Мобильное приложение: как и зачем, Александр Лукин, лекция в Школе вебмастеро...
Мобильное приложение: как и зачем, Александр Лукин, лекция в Школе вебмастеро...
 
Сайты на мобильных устройствах, Олег Ножичкин, лекция в Школе вебмастеров Янд...
Сайты на мобильных устройствах, Олег Ножичкин, лекция в Школе вебмастеров Янд...Сайты на мобильных устройствах, Олег Ножичкин, лекция в Школе вебмастеров Янд...
Сайты на мобильных устройствах, Олег Ножичкин, лекция в Школе вебмастеров Янд...
 
Качественная аналитика сайта, Юрий Батиевский, лекция в Школе вебмастеров Янд...
Качественная аналитика сайта, Юрий Батиевский, лекция в Школе вебмастеров Янд...Качественная аналитика сайта, Юрий Батиевский, лекция в Школе вебмастеров Янд...
Качественная аналитика сайта, Юрий Батиевский, лекция в Школе вебмастеров Янд...
 
Что можно и что нужно измерять на сайте, Петр Аброськин, лекция в Школе вебма...
Что можно и что нужно измерять на сайте, Петр Аброськин, лекция в Школе вебма...Что можно и что нужно измерять на сайте, Петр Аброськин, лекция в Школе вебма...
Что можно и что нужно измерять на сайте, Петр Аброськин, лекция в Школе вебма...
 
Как правильно поставить ТЗ на создание сайта, Алексей Бородкин, лекция в Школ...
Как правильно поставить ТЗ на создание сайта, Алексей Бородкин, лекция в Школ...Как правильно поставить ТЗ на создание сайта, Алексей Бородкин, лекция в Школ...
Как правильно поставить ТЗ на создание сайта, Алексей Бородкин, лекция в Школ...
 
Как защитить свой сайт, Пётр Волков, лекция в Школе вебмастеров
Как защитить свой сайт, Пётр Волков, лекция в Школе вебмастеровКак защитить свой сайт, Пётр Волков, лекция в Школе вебмастеров
Как защитить свой сайт, Пётр Волков, лекция в Школе вебмастеров
 
Как правильно составить структуру сайта, Дмитрий Сатин, лекция в Школе вебмас...
Как правильно составить структуру сайта, Дмитрий Сатин, лекция в Школе вебмас...Как правильно составить структуру сайта, Дмитрий Сатин, лекция в Школе вебмас...
Как правильно составить структуру сайта, Дмитрий Сатин, лекция в Школе вебмас...
 
Технические особенности создания сайта, Дмитрий Васильева, лекция в Школе веб...
Технические особенности создания сайта, Дмитрий Васильева, лекция в Школе веб...Технические особенности создания сайта, Дмитрий Васильева, лекция в Школе веб...
Технические особенности создания сайта, Дмитрий Васильева, лекция в Школе веб...
 
Конструкторы для отдельных элементов сайта, Елена Першина, лекция в Школе веб...
Конструкторы для отдельных элементов сайта, Елена Першина, лекция в Школе веб...Конструкторы для отдельных элементов сайта, Елена Першина, лекция в Школе веб...
Конструкторы для отдельных элементов сайта, Елена Першина, лекция в Школе веб...
 
Контент для интернет-магазинов, Катерина Ерошина, лекция в Школе вебмастеров ...
Контент для интернет-магазинов, Катерина Ерошина, лекция в Школе вебмастеров ...Контент для интернет-магазинов, Катерина Ерошина, лекция в Школе вебмастеров ...
Контент для интернет-магазинов, Катерина Ерошина, лекция в Школе вебмастеров ...
 
Как написать хороший текст для сайта, Катерина Ерошина, лекция в Школе вебмас...
Как написать хороший текст для сайта, Катерина Ерошина, лекция в Школе вебмас...Как написать хороший текст для сайта, Катерина Ерошина, лекция в Школе вебмас...
Как написать хороший текст для сайта, Катерина Ерошина, лекция в Школе вебмас...
 
Usability и дизайн - как не помешать пользователю, Алексей Иванов, лекция в Ш...
Usability и дизайн - как не помешать пользователю, Алексей Иванов, лекция в Ш...Usability и дизайн - как не помешать пользователю, Алексей Иванов, лекция в Ш...
Usability и дизайн - как не помешать пользователю, Алексей Иванов, лекция в Ш...
 
