SlideShare una empresa de Scribd logo
1 de 180
Descargar para leer sin conexión
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 1.



                                                 Resolve 90 N force into vector components P and Q

                                                 where Q = ( 90 N ) sin 40°

                                                               = 57.851 N

                                                 Then M B = − rA/BQ

                                                               = − (0.225 m )(57.851 N )

                                                               = −13.0165 N ⋅ m

                                                                                                          M B = 13.02 N ⋅ m




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 2.



                                                                        Fx = ( 90 N ) cos 25°

                                                                            = 81.568 N

                                                                        Fy = ( 90 N ) sin 25°

                                                                            = 38.036 N

                                                             x = ( 0.225 m ) cos 65°

                                                                = 0.095089 m

                                                             y = (0.225 m ) sin 65°

                                                                = 0.20392 m

                                                 M B = xFy − yFx

                                                        = ( 0.095089 m )( 38.036 N ) − ( 0.20392 m )( 81.568 N )

                                                       = −13.0165 N ⋅ m

                                                                                                          M B = 13.02 N ⋅ m




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 3.



                                                  Px = ( 3 lb ) sin 30°

                                                      = 1.5 lb

                                                  Py = ( 3 lb ) cos 30°

                                                      = 2.5981 lb

                                                                       M A = xB/ A Py + yB/ A Px

                                                                             = ( 3.4 in.)( 2.5981 lb ) + ( 4.8 in.)(1.5 lb )

                                                                             = 16.0335 lb ⋅ in.

                                                                                                               M A = 16.03 lb ⋅ in.




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 4.



                                                 For P to be a minimum, it must be perpendicular to the line joining points
                                                 A and B

                                                 with rAB =        ( 3.4 in.)2 + ( 4.8 in.)2
                                                              = 5.8822 in.

                                                                            y
                                                        α = θ = tan −1  
                                                                        x   

                                                                            4.8 in. 
                                                                  = tan −1          
                                                                            3.4 in. 

                                                                  = 54.689°

                                                 Then                              M A = rAB Pmin

                                                                                             M A 19.5 lb ⋅ in.
                                                 or                                Pmin =        =
                                                                                             rAB   5.8822 in.

                                                                                         = 3.3151 lb

                                                                               ∴ Pmin = 3.32 lb            54.7°

                                                                                                          or   Pmin = 3.32 lb   35.3°




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 5.



                                                 By definition              M A = rB/ A P sin θ

                                                 where                         θ = φ + ( 90° − α )
                                                                                             4.8 in. 
                                                 and                           φ = tan −1            
                                                                                             3.4 in. 
                                                                                  = 54.689°

                                                 Also        rB/ A =    ( 3.4 in.)2 + ( 4.8 in.)2
                                                                   = 5.8822 in.



  Then                          (17 lb ⋅ in.) = ( 5.8822 in.)( 2.9 lb ) sin ( 54.689° + 90° − α )
  or                             sin (144.689° − α ) = 0.99658
  or                             144.689° − α = 85.260°; 94.740°
                                                                                                          ∴ α = 49.9°, 59.4°




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 6.



(a)                                              (a) M A = rB/ A × TBF

                                                       M A = xTBFy + yTBFx

                                                            = ( 2 m )( 200 N ) sin 60° + ( 0.4 m )( 200 N ) cos 60°

                                                            = 386.41 N ⋅ m

                                                                                                             or M A = 386 N ⋅ m
(b)
                                                 (b) For FC to be a minimum, it must be perpendicular to the line
                                                     joining A and C.

                                                                             ∴ M A = d ( FC )min


                                                 with                              d =     ( 2 m )2 + (1.35 m )2
                                                                                     = 2.4130 m

                                                 Then 386.41 N ⋅ m = ( 2.4130 m ) ( FC )min

                                                              ( FC )min   = 160.137 N

                                                                             1.35 m 
                                                 and          φ = tan −1             = 34.019°
                                                                             2m 

                                                              θ = 90 − φ = 90° − 34.019° = 55.981°

                                                                                                      ∴ ( FC )min = 160.1 N   56.0°




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 7.



  (a)                                             M A = xTBFy + yTBFx

                                                            = ( 2 m )( 200 N ) sin 60° + ( 0.4 m )( 200 N ) cos 60°
                                                            = 386.41 N ⋅ m
                                                                                                               or M A = 386 N ⋅ m


  (b)
                                                 Have                   M A = xFC
                                                                                  MA   386.41 N ⋅ m
                                                       or                FC =        =
                                                                                   x       2m
                                                                             = 193.205 N
                                                                                                                 ∴ FC = 193.2 N
  (c)                                            For FB to be minimum, it must be perpendicular to the line joining A
                                                 and B
                                                                        ∴ M A = d ( FB )min

                                                 with                         d =      ( 2 m )2 + ( 0.40 m )2     = 2.0396 m

                                                 Then           386.41 N ⋅ m = ( 2.0396 m ) ( FC )min

                                                                      ( FC )min   = 189.454 N

                                                                                            2m 
                                                 and                          θ = tan −1           = 78.690°
                                                                                            0.4 m 
                                                                                                  or      ( FC )min   = 189.5 N   78.7°




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 8.




                                                          (               )
  (a)
                                                  M B = rA/B cos15° W

                                                       = (14 in.)( cos15° )( 5 lb )
                                                       = 67.615 lb ⋅ in.
                                                                                                          or     M B = 67.6 lb ⋅ in.


  (b)
                                                              M B = rD/B P sin 85°

                                                 67.615 lb ⋅ in. = ( 3.2 in.) P sin 85°
                                                                                                          or              P = 21.2 lb



  (c)                                            For ( F )min, F must be perpendicular to BC.

                                                 Then,                  M B = rC/B F

                                                              67.615 lb ⋅ in. = (18 in.) F
                                                                                                          or   F = 3.76 lb       75.0°




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 9.



                                                                                                        35 in.      5
                                                 (a)                      Slope of line EC =                      =
                                                                                                    76 in. + 8 in. 12

                                                                                                 12
                                                       Then                           TABx =        (TAB )
                                                                                                 13

                                                                                                 12
                                                                                             =      ( 260 lb ) = 240 lb
                                                                                                 13

                                                                                                  5
                                                       and                             TABy =       ( 260 lb ) = 100 lb
                                                                                                 13

                                                       Then                      M D = TABx ( 35 in.) − TABy ( 8 in.)

                                                                                       = ( 240 lb )( 35 in.) − (100 lb )( 8 in.)

                                                                                       = 7600 lb ⋅ in.

                                                                                                             or M D = 7600 lb ⋅ in.

                                                 (b) Have                           M D = TABx ( y ) + TABy ( x )

                                                                                           = ( 240 lb )( 0 ) + (100 lb )( 76 in.)

                                                                                           = 7600 lb ⋅ in.

                                                                                                             or M D = 7600 lb ⋅ in.




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 10.




                                                                             35 in.       7
                                               Slope of line EC =                       =
                                                                         112 in. + 8 in. 24
                                                                                  24
  Then                                                                  TABx =       TAB
                                                                                  25
                                                                                  7
  and                                                                   TABy =       TAB
                                                                                  25
  Have                                                           M D = TABx ( y ) + TABy ( x )

                                                                  24             7
                                           ∴ 7840 lb ⋅ in. =         TAB ( 0 ) +    TAB (112 in.)
                                                                  25             25
                                                                 TAB = 250 lb

                                                                                                          or TAB = 250 lb




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 11.




  The minimum value of d can be found based on the equation relating the moment of the force TAB about D:

                                                            M D = (TAB max ) y ( d )

  where                                                               M D = 1152 N ⋅ m

                                                                            (TAB max ) y   = TAB max sin θ = ( 2880 N ) sin θ

                                                                                  1.05 m
  Now                                                      sin θ =
                                                                       (d   + 0.24 ) + (1.05 ) m
                                                                                     2            2




                                                                                                              
                                                                                         1.05
                                          ∴ 1152 N ⋅ m = 2880 N                                                (d )
                                                                                                              
                                                                
                                                                            (d   + 0.24 ) + (1.05 )
                                                                                           2               2
                                                                                                               
                                                                                                               

  or                                                                                                      ( d + 0.24 )2 + (1.05)2   = 2.625d

  or                                                                                                  (d   + 0.24 ) + (1.05 ) = 6.8906d 2
                                                                                                                        2       2



  or                                                                                                       5.8906d 2 − 0.48d − 1.1601 = 0
  Using the quadratic equation, the minimum values of d are 0.48639 m and −0.40490 m.
  Since only the positive value applies here, d = 0.48639 m
                                                                                                                            or d = 486 mm




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 12.




                                                 with d AB =       ( 42 mm )2 + (144 mm )2
                                                              = 150 mm

                                                                  42 mm
                                                       sin θ =
                                                                 150 mm

                                                                 144 mm
                                                      cosθ =
                                                                 150 mm

                                                 and FAB = − FAB sin θ i − FAB cosθ j

                                                                  2.5 kN
                                                             =           ( − 42 mm ) i − (144 mm ) j
                                                                 150 mm                             

                                                             = − ( 700 N ) i − ( 2400 N ) j

                                                 Also rB/C = − ( 0.042 m ) i + ( 0.056 m ) j

                                                 Now M C = rB/C × FAB

                                                               = ( − 0.042 i + 0.056 j) × ( − 700 i − 2400 j) N ⋅ m

                                                               = (140.0 N ⋅ m ) k

                                                                                                          or   M C = 140.0 N ⋅ m




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 13.




                                                 with d AB =       ( 42 mm )2 + (144 mm )2
                                                              = 150 mm

                                                                  42 mm
                                                       sin θ =
                                                                 150 mm

                                                                  144 mm
                                                       cosθ =
                                                                  150 mm

                                                       FAB = − FAB sin θ i − FAB cosθ j

                                                                  2.5 kN
                                                             =           ( − 42 mm ) i − (144 mm ) j
                                                                 150 mm                             

                                                             = − ( 700 N ) i − ( 2400 N ) j

                                                 Also rB/C = − ( 0.042 m ) i − ( 0.056 m ) j

                                                 Now M C = rB/C × FAB

                                                               = ( − 0.042 i − 0.056 j) × ( − 700i − 2400 j) N ⋅ m

                                                               = ( 61.6 N ⋅ m ) k

                                                                                                          or   M C = 61.6 N ⋅ m




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 14.




                                        88                         105        
      ΣM D :         M D = ( 0.090 m )      × 80 N  − ( 0.280 m )      × 80 N 
                                        137                        137        
                           = −12.5431 N ⋅ m
                                                                                                          or   M D = 12.54 N ⋅ m




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 15.



  Note: B = B ( cos β i + sin β j)

          B′ = B ( cos β i − sin β j)

          C = C ( cos α i + sin α j)

  By definition:            B × C = BC sin (α − β )                                                                                   (1)

                           B′ × C = BC sin (α + β )                                                                                   (2)

  Now ... B × C = B ( cos β i + sin β j) × C ( cos α i + sin α j)

                       = BC ( cos β sin α − sin β cos α ) k                                                                           (3)

  and        B′ × C = B ( cos β i − sin β j) × C ( cos α i + sin α j)

                       = BC ( cos β sin α + sin β cos α ) k                                                                           (4)

  Equating the magnitudes of B × C from equations (1) and (3) yields:

           BC sin (α − β ) = BC ( cos β sin α − sin β cos α )                                                                         (5)

  Similarly, equating the magnitudes of B′ × C from equations (2) and (4) yields:

           BC sin (α + β ) = BC ( cos β sin α + sin β cos α )                                                                         (6)

  Adding equations (5) and (6) gives:

           sin (α − β ) + sin (α + β ) = 2cos β sin α

                                                                                                          1               1
                                                                             or        sin α cos β =        sin (α + β ) + sin (α − β )
                                                                                                          2               2




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 16.



                                                                    Have d = λ AB × rO/ A

                                                                                     rB/ A
                                                                    where λ AB =
                                                                                      rB/ A

                                                               and rB/ A = ( −210 mm − 630 mm ) i

                                                               + ( 270 mm − ( −225 mm ) ) j

                                                              = − ( 840 mm ) i + ( 495 mm ) j

                                                          rB/ A =    ( −840 mm )2 + ( 495 mm )2
                                                                      = 975 mm

                                                                          − ( 840 mm ) i + ( 495 mm ) j
                                                       Then λ AB =
                                                                                   975 mm
                                                                          1
                                                                      =      ( −56i + 33j)
                                                                          65
                                                       Also rO/ A = ( 0 − 630 ) i + ( 0 − (−225) ) j

                                                              = − ( 630 mm ) i + ( 225 mm ) j

                                                 1
                                      ∴d =          ( −56i + 33j) × − ( 630 mm ) i + ( 225 mm ) j
                                                                                                 
                                                 65
                                            = 126.0 mm
                                                                      d = 126.0 mm




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 17.



                                                 A×B
 (a)                                      λ =
                                                 A×B
       where                              A = 12i − 6 j + 9k
                                          B = − 3i + 9 j − 7.5k
       Then
                                             i  j   k
                                    A × B = 12 − 6 9
                                            − 3 9 − 7.5

                                              = ( 45 − 81) i + ( −27 + 90 ) j + (108 − 18 ) k

                                              = 9 ( − 4i + 7 j + 10k )

                             And A × B = 9 (− 4) 2 + (7)2 + (10)2 = 9 165
                                                  9 ( − 4i + 7 j + 10k )
                                        ∴λ =
                                                          9 165
                                                                                                             1
                                                                                                    or λ =       ( − 4i + 7 j + 10k )
                                                                                                             165
                                                 A×B
 (b)                                      λ =
                                                 A×B

     where                                A = −14i − 2 j + 8k

                                          B = 3i + 1.5j − k

     Then

                                              i   j k
                                     A × B = −14 − 2 8
                                              3 1.5 −1

                                              = ( 2 − 12 ) i + ( 24 − 14 ) j + ( −21 + 6 ) k
                                              = 5 ( −2i + 2 j − 3k )

    and                                           A × B = 5 (−2)2 + (2)2 + (−3)2 = 5 17
                                                               5 ( −2i + 2 j − 3k )
                                                     ∴λ =
                                                                       5 17
                                                         1
                                             or λ =         ( − 2i + 2 j − 3k )
                                                         17


Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 18.