Cайт. Зачем он и каким должен быть, Алексей Иванов, лекция в Школе вебмастеро...
Cайт. Зачем он и каким должен быть, Алексей Иванов, лекция в Школе вебмастеро...Cайт. Зачем он и каким должен быть, Алексей Иванов, лекция в Школе вебмастеро...
Cайт. Зачем он и каким должен быть, Алексей Иванов, лекция в Школе вебмастеро...
 

Último

Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxLoriGlavin3
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxLoriGlavin3
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxBkGupta21
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersNicole Novielli
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESmohitsingh558521
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsNathaniel Shimoni
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxLoriGlavin3
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 

Último (20)

Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptx
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptx
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software Developers
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directions
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 

Yandex wg-talk

  • 1. Random graph process models of large networks Colin Cooper Department of Informatics King’s College London 28th October 2013 Yandex
  • 2. Random graph process Graph process: at each step the existing graph is modified by making a small number of structural changes, e.g. Add a new vertex with edges incident to existing graph Add edges within the existing graph Delete some edges or vertices Exchange some existing edges for others If these changes are random then some asymptotic structural properties may emerge as the process evolves. For example The degree sequence has a power law with parameter γ
  • 3. Outline Introduction Various web graph models Degree distribution: Undirected model Hub-Authority model: Directed Web-graphs of increasing degree
  • 4. Experimental studies Large-scale dynamic networks such as the Internet and the World Wide Web Barabási and Albert, Emergence of scaling in random networks, (1999). Broder, Kumar, Maghoul, Raghavan, Rajagopalan, Stata, Tomkins and Wiener, Graph Structure in the Web, (2000). M. Faloutsos and P. Faloutsos and C. Faloutsos, On Power-law Relationships of the Internet Topology, (1999)
  • 5. Power law degree sequence Proportion of vertices of a given degree k follows an approximate inverse power law nk ∼ Ck −γ for some constants C, γ Various explanatory models e.g. Bollobás, Riordan, Spencer and Tusnády, The degree sequence of a scale-free random graph process, (2001) Aiello, Chung and Lu, A random graph model for massive graphs, (2000) Kumar, Raghavan, Rajagopalan, Sivakumar, Tomkins and Upfal. Stochastic models for the web graph, (2000) Dorogovtsev, Mendes and Samukhin, Structure of growing networks with preferential linking (2000)
  • 6. Preferential attachment One approach: generate graphs via a preferential attachment PA: attach to a vertex proportional to degree PA gives a power law distribution parameter γ = 3 The preferential attachment model dates back to Yule G. Yule. A mathematical theory of evolution based on the conclusions of Dr. J.C. Willis, Philosophical Transactions of the Royal Society of London (Series B) (1924). Yule model: Random tree. Each point independently generates children with rate 1 in time interval ∆t. Early points have most children PA was proposed as a random graph model for the web by Barabási and Albert. Emergence of scaling in random networks, (1999)
  • 7. Publications relevant to this talk Cooper and Frieze, A general model of web graphs, RSA (2003) An analysis of the recurrence for the expected number of vertices of degree k , combined with concentration results and bounds for maximum degree. Uses Laplace’s method to solve recurrences with rational coefficients Cooper. The age specific degree distribution of web-graphs, CPC (2006) Derives degree distribution directly, and uses this to obtain expected number of vertices of degree k Cooper, Pralat. Scale-free graphs of increasing degree, RSA (2011) Adapts the degree distribution method to obtain results for growth model
  • 8. Web-graph models Simple undirected or directed process models where a mixture of vertices and edges are added at each step either preferentially or uniformly at random For undirected web-graph processes, as the degree k tends to infinity, the expected proportion of vertices of degree k tends to Nk ∝ k −γ . The power law parameter is given by γ = 1 + 1/η. Here η is the limiting ratio of the expected number of edge endpoints inserted in the process by preferential attachment to the expected total degree The maximum degree ∆ in this model is a.s. ∆ = O (nη ) where n is the number of vertices Surprisingly, these results seem to hold for other types of process model and can be useful as a general heuristic
  • 9. Some examples of the power law heuristic Standard preferential attachment: Make G(t) from G(t − 1) by adding a new vertex vt with (an average of) m neighbours chosen preferentially from G(t − 1) η= Power law 1 m = 2m 2 γ =1+ Maximum degree 1 =1+2=3 η ∆ = O n1/2
  • 10. Experimental evidence PA model Rapid convergence for PA graphs γ = 3 20, 000 vertices is enough (see light blue plot data) Thanks to Yiannis Siantos for the figure
  • 11. Non-standard triangle closing model Make G(t) from G(t − 1) by adding a new vertex vt with one neighbour u chosen u.a.r from G(t − 1) and one edge from vt to a random neighbour w of u Pr(w chosen) ∝ d(w) One edge in 4 is chosen preferentially
  • 12. Proportion of edges added preferentially is η= 1 4 So heuristically Power law γ =1+ Maximum degree 1 =1+4=5 η ∆ = O n1/4 Experimentally this seems to be true in the limit (see next slide) The model seems difficult to analyze formally
  • 13. Heuristic gives no information on convergence rate Slow convergence: Large experiments up to 4 × 108 vertices Still not quite arrived at γ = 5, ∆ = O n1/4 Thanks to Yiannis Siantos for the figure
  • 15. Web-graph model: Power law degree sequence For undirected web-graph process, as the vertex degree k tends to infinity, the expected proportion of vertices of degree k tends to Nk ∝ k −γ . The power law parameter is given by γ = 1 + 1/η where η is the limiting ratio of the expected number of edge endpoints inserted by preferential attachment to the expected total degree Any γ > 2 can be obtained by suitable choices of parameters
  • 16. Undirected Web-graph model parameters At each step either NEW vertex (+edges) is added with probability α or extra edges added between OLD vertices with prob. β =1−α For convenience edges are regarded as "directed out" from new vertex The number of edges is sampled from a distribution depending on the choice made (NEW, OLD) Each edge endpoint makes independent UAR or PA choices: A. New vertex v , choice for edges directed OUT from v B. Old vertex v , choice for extra edge directed OUT from v C. Old vertex v , choice for extra edge directed IN to v
  • 17. Undirected model continued NEW procedure. All edges are "directed out" from new vertex. Each edge of v chooses independently using probability mixture (parameter A) Pr(w is selected) = A1 1 d(w, t) + A2 2|E(t)| |V (t)| where Pr(w is selected by ei ) = A1 + A2 = 1 w In all OLD cases Z = A, B, C we have pZ (v , t) = Z1 1 d(v , t − 1) + Z2 2|E(t − 1)| |V (t − 1)|
  • 18. Result of these choices At each step with prob. α, NEW vertex (+edges) is added, with prob. β = 1 − α extra edges are added between OLD vertices The number of edges m, M (NEW, OLD) sampled from a probability distribution. Expected number of edges m, M A. New vertex v , edges directed OUT from v B. Old vertex v , edges directed OUT from v C. Old vertex v , edges directed IN to v Degree distribution depends on two parameters η, ν PA UAR η= αmA1 + βM(B1 + C1 ) 2(αm + βM) ν= αmA2 + βM(B2 + C2 ) α
  • 19. Degree distribution: Undirected model η = αmA1 + βM(B1 + C1 ) 2(αm + βM) PA ν = αmA2 + βM(B2 + C2 ) α Uar Vertex v of initial degree m added at step v Distribution of degree d(v , t), of v at step t P(d(v , t) = m+ |m) ∼ +m+ ν −1 η v t m η +ν 1− Assumes t → ∞ and v is added after time v0 → ∞, and = o(t 1/4 ) v η t
  • 20. Illustration: Pr (degree increases by 2) Prob. of change p, no change q at step t η(m + j) ν + t t Change points τ1 , τ2 p(j, t) ∼ q(j, t) = 1 − p(j, t) v | − − − − − −|τ1 − − − − − −|τ2 − − − − − − − −|t Prob of exactly 2 changes at τ1 , τ2 q(0, v + 1) · · · q(0, τ1 − 1)p(0, τ1 ) ×q(1, τ1 + 1) · · · q(1, τ2 − 1)p(1, τ2 ) ×q(2, τ2 + 1) · · · q(2, t) first change at τ1 second change at τ2 no further changes This evaluates to v F (τ1 , τ2 ) ∼ ((ηm+ν)(η(m+1)+ν)) t m+ν η−1 ητ1 tη η−1 ητ2 tη