 (a)                       Have A = P × Q

                                        i j k
                               P × Q = 3 7 −2 in.2
                                       −5 1 3

                                       = [ (21 + 2)i + (10 − 9) j + (3 + 35)k ] in.2

                                           (         ) (           ) (
                                        = 23 in.2 i + 1 in.2 j + 38 in.2 k         )
                                 ∴A=           (23)2 + (1)2 + (38) 2 = 44.430 in.2

                                                                                                          or A = 44.4 in.2

 (b)                                A = P×Q

                                       i j k
                               P × Q = 2 − 4 3 in.2
                                       6 −1 5

                                       = [ (−20 − 3)i + (−18 − 10) j + (−2 + 24)k ] in.2

                                               (       ) (             ) (
                                        = − 23 in.2 i − 28 in.2 j + 22 in.2 k           )
                                 ∴A=           (− 23)2 + (−28)2 + (22) 2 = 42.391 in.2

                                                                                                          or A = 42.4 in.2




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 19.



 (a)        Have               MO = r × F
                                           i    j    k
                                      = − 6 3 1.5 N ⋅ m
                                        7.5 3 − 4.5

                                      = [ (−13.5 − 4.5)i + (11.25 − 27) j + (−18 − 22.5)k ] N ⋅ m
                                      = ( −18.00i − 15.75 j − 40.5k ) N ⋅ m
                                                                 or M O = − (18.00 N ⋅ m ) i − (15.75 Ν ⋅ m ) j − ( 40.5 N ⋅ m ) k
 (b)        Have              MO = r × F
                                         i   j     k
                                      = 2 − 0.75 −1 N ⋅ m
                                        7.5  3   − 4.5

                                      = [ (3.375 + 3)i + (−7.5 + 9) j + (6 + 5.625)k ] N ⋅ m
                                      = ( 6.375i + 1.500 j + 11.625k ) N ⋅ m
                                                                    or M O = ( 6.38 N ⋅ m ) i + (1.500 Ν ⋅ m ) j + (11.63 Ν ⋅ m ) k
 (c)        Have              MO = r × F
                                          i    j k
                                      = − 2.5 −1 1.5 N ⋅ m
                                         7.5 3 4.5

                                      = [ (4.5 − 4.5)i + (11.25 − 11.25) j + (−7.5 + 7.5)k ] N ⋅ m
                                                                                                                      or M O = 0
 This answer is expected since r and F are proportional ( F = −3r ) . Therefore, vector F has a line of action
 passing through the origin at O.




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 20.



  (a)       Have               MO = r × F
                                          i   j k
                                      = − 7.5 3 − 6 lb ⋅ ft
                                          3 −6 4

                                      = [ (12 − 36)i + (−18 + 30) j + (45 − 9)k ] lb ⋅ ft
                                                                    or M O = − ( 24.0 lb ⋅ ft ) i + (12.00 lb ⋅ ft ) j + ( 36.0 lb ⋅ ft ) k

  (b)       Have               MO = r × F
                                          i    j k
                                      = − 7.5 1.5 −1 lb ⋅ ft
                                          3 −6 4

                                      = [ (6 − 6)i + (−3 + 3) j + (4.5 − 4.5)k ] lb ⋅ ft
                                                                        or M O = 0

  (c)       Have               MO = r × F
                                         i  j  k
                                      = − 8 2 −14 lb ⋅ ft
                                         3 −6 4

                                      = [ (8 − 84)i + (−42 + 32) j + (48 − 6)k ] lb ⋅ ft
                                                                  or M O = − ( 76.0 lb ⋅ ft ) i − (10.00 lb ⋅ ft ) j + ( 42.0 lb ⋅ ft ) k




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 21.




               With                  TAB = − ( 369 N ) j


                                     TAB = TAD
                                                    AD
                                                       = ( 369 N )
                                                                            ( 2.4 m ) i − ( 3.1 m ) j − (1.2 m ) k
                                                    AD                     ( 2.4 m )2 + ( −3.1 m )2 + ( −1.2 m )2

                                                    TAD = ( 216 N ) i − ( 279 N ) j − (108 N ) k

               Then                                  R A = 2 TAB + TAD

                                                         = ( 216 N ) i − (1017 N ) j − (108 N ) k

               Also                                rA/C = ( 3.1 m ) i + (1.2 m ) k

               Have                                 M C = rA/C × R A

                                                             i    j     k
                                                          = 0    3.1   1.2 N ⋅ m
                                                            216 −1017 −108

                                                = ( 885.6 N ⋅ m ) i + ( 259.2 N ⋅ m ) j − ( 669.6 N ⋅ m ) k

                                               M C = ( 886 N ⋅ m ) i + ( 259 N ⋅ m ) j − ( 670 N ⋅ m ) k




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 22.



                                                       Have           M A = rC/ A × F

                                                       where           rC/ A = ( 215 mm ) i − ( 50 mm ) j + (140 mm ) k

                                                                         Fx = − ( 36 N ) cos 45° sin12°

                                                                         Fy = − ( 36 N ) sin 45°

                                                                         Fz = − ( 36 N ) cos 45° cos12°

                                                                       ∴ F = − ( 5.2926 N ) i − ( 25.456 N ) j − ( 24.900 N ) k

                                                                           i        j       k
                                                       and        M A = 0.215   − 0.050   0.140 N ⋅ m
                                                                       − 5.2926 − 25.456 − 24.900

                                                                         = ( 4.8088 N ⋅ m ) i + ( 4.6125 N ⋅ m ) j − ( 5.7377 N ⋅ m ) k

                                                                           M A = ( 4.81 N ⋅ m ) i + ( 4.61 N ⋅ m ) j − ( 5.74 N ⋅ m ) k




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 23.



                                                     Have             M O = rA/O × R

                                                     where            rA/D = ( 30 ft ) j + ( 3 ft ) k

                                                                        T1 = − ( 62 lb ) cos10°  i − ( 62 lb ) sin10°  j
                                                                                                                      
                                                                            = − ( 61.058 lb ) i − (10.766 lb ) j

                                                                                   AB
                                                                       T2 = T2
                                                                                   AB

                                                                            = ( 62 lb )
                                                                                           ( 5 ft ) i − ( 30 ft ) j + ( 6 ft ) k
                                                                                           ( 5 ft )2 + ( − 30 ft )2 + ( 6 ft )2
                                                                            = (10 lb ) i − ( 60 lb ) j + (12 lb ) k

                                                                                  ∴ R = − ( 51.058 lb ) i − ( 70.766 lb ) j + (12 lb ) k

                                                                            i       j    k
                                                                MO    =     0      30     3 lb ⋅ ft
                                                                        − 51.058 −70.766 12

                                                                      = ( 572.30 lb ⋅ ft ) i − (153.17 lb ⋅ ft ) j + (1531.74 lb ⋅ ft ) k

                                                                          M O = ( 572 lb ⋅ ft ) i − (153.2 lb ⋅ ft ) j + (1532 lb ⋅ ft ) k




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 24.




  (a)          Have                  M O = rB/O × TBD

               where                rB/O = ( 2.5 m ) i + ( 2 m ) j

                                                    BD
                                     TBD = TBD
                                                    BD

                                                        − (1 m ) i − ( 2 m ) j + ( 2 m ) k 
                                           = ( 900 N )                                     
                                                         ( −1 m ) + ( − 2 m ) + ( 2 m )
                                                                  2             2           2



                                           = − ( 300 N ) i − ( 600 N ) j + ( 600 N ) k

               Then

                                                i     j   k
                                     MO    = 2.5     2    0 N⋅m
                                             − 300 − 600 600

                                                                          M O = (1200 N ⋅ m ) i − (1500 N ⋅ m ) j − ( 900 N ⋅ m ) k


                                                                                                                continued




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




  (b)          Have                  M O = rB/O × TBE

               where                rB/O = ( 2.5 m ) i + ( 2 m ) j

                                                    BE
                                      TBE = TBE
                                                    BE

                                                         − ( 0.5 m ) i − ( 2 m ) j − ( 4 m ) k 
                                            = ( 675 N )                                        
                                                          ( 0.5 m ) + ( −2 m ) + ( − 4 m )2
                                                                   2             2



                                             = − ( 75 N ) i − ( 300 N ) j − ( 600 N ) k

               Then

                                               i     j    k
                                     MO    = 2.5    2     0 N⋅m
                                             − 75 − 300 − 600

                                                                       M O = − (1200 N ⋅ m ) i + (1500 N ⋅ m ) j − ( 600 N ⋅ m ) k




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 25.




                                                     Have M C = rA/C × P

                                                     where
                                                           rA/C = rB/C + rA/B

                                                                 = (16 in.)( − cos80° cos15°i − sin 80° j − cos80° sin15°k )

                                                                    + (15.2 in.)( − sin 20° cos15°i + cos 20° j − sin 20° sin15°k )

                                                                 = − ( 7.7053 in.) i − (1.47360 in.) j − ( 2.0646 in.) k

  and                     P = (150 lb )( cos 5° cos 70°i + sin 5° j − cos 5° sin 70°k )

                             = ( 51.108 lb ) i + (13.0734 lb ) j − (140.418 lb ) k

  Then
                               i        j       k
                      M C = −7.7053 −1.47360 −2.0646 lb ⋅ in.
                            51.108 13.0734 −140.418

                            = ( 233.91 lb ⋅ in.) i − (1187.48 lb ⋅ in.) j − ( 25.422 lb ⋅ in.) k

                                           or M C = (19.49 lb ⋅ ft ) i − ( 99.0 lb ⋅ ft ) j − ( 2.12 lb ⋅ ft ) k




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 26.



                                                Have                             M C = rA/C × FBA

                                                where                             rA/C = ( 0.96 m ) i − ( 0.12 m ) j + ( 0.72 m ) k

                                                and             FBA = λ BA FBA

                                                                                                                  
                                                                      =  − ( 0.1 m ) i + (1.8 m ) j − ( 0.6 m ) k  ( 228 N )
                                                                                                                  
                                                                        
                                                                               ( 0.1)2 + (1.8)2 + ( 0.6 )2 m     

                                                                      = − (12.0 N ) i + ( 216 N ) j − ( 72 N ) k

                                                                 i    j    k
                                                       ∴ M C = 0.96 −0.12 0.72 N ⋅ m
                                                               −12.0 216 −72

                                                                  = − (146.88 N ⋅ m ) i + ( 60.480 N ⋅ m ) j + ( 205.92 N ⋅ m ) k

                                                                    or M C = − (146.9 N ⋅ m ) i + ( 60.5 N ⋅ m ) j + ( 206 N ⋅ m ) k




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 27.



                                                 Have            M C = TAD d

                                                 where                d = Perpendicular distance from C to line AD
                                                 with              M C = rA/C TAD

                                                 and              rA/C = ( 3.1 m ) j + (1.2 m ) k

                                                                                  AD
                                                                   TAD = TAD
                                                                                  AD
                                                                                   ( 2.4 m ) i − ( 3.1 m ) j − (1.2 m ) k 
                                                                   TAD = ( 369 N )                                        
                                                                                   ( 2.4 m ) + ( − 3.1 m ) + ( −1.2 m )2
                                                                                            2                2



                                                                          = ( 216 N ) i − ( 279 N ) j − (108 N ) k

 Then
                                    i     j   k
                              MC = 0    3.1 1.2 N ⋅ m
                                   216 − 279 −108

                                     = ( 259.2 N ⋅ m ) j − ( 669.6 N ⋅ m ) k

  and                         MC =        ( 259.2 N ⋅ m )2 + ( −669.6 N ⋅ m )2
                                     = 718.02 N ⋅ m

                ∴ 718.02 N ⋅ m = ( 369 N ) d

                                                                                                                 or d = 1.946 m




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 28.



                                                Have           M O = TAC d
                                                where               d = Perpendicular distance from O to rope AC
                                                with            M O = rA/O × TAC

                                                and             rA/O = ( 30 ft ) j + ( 3 ft ) k

                                                                TAC = − ( 62 lb ) cos10° i − ( 62 lb ) sin10° j
                                                                                                             
                                                                       = − ( 61.058 lb ) i − (10.766 lb ) j



 Then
                                          i       j    k
                              MO    =     0      30    3 lb ⋅ ft
                                      − 61.058 −10.766 0

                                    = ( 32.298 lb ⋅ ft ) i − (183.174 lb ⋅ ft ) j + (1831.74 lb ⋅ ft ) k

  and                        MO =        ( 32.298 lb ⋅ ft )2 + ( −183.174 lb ⋅ ft )2 + (1831.74 lb ⋅ ft )2
                                     = 1841.16 lb ⋅ ft

                                                    ∴ 1841.16 lb ⋅ ft = ( 62 lb ) d

                                                                                                                 or d = 29.7 ft




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 29.



                                                Have       M O = TAB d
                                                where          d = Perpendicular distance from O to rope AB
                                                with        M O = rA/O × TAB

                                                and         rA/O = ( 30 ft ) j + ( 3 ft ) k

                                                                           AB
                                                            TAB = TAB
                                                                           AB
                                                                              ( 5 ft ) i − ( 30 ft ) j + ( 6 ft ) k 
                                                                  = ( 62 lb )                                       
                                                                                ( 5 ft ) + ( − 30 ft ) + ( 6 ft )2
                                                                                        2               2



                                                                  = (10 lb ) i − ( 60 lb ) j + (12 lb ) k

 Then
                                           i   j k
                                  MO    = 0 30 3 lb ⋅ ft
                                          10 − 60 12

                                        = ( 540 lb ⋅ ft ) i + ( 30 lb ⋅ ft ) j − ( 300 lb ⋅ ft ) k

  and                            MO =        ( 540 lb ⋅ ft )2 + ( 30 lb ⋅ ft )2 + ( −300 lb ⋅ ft )2
                                         = 618.47 lb ⋅ ft

                                                        ∴ 618.47 lb ⋅ ft = ( 62 lb ) d

                                                                                                                         or d = 9.98 ft




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 30.