  • 21. This evaluates to F (τ1 , τ2 ) ∼ ((ηm+ν)(η(m+1)+ν)) v t m+ν η−1 ητ1 tη η−1 ητ2 tη Add over all possible τ1 , τ2 F (τ1 , τ2 ) ∼ ∼ (ηm+ν)(η(m+1)+ν) 2! (ηm+ν)(η(m+1)+ν) 2! v t v t m+ν m+ν t ητ η−1 dτ tη v v η 2 1− t 2
  • 22. From deg. distn we can obtain.. n( | m) expected proportion of vertices of degree m + n( | m) = (( + m − 1)η + ν) · · · (mη + ν) (( + m)η + ν + 1) · · · (mη + ν + 1) Proportion, Nt ( | m) of vertices of degree m + concentrated around n( | m) provided t → ∞, and not too large As → ∞, n( | m) ∼ K −(1+1/η) Range of η is 0 < η < 1. Power law coefficient γ ≥ 2 η= αmA1 + βM(B1 + C1 ) 2(αm + βM) As η → 0. Geometric degree sequence random graph lim nη ( | m) ∼ η→0 1 ν+1 ν ν+1
  • 23. Hub-Authority model: Directed Hub: Vertex with a lot of edges directed out (opinionated page) Authority: Vertex with a lot of edges directed in (popular page) The initial in- and out-degree is given by a distribution (P − , P + ) How does a new vertex v added at step t + 1 choose its IN-neighbours? Pr(w points to v ) = D1 1 d + (w, t) + D2 |E(t)| |V (t)| It is most likely a hub vertex will point an edge to v How does a new vertex added at step t + 1 choose its OUT-neighbours? Pr(v points to w) = A1 d − (w, t) 1 + A2 , |E(t)| |V (t)| it is most likely v will point to an authority vertex
  • 24. Results summary Undirected model √ ( ) Age dependent degree distribution √ ( ) Number of vertices with given degree √ ( ) Asymptotic degree sequence n(k ) ∼ k −x Hub-Authority model √ ( ) Age dependent in- and out-degree distribution √ ( , ×) Number of vertices with given in- & out-degree (as an integral) √ ( ) Asymptotic degree sequence n(k , l) ∼ k −x − −x + , x = x(k , ) General Directed model (×) The in- and out-degree distribution is not obtainable explicitly Sum of path dependent integrals (order of events matters)
  • 25. Directed model. Definition only In general, the choice type can be made on a mixture of IN and OUT degree E.g. How does a new vertex added at step t choose its OUT-neighbours? Pr(v points to w) = A(1,+) d − (w, t − 1) 1 d + (w, t − 1) + A(1,−) + A2 , |E(t − 1)| |E(t − 1)| |V (t − 1)| where A(1,+) + A(1,+) + A2 = 1 An in-degree of 2 at w could be made up of various choices (++), (+−), (−+), (−−) at w by subsequent vertices t > w
  • 26. Results: Hub-Authority model Degree distribution: Explicit distribution (similar to undirected) Power law: Number of vertices n(r , s) of in-degree r , out-degree s is of the form − n(r , s | m− , m+ ) = Cr ,s r −x s−x + The parameters x − , x + depend on the relative sizes of r , s + − They change as s increases from 1 to s = Θ(r η /η ) Functional form x = f (η + , η − , ν, m+ , m− ) quotient η + , η − are the preferential attachment parameters The parameter η − is the limiting ratio of the expected number of edges whose terminal vertex was chosen by preferential attachment, to the expected number of edges of the process η− = αm+ A1 + βMC1 αm+ + γm− + βM
  • 27. How does degree sequence differ from Undirected? Pr(d − (v , t) = r , d + (v , t) = s) ∼ Pr(d − (v , t) = r )Pr(d + (v , t) = s) Expected proportion of vertices of degree (r , s) − + n(r , s) = Cr −(1−ξ ) s−(1−ξ ) J(r , s) where ξ + = m+ + ν + /η + and 1 J(r , s) = x a (1 − x)r (1 − x b )s dx 0 where b = η + /η − and a = η + /η − ξ + + 1/η − + ξ − − 1 Asymptotics for J(r , s) depend on relative sizes of r , s
  • 28. Increasing degree model: Preferential Attachment Can we escape from power law γ = 3 by increasing the number of edges added at each step? At each step t add NEW vertex with f (t) edges f (t) = [t c ], For k 0<c<1 t c the power law we get is nk = C t 1+c 1−c 3−c k 1+c Need c > 0 constant to escape power law γ = 3 given by PA models When c = 1 all vertices have degree ∼ t so no power law anymore For 0 < c < 1 the power law is γ(c) = 1 + 2/(1 − c) > 3
  • 29. Concluding remarks Good points of web-graph model Method works well for undirected models Provides a heuristic for predicting degree sequence power law and maximum degree in unrelated models Generalizes to hypergraph models (not covered in this talk) If 1 ≤ m(t) = t o(1) edges added at step t, power law is 3 Not so good points of web-graph model Directed models less pleasing, as power law varies as a function of relative sizes of in-degree and out-degree General directed model: no closed form for degree distribution? Model does not explain/predict power laws with parameter γ < 2 (As η ≤ 1 it must be that γ = 1 + 1/η ≥ 2)