                                                Have       M C = TBD d
                                                where         d = Perpendicular distance from C to cable BD
                                                with       M C = rB/C × TB/D

                                                and        rB/C = ( 2 m ) j

                                                                         BD
                                                          TBD = TBD
                                                                         BD
                                                                              − (1 m ) i − ( 2 m ) j + ( 2 m ) k 
                                                                 = ( 900 N )                                     
                                                                               ( −1 m ) + ( − 2 m ) + ( 2 m )2
                                                                                        2             2



                                                                 = − ( 300 N ) i − ( 600 N ) j + ( 600 N ) k

 Then
                                    i     j   k
                              MC = 0     2    0 N⋅m
                                  −300 − 600 600

                                    = (1200 N ⋅ m ) i + ( 600 N ⋅ m ) k

 and                         MC =        (1200 N ⋅ m )2 + ( 600 N ⋅ m )2
                                    = 1341.64 N ⋅ m

                                                    ∴ 1341.64 = ( 900 N ) d

                                                                                                                      or d = 1.491 m




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 31.




                                                       Have M C = Pd

                                                       From the solution of problem 3.25

                                                                M C = ( 233.91 lb ⋅ in.) i − (1187.48 lb ⋅ in.) j − ( 25.422 lb ⋅ in.) k

                                                       Then

                                                                 MC =       ( 233.91)2 + ( −1187.48)2 + ( −25.422 )2
                                                                       = 1210.57 lb ⋅ in.

                                                                          MC   1210.57 lb.in.
                                                       and         d =       =
                                                                          P       150 lb

                                                                                                                   or d = 8.07 in.




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 32.


                                                Have                 | M D | = FBAd
                                                where                    d = perpendicular distance from D to line AB.

                                                                      M D = rA/D × FBA

                                                                      rA/D = − ( 0.12 m ) j + ( 0.72 m ) k


                                                        FBA = λ BA FBA =
                                                                               ( − ( 0.1 m ) i + (1.8 m ) j − ( 0.6 m ) k ) ( 228 N )
                                                                                      ( 0.1)2 + (1.8)2 + ( 0.6 )2   m

                                                                            = − (12.0 N ) i + ( 216 N ) j − ( 72 N ) k

                                                                           i     j    k
                                                            ∴ MD        = 0    −0.12 0.72 N ⋅ m
                                                                         −12.0 216 −72

                                                                        = − (146.88 N ⋅ m ) i − ( 8.64 N ⋅ m ) j − (1.44 N ⋅ m ) k

                                                and             |MD | =      (146.88)2 + (8.64 )2 + (1.44 )2        = 147.141 N ⋅ m

                                                                           ∴ 147.141 N ⋅ m = ( 228 N ) d

                                                                                              d = 0.64536 m
                                                                                                                      or d = 0.645 m




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 33.


                                                Have              | M C | = FBAd

                                                where                   d = perpendicular distance from C to line AB.

                                                                    M C = rA/C × FBA

                                                                   rA/C = ( 0.96 m ) i − ( 0.12 m ) j + ( 0.72 m ) k


                                                          FBA = λ BA FBA =
                                                                                 ( − ( 0.1 m ) i + (1.8 m ) j − ( 0.6 ) k ) ( 228 N )
                                                                                         ( 0.1)2 + (1.8)2 + ( 0.6 )2   m

                                                                = − (12.0 N ) i + ( 216 N ) j − ( 72 N ) k

                                                                           i         j        k
                                                         ∴ M C = 0.96 −0.12 0.72 N ⋅ m
                                                                 −12.0 216 −72

                                                                    = − (146.88 N ⋅ m ) i − ( 60.48 N ⋅ m ) j + ( 205.92 N ⋅ m ) k

                                                and          | MC | =    (146.88)2 + ( 60.48)2 + ( 205.92 )2           = 260.07 N ⋅ m

                                                                               ∴ 260.07 N ⋅ m = ( 228 N ) d

                                                                                         d = 1.14064 m
                                                                                                                           or d = 1.141 m




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 34.



                                                 (a) Have d = rC/ A sin θ = λ AB × rC/ A

                                                        where d = Perpendicular distance from C to pipe AB
                                                                      AB              7i + 4 j − 32k
                                                        with λ AB =      =
                                                                      AB          ( 7 )2 + ( 4 )2 + ( −32 )2
                                                                                 1
                                                                             =      ( 7i + 4 j − 32k )
                                                                                 33
                                                        and rC/ A = − (14 ft ) i + ( 5 ft ) j + ( L − 22 ) ft  k
                                                                                                              
                                         i j    k
                                     1
        Then        λ AB × rC/ A   =     7 4 − 32 ft
                                     33
                                        −14 5 L − 22

                                    =
                                      1
                                      33 
                                          {                                                                               }
                                           4 ( L − 22 ) + 32 ( 5 )  i + 32 (14 ) − 7 ( L − 22 )  j +  7 ( 5 ) + 4 (14 )  k ft

                                       1
                                    =    ( 4L + 72 ) i + ( −7 L + 602 ) j + 91k  ft
                                      33                                            
                            1
        and          d =          ( 4L + 72 )2 + ( −7 L + 602 )2 + ( 91)2
                            33
                             dd 2    1
        For          (d ) min ,    = 2  2 ( 4 )( 4L + 72 ) + 2 ( −7 )( −7 L + 602 )  = 0
                             dL     33                                              
        or           65L − 3926 = 0
        or           L = 60.400 ft
        But          L > Lgreenhouse                                                                                 so     L = 30.0 ft
                                                   1
 (b) with            L = 30 ft,            d =          ( 4 × 30 + 72 )2 + ( −7 × 30 + 602 )2 + ( 91)2
                                                   33
                                                                                                                     or d = 13.51 ft
         Note:       with         L = 60.4 ft,
                                              1
                                        d =         ( 4 × 60.4 + 72 )2 + ( −7 × 60.4 + 602 )2 + ( 91)2         = 11.29 ft
                                              33




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 35.



                                            P ⋅ Q = ( − 4i + 8j − 3k ) ⋅ ( 9i − j − 7k )

                                                   = ( − 4 )( 9 ) + ( 8 )( −1) + ( − 3)( − 7 )
                                                   = − 23
                                                                                                          or P ⋅ Q = −23

                                           P ⋅ S = ( − 4i + 8 j − 3k ) ⋅ ( 5i − 6 j + 2k )

                                                  = ( − 4 )( 5 ) + ( 8 )( − 6 ) + ( − 3)( 2 )
                                                  = − 74
                                                                                                          or P ⋅ S = −74

                                           Q ⋅ S = ( 9i − j − 7k ) ⋅ ( 5i − 6 j + 2k )

                                                  = ( 9 )( 5 ) + ( −1)( − 6 ) + ( − 7 )( 2 )
                                                  = 37
                                                                                                          or Q ⋅ S = 37




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 36.


                                                By definition
                                                                                 B ⋅ C = BC cos (α − β )

                                                where                                B = B ( cos β ) i + ( sin β ) j
                                                                                                                    

                                                                                     C = C ( cos α ) i + ( sin α ) j
                                                                                                                    

                                                        ∴ ( B cos β )( C cos α ) + ( B sin β )( C sin α ) = BC cos (α − β )

                                                or                       cos β cos α + sin β sin α = cos (α − β )                 (1)

                                                By definition
                                                                                 B′⋅ C = BC cos (α + β )

                                                where                                B′ = ( cos β ) i − ( sin β ) j
                                                                                                                   

                                                       ∴ ( B cos β )( C cos α ) + ( − B sin β )( C sin α ) = BC cos (α + β )

                                                or                       cos β cos α − sin β sin α = cos (α + β )                 (2)

                                                Adding Equations (1) and (2),
                                                                     2 cos β cos α = cos (α − β ) + cos (α + β )

                                                                                                      1               1
                                                                                or cos α cos β =        cos (α + β ) + cos (α − β )
                                                                                                      2               2




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 37.



                                                 First note:
                                                            rB/ A = ( 0.56 m ) i + ( 0.9 m ) j

                                                            rC/ A = ( 0.9 m ) j − ( 0.48 m ) k

                                                            rD/ A = − ( 0.52 m ) i + ( 0.9 m ) j + ( 0.36 m ) k



                                                             rB/ A =     ( 0.56 m )2 + ( 0.9 m )2     = 1.06 m

                                                             rC/ A =     ( 0.9 m )2 + ( − 0.48 m )2       = 1.02 m

                                                             rD/ A =     ( − 0.52 m )2 + ( 0.9 m )2 + ( 0.36 m )2    = 1.10 m

  By definition                             rB/ A ⋅ rD/ A = rB/ A rD/ A cosθ

                              or ( 0.56i + 0.9 j) ⋅ ( − 0.52i + 0.9 j + 0.36k ) = (1.06 )(1.10 ) cosθ
                                                             ( 0.56 )( − 0.52 ) + ( 0.9 )( 0.9 ) + ( 0 )( 0.36 ) = 1.166 cosθ
                                                                               cosθ = 0.44494
                                                                                                                          θ = 63.6°




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 38.




 From the solution to problem 3.37
                                            rC/ A = 1.02 m with rC/ A = ( 0.9 m ) i − ( 0.48 m ) j

                                            rD/ A = 1.10 m with rD/ A = − ( 0.52 m ) i + ( 0.9 m ) j + ( 0.36 m ) k

 Now by definition

                                     rC/ A ⋅ rD/ A = rC/ A rD/ A cosθ

                              or ( 0.9 j − 0.48k ) ⋅ ( − 0.52i + 0.9 j + 0.36k ) = (1.02 )(1.10 ) cosθ
                                                            0 ( − 0.52 ) + ( 0.9 )( 0.9 ) + ( − 0.48)( 0.36 ) = 1.122cosθ
                                                                               cosθ = 0.56791
                                                                                                                   or θ = 55.4°




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 39.



                                                (a) By definition

                                                                                   λ BC + λ EF = (1) (1) cosθ

                                                       where

                                                       λ BC =
                                                                 ( 32 ft ) i − ( 9 ft ) j − ( 24 ft ) k
                                                                    ( 32 )2 + ( − 9 )2 + ( − 24 )2 ft
                                                                 1
                                                             =      ( 32i − 9 j − 24k )
                                                                 41

                                                                 − (14 ft ) i − (12 ft ) j + (12 ft ) k
                                                       λ EF =
                                                                      ( −14 )2 + ( −12 )2 + ( 12 )2 ft
                                                                 1
                                                             =      ( −7i − 6 j + 6k )
                                                                 11


      Therefore
                               ( 32i − 9 j − 24k ) ⋅ ( −7i − 6 j + 6k )       = cosθ
                                        41                       11

                                 ( 32 )( −7 ) + ( −9 )( −6 ) + ( −24 )( 6 ) = ( 41)(11) cosθ
                                                                       cosθ = − 0.69623

                                                                                                           or         θ = 134.1°

 (b) By definition                 (TEG ) BC   = (TEF ) cosθ

                                               = (110 lb )( −0.69623)

                                               = −76.585 lb

                                                                                                           or (TEF ) BC = −76.6 lb




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 40.



                                                (a) By definition

                                                                                     λ BC ⋅ λ EG = (1) (1) cosθ

                                                      where

                                                       λ BC =
                                                                  ( 32 ft ) i − ( 9 ft ) j − ( 24 ft ) k
                                                                     ( 32 )2 + ( − 9 )2 + ( − 24 )2 ft
                                                                  1
                                                             =       ( 32i − 9 j − 24k )
                                                                  41


                                                       λ EG =
                                                                  (16 ft ) i − (12 ft ) j + ( 9.75) k
                                                                    (16 )2 + ( −12 )2 + ( 9.75)2 ft
                                                                    1
                                                              =         (16i − 12 j + 9.75k )
                                                                  22.25


 Therefore
                          ( 32i − 9 j − 24k ) ⋅ (16i − 12 j + 9.75k )          = cosθ
                                   41                       22.25

                            ( 32 )(16 ) + ( −9 )( −12 ) + ( −24 )( 9.75) = ( 41)( 22.25) cosθ
                                                                       cosθ = 0.42313

                                                                                                              or         θ = 65.0°

 (b) By definition                 (TEG )BC    = (TEG ) cosθ

                                               = (178 lb )( 0.42313)

                                               = 75.317 lb

                                                                                                              or (TEG ) BC = 75.3 lb




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 41.



                                                            First locate point B:
                                                                d    3.5
                                                                   =
                                                                22   14
                                                       or         d = 5.5 m

                                                 (a)           d BA =     ( 5.5 + 0.5)2 + ( −22 )2 + ( −3)2     = 23 m

                                                       Locate point D:

                                                                ( −3.5 − 7.5sin 45° cos15° ) , (14 + 7.5cos 45° ) ,
                                                                
                                                                                                      ( 0 + 7.5sin 45° sin15° ) m
                                                                                                                               
                                                                or ( −8.6226 m, 19.3033 m, 1.37260 m )

                                                       Then

                                                       d BD =      ( −8.6226 + 5.5)2 + (19.3033 − 22 )2 + (1.37260 − 0 )2            m

                                                              = 4.3482 m

     and                          cosθ ABD =
                                                 d BA ⋅ d BD
                                                             =
                                                               ( 6i − 22 j − 3k ) ⋅ ( −3.1226i − 2.6967 j + 1.37260k )
                                                 d BA d BD                             ( 23)( 4.3482 )
                                                               = 0.36471
                                                                                                                 or     θ ABD = 68.6°
 (b)                           (TBA )BD   = TBA cosθ ABD

                                           = ( 230 N )( 0.36471)

                                                                                                                or (TBA ) BD = 83.9 N




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 42.


                                                       First locate point B:
                                                                d    3.5
                                                                   =
                                                                22   14
                                                      or          d = 5.5 m

                                                 (a) Locate point D:

                                                                ( −3.5 − 7.5sin 45° cos10° ) , (14 + 7.5cos 45° ) ,
                                                                

                                                                                                          ( 0 + 7.5sin 45° sin10° ) m
                                                                                                                                   

                                                                or ( −8.7227 m, 19.3033 m, 0.92091 m )

                                                      Then

                                                               d DC = ( 5.2227 m ) i − ( 5.3033 m ) j − ( 0.92091 m ) k

                                                      and

                                                            d DB =     ( −5.5 + 8.7227 )2 + ( 22 − 19.3033)2 + ( 0 − 0.92091)2           m

                                                                  = 4.3019 m


     and         cos θ BDC =
                                 d DB ⋅ d DC
                                             =
                                               ( 3.2227i + 2.6967 j − 0.92091k ) ⋅ ( 5.2227i − 5.3033j − 0.92091k )
                                 d DB d DC                                ( 4.3019 )( 7.5)
                              = 0.104694

                                                                                                     or                     θ BDC = 84.0°
 (b)             (TBD )DC     = TBD cosθ BDC = ( 250 N )( 0.104694 )

                                                                                                     or               (TBD )DC   = 26.2 N




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 43.



  Volume of parallelopiped is found using the mixed triple product
  (a)                                            Vol = P ⋅ ( Q × S )

                                                          3 −4 1
                                                       = − 7 6 − 8 in.3
                                                          9 −2 −3

                                                        = ( −54 + 288 + 14 − 48 + 84 − 54 ) in.3

                                                        = 230 in.3

                                                                                                          or Volume = 230 in.3


  (b)                                            Vol = P ⋅ ( Q × S )

                                                         −5 −7 4
                                                       = 6 − 2 5 in.3
                                                         −4 8 −9

                                                       = ( −90 + 140 + 192 + 200 − 378 − 32 ) in.3

                                                       = 32 in.3

                                                                                                          or Volume = 32 in.3




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 44.



  For the vectors to all be in the same plane, the mixed triple product is zero.
                                                           P ⋅(Q × S ) = 0

                                                                        −3 −7 5
                                                                  ∴ 0 = −2 1 −4
                                                                        8 Sy −6

                                                                       0 = 18 + 224 − 10S y − 12S y + 84 − 40

  So that                                                      22 S y = 286

                                                                    S y = 13

                                                                                                                or S y = 13.00




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 45.


                                                Have        rC = ( 2.25 m ) k

                                                                         CE
                                                          TCE = TCE
                                                                         CE
                                                                           ( 0.90 m ) i + (1.50 m ) j − ( 2.25 m ) k 
                                                           TCE = (1349 N )                                           
                                                                                ( 0.90 ) + (1.50 ) + ( −2.25 ) m
                                                                                        2         2            2



                                                                 = ( 426 N ) i + ( 710 N ) j − (1065 N ) k




 Now                                 M O = rC × TCE

                                               i   j    k
                                            = 0    0   2.25 N ⋅ m
                                              426 710 −1065
                                            = − (1597.5 N ⋅ m ) i + ( 958.5 N ⋅ m ) j

                                                                                 ∴ M x = −1598 N ⋅ m, M y = 959 N ⋅ m, M z = 0




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 46.




  Have                  rE = ( 0.90 m ) i + (1.50 m ) j

                                     DE
                      TDE = TDE
                                     DE

                                         − ( 2.30 m ) i + (1.50 m ) j − ( 2.25 m ) k 
                            = (1349 N )                                              
                                              ( − 2.30 ) + (1.50 ) + ( − 2.25) m
                                                        2         2            2



                            = − ( 874 N ) i + ( 570 N ) j − ( 855 N ) k

  Now                 M O = rE × TDE

                                 i   j    k
                            = 0.90 1.50 0 N ⋅ m
                              − 874 570 − 855

                            = − (1282.5 N ⋅ m ) i + ( 769.5 N ⋅ m ) j + (1824 N ⋅ m ) k

                                                                     ∴ M x = −1283 N ⋅ m, M y = 770 N ⋅ m, M z = 1824 N ⋅ m




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 47.




  Have                   M z = k ⋅ ( rB ) y × TBA  + k ( rC ) y × TCD 
                                                                      

  where                   M z = − ( 48 lb ⋅ ft ) k

                       ( rB ) y   = ( rC ) y = ( 3 ft ) j


                                          BA            ( 4.5 ft ) i − ( 3 ft ) j + ( 9 ft ) k 
                         TBA = TBA           = (14 lb )                                        
                                          BA                ( 4.5) + ( − 3) + ( 9 ) ft
                                                                    2           2        2



                                  = ( 6 lb ) i − ( 4 lb ) j + (12 lb ) k

                                          CD       ( 6 ft ) i − ( 3 ft ) j − ( 6 ft ) k 
                         TCD = TCD           = TCD                                      
                                          CD           ( 6 ) + ( − 3) + ( − 6 ) ft
                                                            2          2           2



                                      TCD
                                  =       (2i − j − 2k )
                                       3

  Then                                            {                                                }
                          − ( 48 lb ⋅ ft ) = k ⋅ ( 3 ft ) j × ( 6 lb ) i − ( 4 lb ) j + (12 lb ) k 
                                                                                                    

                                                                T                     
                                             + k ⋅ ( 3 ft ) j ×  CD ( 2 i − j − 2 k )  
                                                                  3                   

        or                                   − 48 = −18 − 2TCD

                                                                                                          TCD = 15.00 lb




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 48.




  Have                   M y = j ⋅ ( rB ) z × TBA  × j⋅ ( rC ) z × TCD 
                                                                       

  where                   M y = 156 lb ⋅ ft

                       ( rB ) z   = ( 24 ft ) k;           ( rC ) z   = ( 6 ft ) k

                                           BA       ( 4.5 ft ) i − ( 3 ft ) j + ( 9 ft ) k 
                         TBA = TBA            = TBA                                        
                                           BA           ( 4.5) + ( − 3) + ( 9 ) ft
                                                                2           2        2



                                      TBA
                                  =        ( 4.5i − 3j + 9k )
                                      10.5

                                           CD              ( 6 ft ) i − ( 3 ft ) j + ( 9 ft ) k 
                        TCD = TCD             = ( 7.5 lb )                                      
                                           CD                  ( 6 ) + ( − 3) + ( 9 ) ft
                                                                     2           2        2



                                  = ( 5 lb ) i − ( 2.5 lb ) j − ( 5 lb ) k

                                         T                      
  Then (156 lb ⋅ ft ) = j ⋅ ( 24 ft ) k × BA ( 4.5i − 3j + 9k ) 
                                         10.5                   

                                       {                                                     }
                                  + j ⋅ ( 6 ft ) k × ( 5 lb ) i − ( 2.5 lb ) j − ( 5 lb ) k 
                                                                                            

                             108
      or           156 =          TBA + 30
                             10.5
                                                                                                          TBA = 12.25 lb




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 49.




  Based on M x = ( P cos φ ) ( 0.225 m ) sin θ  − ( P sin φ ) ( 0.225 m ) cosθ 
                                                                                                                       (1)

               M y = − ( P cos φ )( 0.125 m )                                                                              (2)

               M z = − ( P sin φ )( 0.125 m )                                                                              (3)

       Equation ( 3) M z    − ( P sin φ )( 0.125 )
  By                 :    =
       Equation ( 2 ) M y   − ( P cos φ )( 0.125 )

            −4
       or        = tan φ ∴         φ = 9.8658°
            − 23
                                                                                                          or   φ = 9.87°
  From Equation (2)
              − 23 N ⋅ m = − ( P cos 9.8658° )( 0.125 m )
                        P = 186.762 N
                                                                                                          or P = 186.8 N
  From Equation (1)
              26 N ⋅ m = (186.726 N ) cos 9.8658° ( 0.225 m ) sin θ 
                                                                    
                             − (186.726 N ) sin 9.8658°  ( 0.225 m ) cosθ 
                                                                          
        or 0.98521sin θ − 0.171341cosθ = 0.61885
        Solving numerically,
                                                                                                               θ = 48.1°




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System




Chapter 3, Solution 50.




  Based on M x = ( P cos φ ) ( 0.225 m ) sin θ  − ( P sin φ ) ( 0.225 m ) cosθ 
                                                                                                                            (1)

               M y = − ( P cos φ )( 0.125 m )                                                                                   (2)

               M z = − ( P sin φ )( 0.125 m )

       Equation ( 3) M z    − ( P sin φ )( 0.125 )
  By                 :    =
       Equation ( 2 ) M y   − ( P cos φ )( 0.125 )

             − 3.5
        or         = tan φ ; φ = 9.9262°
             − 20
  From Equation (3):
              − 3.5 N ⋅ m = − ( P sin 9.9262° )( 0.125 m )

                         P = 162.432 N
  From Equation (1):
              M x = (162.432 N )( 0.225 m )( cos 9.9262° sin 60° − sin 9.9262° cos 60° )

                   = 28.027 N ⋅ m
                                                                                                          or M x = 28.0 N ⋅ m




Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions
COSMOS Chapter 3 Solutions

Más contenido relacionado

La actualidad más candente

Mecanica vetorial-para-engenheiros-9ed-cap-2-5-estatica
Mecanica vetorial-para-engenheiros-9ed-cap-2-5-estaticaMecanica vetorial-para-engenheiros-9ed-cap-2-5-estatica
Mecanica vetorial-para-engenheiros-9ed-cap-2-5-estaticaElkin Galchia
 
Beer vector mechanics for engineers statics 10th solutions
Beer vector mechanics for engineers statics 10th solutionsBeer vector mechanics for engineers statics 10th solutions
Beer vector mechanics for engineers statics 10th solutionsJohann Logan Aranda Ramos
 
Beer vector mechanics for engineers statics 10th solutions
Beer vector mechanics for engineers statics 10th solutionsBeer vector mechanics for engineers statics 10th solutions
Beer vector mechanics for engineers statics 10th solutionsmazzybio512
 
Solucionario Mecánica Vectorial de Beer 9ed-cap-2-5-Estática
Solucionario Mecánica Vectorial de Beer  9ed-cap-2-5-EstáticaSolucionario Mecánica Vectorial de Beer  9ed-cap-2-5-Estática
Solucionario Mecánica Vectorial de Beer 9ed-cap-2-5-EstáticaPatricia Paucar
 
0136023126 ism 06(1)
0136023126 ism 06(1)0136023126 ism 06(1)
0136023126 ism 06(1)aryaanuj1
 
Vector mechanics for engineers statics and dynamics 11th edition beer solutio...
Vector mechanics for engineers statics and dynamics 11th edition beer solutio...Vector mechanics for engineers statics and dynamics 11th edition beer solutio...
Vector mechanics for engineers statics and dynamics 11th edition beer solutio...KrisWu321
 
mecanica vectorial para ingenieros- estatica (solucionario)
 mecanica vectorial para ingenieros- estatica (solucionario) mecanica vectorial para ingenieros- estatica (solucionario)
mecanica vectorial para ingenieros- estatica (solucionario)Jimena Minjarez
 
Solução mecânica vetorial para engenheiros.
Solução mecânica vetorial para engenheiros.Solução mecânica vetorial para engenheiros.
Solução mecânica vetorial para engenheiros.wedson Oliveira
 
6 stress on trusses
6 stress on trusses6 stress on trusses
6 stress on trussesaero103
 
Chapter 6-structural-analysis-8th-edition-solution
Chapter 6-structural-analysis-8th-edition-solutionChapter 6-structural-analysis-8th-edition-solution
Chapter 6-structural-analysis-8th-edition-solutionDaniel Nunes
 
Hibbeler chapter5
Hibbeler chapter5Hibbeler chapter5
Hibbeler chapter5laiba javed
 
mechanics-for-engineers-dynamics-solutions-10th-edition
mechanics-for-engineers-dynamics-solutions-10th-editionmechanics-for-engineers-dynamics-solutions-10th-edition
mechanics-for-engineers-dynamics-solutions-10th-editionMeo Chiln
 
Vector mechanics for engineers statics 7th chapter 5
Vector mechanics for engineers statics 7th chapter 5 Vector mechanics for engineers statics 7th chapter 5
Vector mechanics for engineers statics 7th chapter 5 Nahla Hazem
 
Capitulo 2 SOlucionario libro Estatica
Capitulo 2 SOlucionario libro EstaticaCapitulo 2 SOlucionario libro Estatica
Capitulo 2 SOlucionario libro EstaticaUO
 
Hibbeler chapter10
Hibbeler chapter10Hibbeler chapter10
Hibbeler chapter10ahmedalnamer
 
Hibbeler Statics solution - Chapter 7 (2)
Hibbeler Statics solution - Chapter 7 (2)Hibbeler Statics solution - Chapter 7 (2)
Hibbeler Statics solution - Chapter 7 (2)meritonberisha50702
 

La actualidad más candente (20)

Mecanica vetorial-para-engenheiros-9ed-cap-2-5-estatica
Mecanica vetorial-para-engenheiros-9ed-cap-2-5-estaticaMecanica vetorial-para-engenheiros-9ed-cap-2-5-estatica
Mecanica vetorial-para-engenheiros-9ed-cap-2-5-estatica
 
Beer vector mechanics for engineers statics 10th solutions
Beer vector mechanics for engineers statics 10th solutionsBeer vector mechanics for engineers statics 10th solutions
Beer vector mechanics for engineers statics 10th solutions
 
Beer vector mechanics for engineers statics 10th solutions
Beer vector mechanics for engineers statics 10th solutionsBeer vector mechanics for engineers statics 10th solutions
Beer vector mechanics for engineers statics 10th solutions
 
BEER Cap 05 Solucionario
BEER Cap 05 SolucionarioBEER Cap 05 Solucionario
BEER Cap 05 Solucionario
 
Solucionario Mecánica Vectorial de Beer 9ed-cap-2-5-Estática
Solucionario Mecánica Vectorial de Beer  9ed-cap-2-5-EstáticaSolucionario Mecánica Vectorial de Beer  9ed-cap-2-5-Estática
Solucionario Mecánica Vectorial de Beer 9ed-cap-2-5-Estática
 
0136023126 ism 06(1)
0136023126 ism 06(1)0136023126 ism 06(1)
0136023126 ism 06(1)
 
Vector mechanics for engineers statics and dynamics 11th edition beer solutio...
Vector mechanics for engineers statics and dynamics 11th edition beer solutio...Vector mechanics for engineers statics and dynamics 11th edition beer solutio...
Vector mechanics for engineers statics and dynamics 11th edition beer solutio...
 
mecanica vectorial para ingenieros- estatica (solucionario)
 mecanica vectorial para ingenieros- estatica (solucionario) mecanica vectorial para ingenieros- estatica (solucionario)
mecanica vectorial para ingenieros- estatica (solucionario)
 
Chapter01.pdf
Chapter01.pdfChapter01.pdf
Chapter01.pdf
 
Solução mecânica vetorial para engenheiros.
Solução mecânica vetorial para engenheiros.Solução mecânica vetorial para engenheiros.
Solução mecânica vetorial para engenheiros.
 
6 stress on trusses
6 stress on trusses6 stress on trusses
6 stress on trusses
 
Chapter 6-structural-analysis-8th-edition-solution
Chapter 6-structural-analysis-8th-edition-solutionChapter 6-structural-analysis-8th-edition-solution
Chapter 6-structural-analysis-8th-edition-solution
 
Hibbeler chapter5
Hibbeler chapter5Hibbeler chapter5
Hibbeler chapter5
 
mechanics-for-engineers-dynamics-solutions-10th-edition
mechanics-for-engineers-dynamics-solutions-10th-editionmechanics-for-engineers-dynamics-solutions-10th-edition
mechanics-for-engineers-dynamics-solutions-10th-edition
 
Vector mechanics for engineers statics 7th chapter 5
Vector mechanics for engineers statics 7th chapter 5 Vector mechanics for engineers statics 7th chapter 5
Vector mechanics for engineers statics 7th chapter 5
 
Capitulo 2 SOlucionario libro Estatica
Capitulo 2 SOlucionario libro EstaticaCapitulo 2 SOlucionario libro Estatica
Capitulo 2 SOlucionario libro Estatica
 
Hibbeler chapter10
Hibbeler chapter10Hibbeler chapter10
Hibbeler chapter10
 
Chapter 7
Chapter 7Chapter 7
Chapter 7
 
Hibbeler Statics solution - Chapter 7 (2)
Hibbeler Statics solution - Chapter 7 (2)Hibbeler Statics solution - Chapter 7 (2)
Hibbeler Statics solution - Chapter 7 (2)
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 

Destacado

Solution manual to engineering mechanics unknown
Solution manual to engineering mechanics   unknownSolution manual to engineering mechanics   unknown
Solution manual to engineering mechanics unknownAklilu Anmut
 
3 torsion- Mechanics of Materials - 4th - Beer
3 torsion- Mechanics of Materials - 4th - Beer3 torsion- Mechanics of Materials - 4th - Beer
3 torsion- Mechanics of Materials - 4th - BeerNhan Tran
 
4 pure bending- Mechanics of Materials - 4th - Beer
4 pure bending- Mechanics of Materials - 4th - Beer4 pure bending- Mechanics of Materials - 4th - Beer
4 pure bending- Mechanics of Materials - 4th - BeerNhan Tran
 
mechanic of machine-Mechanical Vibrations
mechanic of machine-Mechanical Vibrationsmechanic of machine-Mechanical Vibrations
mechanic of machine-Mechanical VibrationsYarwindran Mogan
 
Solution manual for advanced mechanics of materials and applied elasticity, 5...
Solution manual for advanced mechanics of materials and applied elasticity, 5...Solution manual for advanced mechanics of materials and applied elasticity, 5...
Solution manual for advanced mechanics of materials and applied elasticity, 5...zammok
 
Solution manual !!! by rao-mechanical-vibrations-4th ed
Solution manual !!! by rao-mechanical-vibrations-4th edSolution manual !!! by rao-mechanical-vibrations-4th ed
Solution manual !!! by rao-mechanical-vibrations-4th edyanpain2
 

Destacado (7)

Solution manual to engineering mechanics unknown
Solution manual to engineering mechanics   unknownSolution manual to engineering mechanics   unknown
Solution manual to engineering mechanics unknown
 
3 torsion- Mechanics of Materials - 4th - Beer
3 torsion- Mechanics of Materials - 4th - Beer3 torsion- Mechanics of Materials - 4th - Beer
3 torsion- Mechanics of Materials - 4th - Beer
 
4 pure bending- Mechanics of Materials - 4th - Beer
4 pure bending- Mechanics of Materials - 4th - Beer4 pure bending- Mechanics of Materials - 4th - Beer
4 pure bending- Mechanics of Materials - 4th - Beer
 
mechanic of machine-Mechanical Vibrations
mechanic of machine-Mechanical Vibrationsmechanic of machine-Mechanical Vibrations
mechanic of machine-Mechanical Vibrations
 
Solution manual for advanced mechanics of materials and applied elasticity, 5...
Solution manual for advanced mechanics of materials and applied elasticity, 5...Solution manual for advanced mechanics of materials and applied elasticity, 5...
Solution manual for advanced mechanics of materials and applied elasticity, 5...
 
Solution manual !!! by rao-mechanical-vibrations-4th ed
Solution manual !!! by rao-mechanical-vibrations-4th edSolution manual !!! by rao-mechanical-vibrations-4th ed
Solution manual !!! by rao-mechanical-vibrations-4th ed
 
Mechanical Vibration- An introduction
Mechanical Vibration- An introductionMechanical Vibration- An introduction
Mechanical Vibration- An introduction
 

Similar a COSMOS Chapter 3 Solutions

Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.haide bautista
 
Fox solution
Fox   solutionFox   solution
Fox solutionkuhlblitz
 
Capítulo 1 - Mecânica dos Fluidos
Capítulo 1 - Mecânica dos Fluidos Capítulo 1 - Mecânica dos Fluidos
Capítulo 1 - Mecânica dos Fluidos Ana Flávia Prata
 
Solb98mc 090504233342-phpapp02
Solb98mc 090504233342-phpapp02Solb98mc 090504233342-phpapp02
Solb98mc 090504233342-phpapp02Cleophas Rwemera
 
1 - vectors notes
1  - vectors notes1  - vectors notes
1 - vectors notescpphysics
 
Simulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch ApplicationsSimulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch Applicationsvvk0
 
Magnetic field and trajectory of movig charges
Magnetic field and trajectory of movig chargesMagnetic field and trajectory of movig charges
Magnetic field and trajectory of movig chargesYashu Chhabra
 
AP Physics B Test Exam Solutions
AP Physics B Test Exam SolutionsAP Physics B Test Exam Solutions
AP Physics B Test Exam SolutionsMrreynon
 
problemas resueltas estatica 2parte
problemas resueltas estatica 2parteproblemas resueltas estatica 2parte
problemas resueltas estatica 2parteQuintana Excélsior
 
Sol cap 03 edicion 8
Sol cap 03   edicion 8Sol cap 03   edicion 8
Sol cap 03 edicion 8Luisa Lopez
 
Heat-and-Mass Transfer Relationship to Determine Shear Stress in Tubular Memb...
Heat-and-Mass Transfer Relationship to Determine Shear Stress in Tubular Memb...Heat-and-Mass Transfer Relationship to Determine Shear Stress in Tubular Memb...
Heat-and-Mass Transfer Relationship to Determine Shear Stress in Tubular Memb...Nicolas Ratkovich
 
Deformation 1
Deformation 1Deformation 1
Deformation 1anashalim
 
StructuralTheoryClass2.ppt
StructuralTheoryClass2.pptStructuralTheoryClass2.ppt
StructuralTheoryClass2.pptChristopherArce4
 
R Vazquez Showers Signatures
R Vazquez  Showers SignaturesR Vazquez  Showers Signatures
R Vazquez Showers SignaturesMiguel Morales
 
Ap physics b_-_electric_fields_and_forces
Ap physics b_-_electric_fields_and_forcesAp physics b_-_electric_fields_and_forces
Ap physics b_-_electric_fields_and_forcesArvenz Gavino
 

Similar a COSMOS Chapter 3 Solutions (20)

Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
 
Fox solution
Fox   solutionFox   solution
Fox solution
 
Capítulo 1 - Mecânica dos Fluidos
Capítulo 1 - Mecânica dos Fluidos Capítulo 1 - Mecânica dos Fluidos
Capítulo 1 - Mecânica dos Fluidos
 
Solb98mc 090504233342-phpapp02
Solb98mc 090504233342-phpapp02Solb98mc 090504233342-phpapp02
Solb98mc 090504233342-phpapp02
 
1 - vectors notes
1  - vectors notes1  - vectors notes
1 - vectors notes
 
Simulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch ApplicationsSimulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch Applications
 
Magnetic field and trajectory of movig charges
Magnetic field and trajectory of movig chargesMagnetic field and trajectory of movig charges
Magnetic field and trajectory of movig charges
 
AP Physics B Test Exam Solutions
AP Physics B Test Exam SolutionsAP Physics B Test Exam Solutions
AP Physics B Test Exam Solutions
 
Capitulo 1
Capitulo 1Capitulo 1
Capitulo 1
 
Statistical Physics Assignment Help
Statistical Physics Assignment Help Statistical Physics Assignment Help
Statistical Physics Assignment Help
 
problemas resueltas estatica 2parte
problemas resueltas estatica 2parteproblemas resueltas estatica 2parte
problemas resueltas estatica 2parte
 
Sol cap 03 edicion 8
Sol cap 03   edicion 8Sol cap 03   edicion 8
Sol cap 03 edicion 8
 
Rumus fisika
Rumus fisikaRumus fisika
Rumus fisika
 
Rumus fisika
Rumus fisikaRumus fisika
Rumus fisika
 
Heat-and-Mass Transfer Relationship to Determine Shear Stress in Tubular Memb...
Heat-and-Mass Transfer Relationship to Determine Shear Stress in Tubular Memb...Heat-and-Mass Transfer Relationship to Determine Shear Stress in Tubular Memb...
Heat-and-Mass Transfer Relationship to Determine Shear Stress in Tubular Memb...
 
Deformation 1
Deformation 1Deformation 1
Deformation 1
 
Topic 2 kft 131
Topic 2 kft 131Topic 2 kft 131
Topic 2 kft 131
 
StructuralTheoryClass2.ppt
StructuralTheoryClass2.pptStructuralTheoryClass2.ppt
StructuralTheoryClass2.ppt
 
R Vazquez Showers Signatures
R Vazquez  Showers SignaturesR Vazquez  Showers Signatures
R Vazquez Showers Signatures
 
Ap physics b_-_electric_fields_and_forces
Ap physics b_-_electric_fields_and_forcesAp physics b_-_electric_fields_and_forces
Ap physics b_-_electric_fields_and_forces
 

Más de UO

Problemas 615 y 625
Problemas 615 y 625Problemas 615 y 625
Problemas 615 y 625UO
 
Monocultura y diversidad cultural
Monocultura y diversidad cultural Monocultura y diversidad cultural
Monocultura y diversidad cultural UO
 
Porosidad Campo Bare
Porosidad Campo BarePorosidad Campo Bare
Porosidad Campo BareUO
 
GlobalizaciónlistA
GlobalizaciónlistAGlobalizaciónlistA
GlobalizaciónlistAUO
 
La sociedad de la informacióN
La sociedad de la informacióNLa sociedad de la informacióN
La sociedad de la informacióNUO
 
sociedad y globalización
sociedad y globalizaciónsociedad y globalización
sociedad y globalizaciónUO
 
Listosoberania alimentariA
Listosoberania alimentariAListosoberania alimentariA
Listosoberania alimentariAUO
 
Expo, presión capilaR
Expo, presión capilaRExpo, presión capilaR
Expo, presión capilaRUO
 
sociedad y globalizacion
sociedad y globalizacionsociedad y globalizacion
sociedad y globalizacionUO
 
Capilaridad petro
Capilaridad petroCapilaridad petro
Capilaridad petroUO
 
Localizacion campo Bare Venezuela
Localizacion campo Bare VenezuelaLocalizacion campo Bare Venezuela
Localizacion campo Bare VenezuelaUO
 
Ensayo diputados
Ensayo diputadosEnsayo diputados
Ensayo diputadosUO
 
77 metodos de_explotacion_subterranea
77 metodos de_explotacion_subterranea77 metodos de_explotacion_subterranea
77 metodos de_explotacion_subterraneaUO
 
Propiedades mecánicas de las rocas
Propiedades mecánicas de las rocasPropiedades mecánicas de las rocas
Propiedades mecánicas de las rocasUO
 
Qué es la mecánica de rocas
Qué es la mecánica de rocasQué es la mecánica de rocas
Qué es la mecánica de rocasUO
 
Proyecto final evaluación y administracion de proyectos
Proyecto final evaluación y administracion de proyectosProyecto final evaluación y administracion de proyectos
Proyecto final evaluación y administracion de proyectosUO
 
Presion de sobrecarga
Presion de sobrecargaPresion de sobrecarga
Presion de sobrecargaUO
 
Libro geologia de minas
Libro geologia de minasLibro geologia de minas
Libro geologia de minasUO
 
Intro perforación resumen
Intro perforación resumenIntro perforación resumen
Intro perforación resumenUO
 
Presentación porosidad
Presentación porosidadPresentación porosidad
Presentación porosidadUO
 

Más de UO (20)

Problemas 615 y 625
Problemas 615 y 625Problemas 615 y 625
Problemas 615 y 625
 
Monocultura y diversidad cultural
Monocultura y diversidad cultural Monocultura y diversidad cultural
Monocultura y diversidad cultural
 
Porosidad Campo Bare
Porosidad Campo BarePorosidad Campo Bare
Porosidad Campo Bare
 
GlobalizaciónlistA
GlobalizaciónlistAGlobalizaciónlistA
GlobalizaciónlistA
 
La sociedad de la informacióN
La sociedad de la informacióNLa sociedad de la informacióN
La sociedad de la informacióN
 
sociedad y globalización
sociedad y globalizaciónsociedad y globalización
sociedad y globalización
 
Listosoberania alimentariA
Listosoberania alimentariAListosoberania alimentariA
Listosoberania alimentariA
 
Expo, presión capilaR
Expo, presión capilaRExpo, presión capilaR
Expo, presión capilaR
 
sociedad y globalizacion
sociedad y globalizacionsociedad y globalizacion
sociedad y globalizacion
 
Capilaridad petro
Capilaridad petroCapilaridad petro
Capilaridad petro
 
Localizacion campo Bare Venezuela
Localizacion campo Bare VenezuelaLocalizacion campo Bare Venezuela
Localizacion campo Bare Venezuela
 
Ensayo diputados
Ensayo diputadosEnsayo diputados
Ensayo diputados
 
77 metodos de_explotacion_subterranea
77 metodos de_explotacion_subterranea77 metodos de_explotacion_subterranea
77 metodos de_explotacion_subterranea
 
Propiedades mecánicas de las rocas
Propiedades mecánicas de las rocasPropiedades mecánicas de las rocas
Propiedades mecánicas de las rocas
 
Qué es la mecánica de rocas
Qué es la mecánica de rocasQué es la mecánica de rocas
Qué es la mecánica de rocas
 
Proyecto final evaluación y administracion de proyectos
Proyecto final evaluación y administracion de proyectosProyecto final evaluación y administracion de proyectos
Proyecto final evaluación y administracion de proyectos
 
Presion de sobrecarga
Presion de sobrecargaPresion de sobrecarga
Presion de sobrecarga
 
Libro geologia de minas
Libro geologia de minasLibro geologia de minas
Libro geologia de minas
 
Intro perforación resumen
Intro perforación resumenIntro perforación resumen
Intro perforación resumen
 
Presentación porosidad
Presentación porosidadPresentación porosidad
Presentación porosidad
 

Último

Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
Vector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector DatabasesVector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector DatabasesZilliz
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024The Digital Insurer
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Patryk Bandurski
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr LapshynFwdays
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfRankYa
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embeddingZilliz
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticscarlostorres15106
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 

Último (20)

Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
Vector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector DatabasesVector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector Databases
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdf
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embedding
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 

COSMOS Chapter 3 Solutions

  • 1. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 1. Resolve 90 N force into vector components P and Q where Q = ( 90 N ) sin 40° = 57.851 N Then M B = − rA/BQ = − (0.225 m )(57.851 N ) = −13.0165 N ⋅ m M B = 13.02 N ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 2. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 2. Fx = ( 90 N ) cos 25° = 81.568 N Fy = ( 90 N ) sin 25° = 38.036 N x = ( 0.225 m ) cos 65° = 0.095089 m y = (0.225 m ) sin 65° = 0.20392 m M B = xFy − yFx = ( 0.095089 m )( 38.036 N ) − ( 0.20392 m )( 81.568 N ) = −13.0165 N ⋅ m M B = 13.02 N ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 3. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 3. Px = ( 3 lb ) sin 30° = 1.5 lb Py = ( 3 lb ) cos 30° = 2.5981 lb M A = xB/ A Py + yB/ A Px = ( 3.4 in.)( 2.5981 lb ) + ( 4.8 in.)(1.5 lb ) = 16.0335 lb ⋅ in. M A = 16.03 lb ⋅ in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 4. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 4. For P to be a minimum, it must be perpendicular to the line joining points A and B with rAB = ( 3.4 in.)2 + ( 4.8 in.)2 = 5.8822 in.  y α = θ = tan −1   x    4.8 in.  = tan −1    3.4 in.  = 54.689° Then M A = rAB Pmin M A 19.5 lb ⋅ in. or Pmin = = rAB 5.8822 in. = 3.3151 lb ∴ Pmin = 3.32 lb 54.7° or Pmin = 3.32 lb 35.3° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 5. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 5. By definition M A = rB/ A P sin θ where θ = φ + ( 90° − α )  4.8 in.  and φ = tan −1    3.4 in.  = 54.689° Also rB/ A = ( 3.4 in.)2 + ( 4.8 in.)2 = 5.8822 in. Then (17 lb ⋅ in.) = ( 5.8822 in.)( 2.9 lb ) sin ( 54.689° + 90° − α ) or sin (144.689° − α ) = 0.99658 or 144.689° − α = 85.260°; 94.740° ∴ α = 49.9°, 59.4° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 6. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 6. (a) (a) M A = rB/ A × TBF M A = xTBFy + yTBFx = ( 2 m )( 200 N ) sin 60° + ( 0.4 m )( 200 N ) cos 60° = 386.41 N ⋅ m or M A = 386 N ⋅ m (b) (b) For FC to be a minimum, it must be perpendicular to the line joining A and C. ∴ M A = d ( FC )min with d = ( 2 m )2 + (1.35 m )2 = 2.4130 m Then 386.41 N ⋅ m = ( 2.4130 m ) ( FC )min ( FC )min = 160.137 N  1.35 m  and φ = tan −1   = 34.019°  2m  θ = 90 − φ = 90° − 34.019° = 55.981° ∴ ( FC )min = 160.1 N 56.0° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 7. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 7. (a) M A = xTBFy + yTBFx = ( 2 m )( 200 N ) sin 60° + ( 0.4 m )( 200 N ) cos 60° = 386.41 N ⋅ m or M A = 386 N ⋅ m (b) Have M A = xFC MA 386.41 N ⋅ m or FC = = x 2m = 193.205 N ∴ FC = 193.2 N (c) For FB to be minimum, it must be perpendicular to the line joining A and B ∴ M A = d ( FB )min with d = ( 2 m )2 + ( 0.40 m )2 = 2.0396 m Then 386.41 N ⋅ m = ( 2.0396 m ) ( FC )min ( FC )min = 189.454 N  2m  and θ = tan −1   = 78.690°  0.4 m  or ( FC )min = 189.5 N 78.7° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 8. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 8. ( ) (a) M B = rA/B cos15° W = (14 in.)( cos15° )( 5 lb ) = 67.615 lb ⋅ in. or M B = 67.6 lb ⋅ in. (b) M B = rD/B P sin 85° 67.615 lb ⋅ in. = ( 3.2 in.) P sin 85° or P = 21.2 lb (c) For ( F )min, F must be perpendicular to BC. Then, M B = rC/B F 67.615 lb ⋅ in. = (18 in.) F or F = 3.76 lb 75.0° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 9. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 9. 35 in. 5 (a) Slope of line EC = = 76 in. + 8 in. 12 12 Then TABx = (TAB ) 13 12 = ( 260 lb ) = 240 lb 13 5 and TABy = ( 260 lb ) = 100 lb 13 Then M D = TABx ( 35 in.) − TABy ( 8 in.) = ( 240 lb )( 35 in.) − (100 lb )( 8 in.) = 7600 lb ⋅ in. or M D = 7600 lb ⋅ in. (b) Have M D = TABx ( y ) + TABy ( x ) = ( 240 lb )( 0 ) + (100 lb )( 76 in.) = 7600 lb ⋅ in. or M D = 7600 lb ⋅ in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 10. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 10. 35 in. 7 Slope of line EC = = 112 in. + 8 in. 24 24 Then TABx = TAB 25 7 and TABy = TAB 25 Have M D = TABx ( y ) + TABy ( x ) 24 7 ∴ 7840 lb ⋅ in. = TAB ( 0 ) + TAB (112 in.) 25 25 TAB = 250 lb or TAB = 250 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 11. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 11. The minimum value of d can be found based on the equation relating the moment of the force TAB about D: M D = (TAB max ) y ( d ) where M D = 1152 N ⋅ m (TAB max ) y = TAB max sin θ = ( 2880 N ) sin θ 1.05 m Now sin θ = (d + 0.24 ) + (1.05 ) m 2 2   1.05 ∴ 1152 N ⋅ m = 2880 N   (d )     (d + 0.24 ) + (1.05 ) 2 2   or ( d + 0.24 )2 + (1.05)2 = 2.625d or (d + 0.24 ) + (1.05 ) = 6.8906d 2 2 2 or 5.8906d 2 − 0.48d − 1.1601 = 0 Using the quadratic equation, the minimum values of d are 0.48639 m and −0.40490 m. Since only the positive value applies here, d = 0.48639 m or d = 486 mm Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 12. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 12. with d AB = ( 42 mm )2 + (144 mm )2 = 150 mm 42 mm sin θ = 150 mm 144 mm cosθ = 150 mm and FAB = − FAB sin θ i − FAB cosθ j 2.5 kN = ( − 42 mm ) i − (144 mm ) j 150 mm   = − ( 700 N ) i − ( 2400 N ) j Also rB/C = − ( 0.042 m ) i + ( 0.056 m ) j Now M C = rB/C × FAB = ( − 0.042 i + 0.056 j) × ( − 700 i − 2400 j) N ⋅ m = (140.0 N ⋅ m ) k or M C = 140.0 N ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 13. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 13. with d AB = ( 42 mm )2 + (144 mm )2 = 150 mm 42 mm sin θ = 150 mm 144 mm cosθ = 150 mm FAB = − FAB sin θ i − FAB cosθ j 2.5 kN = ( − 42 mm ) i − (144 mm ) j 150 mm   = − ( 700 N ) i − ( 2400 N ) j Also rB/C = − ( 0.042 m ) i − ( 0.056 m ) j Now M C = rB/C × FAB = ( − 0.042 i − 0.056 j) × ( − 700i − 2400 j) N ⋅ m = ( 61.6 N ⋅ m ) k or M C = 61.6 N ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 14. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 14.  88   105  ΣM D : M D = ( 0.090 m )  × 80 N  − ( 0.280 m )  × 80 N   137   137  = −12.5431 N ⋅ m or M D = 12.54 N ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 15. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 15. Note: B = B ( cos β i + sin β j) B′ = B ( cos β i − sin β j) C = C ( cos α i + sin α j) By definition: B × C = BC sin (α − β ) (1) B′ × C = BC sin (α + β ) (2) Now ... B × C = B ( cos β i + sin β j) × C ( cos α i + sin α j) = BC ( cos β sin α − sin β cos α ) k (3) and B′ × C = B ( cos β i − sin β j) × C ( cos α i + sin α j) = BC ( cos β sin α + sin β cos α ) k (4) Equating the magnitudes of B × C from equations (1) and (3) yields: BC sin (α − β ) = BC ( cos β sin α − sin β cos α ) (5) Similarly, equating the magnitudes of B′ × C from equations (2) and (4) yields: BC sin (α + β ) = BC ( cos β sin α + sin β cos α ) (6) Adding equations (5) and (6) gives: sin (α − β ) + sin (α + β ) = 2cos β sin α 1 1 or sin α cos β = sin (α + β ) + sin (α − β ) 2 2 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 16. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 16. Have d = λ AB × rO/ A rB/ A where λ AB = rB/ A and rB/ A = ( −210 mm − 630 mm ) i + ( 270 mm − ( −225 mm ) ) j = − ( 840 mm ) i + ( 495 mm ) j rB/ A = ( −840 mm )2 + ( 495 mm )2 = 975 mm − ( 840 mm ) i + ( 495 mm ) j Then λ AB = 975 mm 1 = ( −56i + 33j) 65 Also rO/ A = ( 0 − 630 ) i + ( 0 − (−225) ) j = − ( 630 mm ) i + ( 225 mm ) j 1 ∴d = ( −56i + 33j) × − ( 630 mm ) i + ( 225 mm ) j   65 = 126.0 mm d = 126.0 mm Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 17. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 17. A×B (a) λ = A×B where A = 12i − 6 j + 9k B = − 3i + 9 j − 7.5k Then i j k A × B = 12 − 6 9 − 3 9 − 7.5 = ( 45 − 81) i + ( −27 + 90 ) j + (108 − 18 ) k = 9 ( − 4i + 7 j + 10k ) And A × B = 9 (− 4) 2 + (7)2 + (10)2 = 9 165 9 ( − 4i + 7 j + 10k ) ∴λ = 9 165 1 or λ = ( − 4i + 7 j + 10k ) 165 A×B (b) λ = A×B where A = −14i − 2 j + 8k B = 3i + 1.5j − k Then i j k A × B = −14 − 2 8 3 1.5 −1 = ( 2 − 12 ) i + ( 24 − 14 ) j + ( −21 + 6 ) k = 5 ( −2i + 2 j − 3k ) and A × B = 5 (−2)2 + (2)2 + (−3)2 = 5 17 5 ( −2i + 2 j − 3k ) ∴λ = 5 17 1 or λ = ( − 2i + 2 j − 3k ) 17 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 18. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 18. (a) Have A = P × Q i j k P × Q = 3 7 −2 in.2 −5 1 3 = [ (21 + 2)i + (10 − 9) j + (3 + 35)k ] in.2 ( ) ( ) ( = 23 in.2 i + 1 in.2 j + 38 in.2 k ) ∴A= (23)2 + (1)2 + (38) 2 = 44.430 in.2 or A = 44.4 in.2 (b) A = P×Q i j k P × Q = 2 − 4 3 in.2 6 −1 5 = [ (−20 − 3)i + (−18 − 10) j + (−2 + 24)k ] in.2 ( ) ( ) ( = − 23 in.2 i − 28 in.2 j + 22 in.2 k ) ∴A= (− 23)2 + (−28)2 + (22) 2 = 42.391 in.2 or A = 42.4 in.2 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 19. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 19. (a) Have MO = r × F i j k = − 6 3 1.5 N ⋅ m 7.5 3 − 4.5 = [ (−13.5 − 4.5)i + (11.25 − 27) j + (−18 − 22.5)k ] N ⋅ m = ( −18.00i − 15.75 j − 40.5k ) N ⋅ m or M O = − (18.00 N ⋅ m ) i − (15.75 Ν ⋅ m ) j − ( 40.5 N ⋅ m ) k (b) Have MO = r × F i j k = 2 − 0.75 −1 N ⋅ m 7.5 3 − 4.5 = [ (3.375 + 3)i + (−7.5 + 9) j + (6 + 5.625)k ] N ⋅ m = ( 6.375i + 1.500 j + 11.625k ) N ⋅ m or M O = ( 6.38 N ⋅ m ) i + (1.500 Ν ⋅ m ) j + (11.63 Ν ⋅ m ) k (c) Have MO = r × F i j k = − 2.5 −1 1.5 N ⋅ m 7.5 3 4.5 = [ (4.5 − 4.5)i + (11.25 − 11.25) j + (−7.5 + 7.5)k ] N ⋅ m or M O = 0 This answer is expected since r and F are proportional ( F = −3r ) . Therefore, vector F has a line of action passing through the origin at O. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 20. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 20. (a) Have MO = r × F i j k = − 7.5 3 − 6 lb ⋅ ft 3 −6 4 = [ (12 − 36)i + (−18 + 30) j + (45 − 9)k ] lb ⋅ ft or M O = − ( 24.0 lb ⋅ ft ) i + (12.00 lb ⋅ ft ) j + ( 36.0 lb ⋅ ft ) k (b) Have MO = r × F i j k = − 7.5 1.5 −1 lb ⋅ ft 3 −6 4 = [ (6 − 6)i + (−3 + 3) j + (4.5 − 4.5)k ] lb ⋅ ft or M O = 0 (c) Have MO = r × F i j k = − 8 2 −14 lb ⋅ ft 3 −6 4 = [ (8 − 84)i + (−42 + 32) j + (48 − 6)k ] lb ⋅ ft or M O = − ( 76.0 lb ⋅ ft ) i − (10.00 lb ⋅ ft ) j + ( 42.0 lb ⋅ ft ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 21. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 21. With TAB = − ( 369 N ) j TAB = TAD AD = ( 369 N ) ( 2.4 m ) i − ( 3.1 m ) j − (1.2 m ) k AD ( 2.4 m )2 + ( −3.1 m )2 + ( −1.2 m )2 TAD = ( 216 N ) i − ( 279 N ) j − (108 N ) k Then R A = 2 TAB + TAD = ( 216 N ) i − (1017 N ) j − (108 N ) k Also rA/C = ( 3.1 m ) i + (1.2 m ) k Have M C = rA/C × R A i j k = 0 3.1 1.2 N ⋅ m 216 −1017 −108 = ( 885.6 N ⋅ m ) i + ( 259.2 N ⋅ m ) j − ( 669.6 N ⋅ m ) k M C = ( 886 N ⋅ m ) i + ( 259 N ⋅ m ) j − ( 670 N ⋅ m ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 22. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 22. Have M A = rC/ A × F where rC/ A = ( 215 mm ) i − ( 50 mm ) j + (140 mm ) k Fx = − ( 36 N ) cos 45° sin12° Fy = − ( 36 N ) sin 45° Fz = − ( 36 N ) cos 45° cos12° ∴ F = − ( 5.2926 N ) i − ( 25.456 N ) j − ( 24.900 N ) k i j k and M A = 0.215 − 0.050 0.140 N ⋅ m − 5.2926 − 25.456 − 24.900 = ( 4.8088 N ⋅ m ) i + ( 4.6125 N ⋅ m ) j − ( 5.7377 N ⋅ m ) k M A = ( 4.81 N ⋅ m ) i + ( 4.61 N ⋅ m ) j − ( 5.74 N ⋅ m ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 23. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 23. Have M O = rA/O × R where rA/D = ( 30 ft ) j + ( 3 ft ) k T1 = − ( 62 lb ) cos10°  i − ( 62 lb ) sin10°  j     = − ( 61.058 lb ) i − (10.766 lb ) j AB T2 = T2 AB = ( 62 lb ) ( 5 ft ) i − ( 30 ft ) j + ( 6 ft ) k ( 5 ft )2 + ( − 30 ft )2 + ( 6 ft )2 = (10 lb ) i − ( 60 lb ) j + (12 lb ) k ∴ R = − ( 51.058 lb ) i − ( 70.766 lb ) j + (12 lb ) k i j k MO = 0 30 3 lb ⋅ ft − 51.058 −70.766 12 = ( 572.30 lb ⋅ ft ) i − (153.17 lb ⋅ ft ) j + (1531.74 lb ⋅ ft ) k M O = ( 572 lb ⋅ ft ) i − (153.2 lb ⋅ ft ) j + (1532 lb ⋅ ft ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 24. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 24. (a) Have M O = rB/O × TBD where rB/O = ( 2.5 m ) i + ( 2 m ) j BD TBD = TBD BD  − (1 m ) i − ( 2 m ) j + ( 2 m ) k  = ( 900 N )   ( −1 m ) + ( − 2 m ) + ( 2 m ) 2 2 2 = − ( 300 N ) i − ( 600 N ) j + ( 600 N ) k Then i j k MO = 2.5 2 0 N⋅m − 300 − 600 600 M O = (1200 N ⋅ m ) i − (1500 N ⋅ m ) j − ( 900 N ⋅ m ) k continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 25. COSMOS: Complete Online Solutions Manual Organization System (b) Have M O = rB/O × TBE where rB/O = ( 2.5 m ) i + ( 2 m ) j BE TBE = TBE BE  − ( 0.5 m ) i − ( 2 m ) j − ( 4 m ) k  = ( 675 N )   ( 0.5 m ) + ( −2 m ) + ( − 4 m )2 2 2 = − ( 75 N ) i − ( 300 N ) j − ( 600 N ) k Then i j k MO = 2.5 2 0 N⋅m − 75 − 300 − 600 M O = − (1200 N ⋅ m ) i + (1500 N ⋅ m ) j − ( 600 N ⋅ m ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 26. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 25. Have M C = rA/C × P where rA/C = rB/C + rA/B = (16 in.)( − cos80° cos15°i − sin 80° j − cos80° sin15°k ) + (15.2 in.)( − sin 20° cos15°i + cos 20° j − sin 20° sin15°k ) = − ( 7.7053 in.) i − (1.47360 in.) j − ( 2.0646 in.) k and P = (150 lb )( cos 5° cos 70°i + sin 5° j − cos 5° sin 70°k ) = ( 51.108 lb ) i + (13.0734 lb ) j − (140.418 lb ) k Then i j k M C = −7.7053 −1.47360 −2.0646 lb ⋅ in. 51.108 13.0734 −140.418 = ( 233.91 lb ⋅ in.) i − (1187.48 lb ⋅ in.) j − ( 25.422 lb ⋅ in.) k or M C = (19.49 lb ⋅ ft ) i − ( 99.0 lb ⋅ ft ) j − ( 2.12 lb ⋅ ft ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 27. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 26. Have M C = rA/C × FBA where rA/C = ( 0.96 m ) i − ( 0.12 m ) j + ( 0.72 m ) k and FBA = λ BA FBA   =  − ( 0.1 m ) i + (1.8 m ) j − ( 0.6 m ) k  ( 228 N )     ( 0.1)2 + (1.8)2 + ( 0.6 )2 m   = − (12.0 N ) i + ( 216 N ) j − ( 72 N ) k i j k ∴ M C = 0.96 −0.12 0.72 N ⋅ m −12.0 216 −72 = − (146.88 N ⋅ m ) i + ( 60.480 N ⋅ m ) j + ( 205.92 N ⋅ m ) k or M C = − (146.9 N ⋅ m ) i + ( 60.5 N ⋅ m ) j + ( 206 N ⋅ m ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 28. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 27. Have M C = TAD d where d = Perpendicular distance from C to line AD with M C = rA/C TAD and rA/C = ( 3.1 m ) j + (1.2 m ) k AD TAD = TAD AD ( 2.4 m ) i − ( 3.1 m ) j − (1.2 m ) k  TAD = ( 369 N )   ( 2.4 m ) + ( − 3.1 m ) + ( −1.2 m )2 2 2 = ( 216 N ) i − ( 279 N ) j − (108 N ) k Then i j k MC = 0 3.1 1.2 N ⋅ m 216 − 279 −108 = ( 259.2 N ⋅ m ) j − ( 669.6 N ⋅ m ) k and MC = ( 259.2 N ⋅ m )2 + ( −669.6 N ⋅ m )2 = 718.02 N ⋅ m ∴ 718.02 N ⋅ m = ( 369 N ) d or d = 1.946 m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 29. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 28. Have M O = TAC d where d = Perpendicular distance from O to rope AC with M O = rA/O × TAC and rA/O = ( 30 ft ) j + ( 3 ft ) k TAC = − ( 62 lb ) cos10° i − ( 62 lb ) sin10° j     = − ( 61.058 lb ) i − (10.766 lb ) j Then i j k MO = 0 30 3 lb ⋅ ft − 61.058 −10.766 0 = ( 32.298 lb ⋅ ft ) i − (183.174 lb ⋅ ft ) j + (1831.74 lb ⋅ ft ) k and MO = ( 32.298 lb ⋅ ft )2 + ( −183.174 lb ⋅ ft )2 + (1831.74 lb ⋅ ft )2 = 1841.16 lb ⋅ ft ∴ 1841.16 lb ⋅ ft = ( 62 lb ) d or d = 29.7 ft Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 30. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 29. Have M O = TAB d where d = Perpendicular distance from O to rope AB with M O = rA/O × TAB and rA/O = ( 30 ft ) j + ( 3 ft ) k AB TAB = TAB AB ( 5 ft ) i − ( 30 ft ) j + ( 6 ft ) k  = ( 62 lb )   ( 5 ft ) + ( − 30 ft ) + ( 6 ft )2 2 2 = (10 lb ) i − ( 60 lb ) j + (12 lb ) k Then i j k MO = 0 30 3 lb ⋅ ft 10 − 60 12 = ( 540 lb ⋅ ft ) i + ( 30 lb ⋅ ft ) j − ( 300 lb ⋅ ft ) k and MO = ( 540 lb ⋅ ft )2 + ( 30 lb ⋅ ft )2 + ( −300 lb ⋅ ft )2 = 618.47 lb ⋅ ft ∴ 618.47 lb ⋅ ft = ( 62 lb ) d or d = 9.98 ft Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 31. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 30. Have M C = TBD d where d = Perpendicular distance from C to cable BD with M C = rB/C × TB/D and rB/C = ( 2 m ) j BD TBD = TBD BD  − (1 m ) i − ( 2 m ) j + ( 2 m ) k  = ( 900 N )   ( −1 m ) + ( − 2 m ) + ( 2 m )2 2 2 = − ( 300 N ) i − ( 600 N ) j + ( 600 N ) k Then i j k MC = 0 2 0 N⋅m −300 − 600 600 = (1200 N ⋅ m ) i + ( 600 N ⋅ m ) k and MC = (1200 N ⋅ m )2 + ( 600 N ⋅ m )2 = 1341.64 N ⋅ m ∴ 1341.64 = ( 900 N ) d or d = 1.491 m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 32. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 31. Have M C = Pd From the solution of problem 3.25 M C = ( 233.91 lb ⋅ in.) i − (1187.48 lb ⋅ in.) j − ( 25.422 lb ⋅ in.) k Then MC = ( 233.91)2 + ( −1187.48)2 + ( −25.422 )2 = 1210.57 lb ⋅ in. MC 1210.57 lb.in. and d = = P 150 lb or d = 8.07 in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 33. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 32. Have | M D | = FBAd where d = perpendicular distance from D to line AB. M D = rA/D × FBA rA/D = − ( 0.12 m ) j + ( 0.72 m ) k FBA = λ BA FBA = ( − ( 0.1 m ) i + (1.8 m ) j − ( 0.6 m ) k ) ( 228 N ) ( 0.1)2 + (1.8)2 + ( 0.6 )2 m = − (12.0 N ) i + ( 216 N ) j − ( 72 N ) k i j k ∴ MD = 0 −0.12 0.72 N ⋅ m −12.0 216 −72 = − (146.88 N ⋅ m ) i − ( 8.64 N ⋅ m ) j − (1.44 N ⋅ m ) k and |MD | = (146.88)2 + (8.64 )2 + (1.44 )2 = 147.141 N ⋅ m ∴ 147.141 N ⋅ m = ( 228 N ) d d = 0.64536 m or d = 0.645 m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 34. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 33. Have | M C | = FBAd where d = perpendicular distance from C to line AB. M C = rA/C × FBA rA/C = ( 0.96 m ) i − ( 0.12 m ) j + ( 0.72 m ) k FBA = λ BA FBA = ( − ( 0.1 m ) i + (1.8 m ) j − ( 0.6 ) k ) ( 228 N ) ( 0.1)2 + (1.8)2 + ( 0.6 )2 m = − (12.0 N ) i + ( 216 N ) j − ( 72 N ) k i j k ∴ M C = 0.96 −0.12 0.72 N ⋅ m −12.0 216 −72 = − (146.88 N ⋅ m ) i − ( 60.48 N ⋅ m ) j + ( 205.92 N ⋅ m ) k and | MC | = (146.88)2 + ( 60.48)2 + ( 205.92 )2 = 260.07 N ⋅ m ∴ 260.07 N ⋅ m = ( 228 N ) d d = 1.14064 m or d = 1.141 m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 35. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 34. (a) Have d = rC/ A sin θ = λ AB × rC/ A where d = Perpendicular distance from C to pipe AB AB 7i + 4 j − 32k with λ AB = = AB ( 7 )2 + ( 4 )2 + ( −32 )2 1 = ( 7i + 4 j − 32k ) 33 and rC/ A = − (14 ft ) i + ( 5 ft ) j + ( L − 22 ) ft  k   i j k 1 Then λ AB × rC/ A = 7 4 − 32 ft 33 −14 5 L − 22 = 1 33  {      }  4 ( L − 22 ) + 32 ( 5 )  i + 32 (14 ) − 7 ( L − 22 )  j +  7 ( 5 ) + 4 (14 )  k ft 1 = ( 4L + 72 ) i + ( −7 L + 602 ) j + 91k  ft 33   1 and d = ( 4L + 72 )2 + ( −7 L + 602 )2 + ( 91)2 33 dd 2 1 For (d ) min , = 2  2 ( 4 )( 4L + 72 ) + 2 ( −7 )( −7 L + 602 )  = 0 dL 33   or 65L − 3926 = 0 or L = 60.400 ft But L > Lgreenhouse so L = 30.0 ft 1 (b) with L = 30 ft, d = ( 4 × 30 + 72 )2 + ( −7 × 30 + 602 )2 + ( 91)2 33 or d = 13.51 ft Note: with L = 60.4 ft, 1 d = ( 4 × 60.4 + 72 )2 + ( −7 × 60.4 + 602 )2 + ( 91)2 = 11.29 ft 33 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 36. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 35. P ⋅ Q = ( − 4i + 8j − 3k ) ⋅ ( 9i − j − 7k ) = ( − 4 )( 9 ) + ( 8 )( −1) + ( − 3)( − 7 ) = − 23 or P ⋅ Q = −23 P ⋅ S = ( − 4i + 8 j − 3k ) ⋅ ( 5i − 6 j + 2k ) = ( − 4 )( 5 ) + ( 8 )( − 6 ) + ( − 3)( 2 ) = − 74 or P ⋅ S = −74 Q ⋅ S = ( 9i − j − 7k ) ⋅ ( 5i − 6 j + 2k ) = ( 9 )( 5 ) + ( −1)( − 6 ) + ( − 7 )( 2 ) = 37 or Q ⋅ S = 37 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 37. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 36. By definition B ⋅ C = BC cos (α − β ) where B = B ( cos β ) i + ( sin β ) j   C = C ( cos α ) i + ( sin α ) j   ∴ ( B cos β )( C cos α ) + ( B sin β )( C sin α ) = BC cos (α − β ) or cos β cos α + sin β sin α = cos (α − β ) (1) By definition B′⋅ C = BC cos (α + β ) where B′ = ( cos β ) i − ( sin β ) j   ∴ ( B cos β )( C cos α ) + ( − B sin β )( C sin α ) = BC cos (α + β ) or cos β cos α − sin β sin α = cos (α + β ) (2) Adding Equations (1) and (2), 2 cos β cos α = cos (α − β ) + cos (α + β ) 1 1 or cos α cos β = cos (α + β ) + cos (α − β ) 2 2 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 38. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 37. First note: rB/ A = ( 0.56 m ) i + ( 0.9 m ) j rC/ A = ( 0.9 m ) j − ( 0.48 m ) k rD/ A = − ( 0.52 m ) i + ( 0.9 m ) j + ( 0.36 m ) k rB/ A = ( 0.56 m )2 + ( 0.9 m )2 = 1.06 m rC/ A = ( 0.9 m )2 + ( − 0.48 m )2 = 1.02 m rD/ A = ( − 0.52 m )2 + ( 0.9 m )2 + ( 0.36 m )2 = 1.10 m By definition rB/ A ⋅ rD/ A = rB/ A rD/ A cosθ or ( 0.56i + 0.9 j) ⋅ ( − 0.52i + 0.9 j + 0.36k ) = (1.06 )(1.10 ) cosθ ( 0.56 )( − 0.52 ) + ( 0.9 )( 0.9 ) + ( 0 )( 0.36 ) = 1.166 cosθ cosθ = 0.44494 θ = 63.6° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 39. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 38. From the solution to problem 3.37 rC/ A = 1.02 m with rC/ A = ( 0.9 m ) i − ( 0.48 m ) j rD/ A = 1.10 m with rD/ A = − ( 0.52 m ) i + ( 0.9 m ) j + ( 0.36 m ) k Now by definition rC/ A ⋅ rD/ A = rC/ A rD/ A cosθ or ( 0.9 j − 0.48k ) ⋅ ( − 0.52i + 0.9 j + 0.36k ) = (1.02 )(1.10 ) cosθ 0 ( − 0.52 ) + ( 0.9 )( 0.9 ) + ( − 0.48)( 0.36 ) = 1.122cosθ cosθ = 0.56791 or θ = 55.4° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 40. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 39. (a) By definition λ BC + λ EF = (1) (1) cosθ where λ BC = ( 32 ft ) i − ( 9 ft ) j − ( 24 ft ) k ( 32 )2 + ( − 9 )2 + ( − 24 )2 ft 1 = ( 32i − 9 j − 24k ) 41 − (14 ft ) i − (12 ft ) j + (12 ft ) k λ EF = ( −14 )2 + ( −12 )2 + ( 12 )2 ft 1 = ( −7i − 6 j + 6k ) 11 Therefore ( 32i − 9 j − 24k ) ⋅ ( −7i − 6 j + 6k ) = cosθ 41 11 ( 32 )( −7 ) + ( −9 )( −6 ) + ( −24 )( 6 ) = ( 41)(11) cosθ cosθ = − 0.69623 or θ = 134.1° (b) By definition (TEG ) BC = (TEF ) cosθ = (110 lb )( −0.69623) = −76.585 lb or (TEF ) BC = −76.6 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 41. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 40. (a) By definition λ BC ⋅ λ EG = (1) (1) cosθ where λ BC = ( 32 ft ) i − ( 9 ft ) j − ( 24 ft ) k ( 32 )2 + ( − 9 )2 + ( − 24 )2 ft 1 = ( 32i − 9 j − 24k ) 41 λ EG = (16 ft ) i − (12 ft ) j + ( 9.75) k (16 )2 + ( −12 )2 + ( 9.75)2 ft 1 = (16i − 12 j + 9.75k ) 22.25 Therefore ( 32i − 9 j − 24k ) ⋅ (16i − 12 j + 9.75k ) = cosθ 41 22.25 ( 32 )(16 ) + ( −9 )( −12 ) + ( −24 )( 9.75) = ( 41)( 22.25) cosθ cosθ = 0.42313 or θ = 65.0° (b) By definition (TEG )BC = (TEG ) cosθ = (178 lb )( 0.42313) = 75.317 lb or (TEG ) BC = 75.3 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 42. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 41. First locate point B: d 3.5 = 22 14 or d = 5.5 m (a) d BA = ( 5.5 + 0.5)2 + ( −22 )2 + ( −3)2 = 23 m Locate point D: ( −3.5 − 7.5sin 45° cos15° ) , (14 + 7.5cos 45° ) ,  ( 0 + 7.5sin 45° sin15° ) m  or ( −8.6226 m, 19.3033 m, 1.37260 m ) Then d BD = ( −8.6226 + 5.5)2 + (19.3033 − 22 )2 + (1.37260 − 0 )2 m = 4.3482 m and cosθ ABD = d BA ⋅ d BD = ( 6i − 22 j − 3k ) ⋅ ( −3.1226i − 2.6967 j + 1.37260k ) d BA d BD ( 23)( 4.3482 ) = 0.36471 or θ ABD = 68.6° (b) (TBA )BD = TBA cosθ ABD = ( 230 N )( 0.36471) or (TBA ) BD = 83.9 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 43. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 42. First locate point B: d 3.5 = 22 14 or d = 5.5 m (a) Locate point D: ( −3.5 − 7.5sin 45° cos10° ) , (14 + 7.5cos 45° ) ,  ( 0 + 7.5sin 45° sin10° ) m  or ( −8.7227 m, 19.3033 m, 0.92091 m ) Then d DC = ( 5.2227 m ) i − ( 5.3033 m ) j − ( 0.92091 m ) k and d DB = ( −5.5 + 8.7227 )2 + ( 22 − 19.3033)2 + ( 0 − 0.92091)2 m = 4.3019 m and cos θ BDC = d DB ⋅ d DC = ( 3.2227i + 2.6967 j − 0.92091k ) ⋅ ( 5.2227i − 5.3033j − 0.92091k ) d DB d DC ( 4.3019 )( 7.5) = 0.104694 or θ BDC = 84.0° (b) (TBD )DC = TBD cosθ BDC = ( 250 N )( 0.104694 ) or (TBD )DC = 26.2 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 44. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 43. Volume of parallelopiped is found using the mixed triple product (a) Vol = P ⋅ ( Q × S ) 3 −4 1 = − 7 6 − 8 in.3 9 −2 −3 = ( −54 + 288 + 14 − 48 + 84 − 54 ) in.3 = 230 in.3 or Volume = 230 in.3 (b) Vol = P ⋅ ( Q × S ) −5 −7 4 = 6 − 2 5 in.3 −4 8 −9 = ( −90 + 140 + 192 + 200 − 378 − 32 ) in.3 = 32 in.3 or Volume = 32 in.3 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 45. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 44. For the vectors to all be in the same plane, the mixed triple product is zero. P ⋅(Q × S ) = 0 −3 −7 5 ∴ 0 = −2 1 −4 8 Sy −6 0 = 18 + 224 − 10S y − 12S y + 84 − 40 So that 22 S y = 286 S y = 13 or S y = 13.00 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 46. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 45. Have rC = ( 2.25 m ) k CE TCE = TCE CE ( 0.90 m ) i + (1.50 m ) j − ( 2.25 m ) k  TCE = (1349 N )   ( 0.90 ) + (1.50 ) + ( −2.25 ) m 2 2 2 = ( 426 N ) i + ( 710 N ) j − (1065 N ) k Now M O = rC × TCE i j k = 0 0 2.25 N ⋅ m 426 710 −1065 = − (1597.5 N ⋅ m ) i + ( 958.5 N ⋅ m ) j ∴ M x = −1598 N ⋅ m, M y = 959 N ⋅ m, M z = 0 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 47. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 46. Have rE = ( 0.90 m ) i + (1.50 m ) j DE TDE = TDE DE  − ( 2.30 m ) i + (1.50 m ) j − ( 2.25 m ) k  = (1349 N )   ( − 2.30 ) + (1.50 ) + ( − 2.25) m 2 2 2 = − ( 874 N ) i + ( 570 N ) j − ( 855 N ) k Now M O = rE × TDE i j k = 0.90 1.50 0 N ⋅ m − 874 570 − 855 = − (1282.5 N ⋅ m ) i + ( 769.5 N ⋅ m ) j + (1824 N ⋅ m ) k ∴ M x = −1283 N ⋅ m, M y = 770 N ⋅ m, M z = 1824 N ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 48. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 47. Have M z = k ⋅ ( rB ) y × TBA  + k ( rC ) y × TCD      where M z = − ( 48 lb ⋅ ft ) k ( rB ) y = ( rC ) y = ( 3 ft ) j BA ( 4.5 ft ) i − ( 3 ft ) j + ( 9 ft ) k  TBA = TBA = (14 lb )   BA ( 4.5) + ( − 3) + ( 9 ) ft 2 2 2 = ( 6 lb ) i − ( 4 lb ) j + (12 lb ) k CD ( 6 ft ) i − ( 3 ft ) j − ( 6 ft ) k  TCD = TCD = TCD   CD ( 6 ) + ( − 3) + ( − 6 ) ft 2 2 2 TCD = (2i − j − 2k ) 3 Then {  } − ( 48 lb ⋅ ft ) = k ⋅ ( 3 ft ) j × ( 6 lb ) i − ( 4 lb ) j + (12 lb ) k    T  + k ⋅ ( 3 ft ) j ×  CD ( 2 i − j − 2 k )     3  or − 48 = −18 − 2TCD TCD = 15.00 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 49. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 48. Have M y = j ⋅ ( rB ) z × TBA  × j⋅ ( rC ) z × TCD      where M y = 156 lb ⋅ ft ( rB ) z = ( 24 ft ) k; ( rC ) z = ( 6 ft ) k BA ( 4.5 ft ) i − ( 3 ft ) j + ( 9 ft ) k  TBA = TBA = TBA   BA ( 4.5) + ( − 3) + ( 9 ) ft 2 2 2 TBA = ( 4.5i − 3j + 9k ) 10.5 CD ( 6 ft ) i − ( 3 ft ) j + ( 9 ft ) k  TCD = TCD = ( 7.5 lb )   CD ( 6 ) + ( − 3) + ( 9 ) ft 2 2 2 = ( 5 lb ) i − ( 2.5 lb ) j − ( 5 lb ) k  T  Then (156 lb ⋅ ft ) = j ⋅ ( 24 ft ) k × BA ( 4.5i − 3j + 9k )   10.5  { } + j ⋅ ( 6 ft ) k × ( 5 lb ) i − ( 2.5 lb ) j − ( 5 lb ) k    108 or 156 = TBA + 30 10.5 TBA = 12.25 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 50. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 49. Based on M x = ( P cos φ ) ( 0.225 m ) sin θ  − ( P sin φ ) ( 0.225 m ) cosθ      (1) M y = − ( P cos φ )( 0.125 m ) (2) M z = − ( P sin φ )( 0.125 m ) (3) Equation ( 3) M z − ( P sin φ )( 0.125 ) By : = Equation ( 2 ) M y − ( P cos φ )( 0.125 ) −4 or = tan φ ∴ φ = 9.8658° − 23 or φ = 9.87° From Equation (2) − 23 N ⋅ m = − ( P cos 9.8658° )( 0.125 m ) P = 186.762 N or P = 186.8 N From Equation (1) 26 N ⋅ m = (186.726 N ) cos 9.8658° ( 0.225 m ) sin θ     − (186.726 N ) sin 9.8658°  ( 0.225 m ) cosθ     or 0.98521sin θ − 0.171341cosθ = 0.61885 Solving numerically, θ = 48.1° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 51. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 50. Based on M x = ( P cos φ ) ( 0.225 m ) sin θ  − ( P sin φ ) ( 0.225 m ) cosθ      (1) M y = − ( P cos φ )( 0.125 m ) (2) M z = − ( P sin φ )( 0.125 m ) Equation ( 3) M z − ( P sin φ )( 0.125 ) By : = Equation ( 2 ) M y − ( P cos φ )( 0.125 ) − 3.5 or = tan φ ; φ = 9.9262° − 20 From Equation (3): − 3.5 N ⋅ m = − ( P sin 9.9262° )( 0.125 m ) P = 162.432 N From Equation (1): M x = (162.432 N )( 0.225 m )( cos 9.9262° sin 60° − sin 9.9262° cos 60° ) = 28.027 N ⋅ m or M x = 28.0 N ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.