Se ha denunciado esta presentación.
Se está descargando tu SlideShare. ×

Soumith Chintala at AI Frontiers: A Dynamic View of the Deep Learning World

Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio

Eche un vistazo a continuación

1 de 33 Anuncio

Soumith Chintala at AI Frontiers: A Dynamic View of the Deep Learning World

Descargar para leer sin conexión

In this short talk, you will get an overview of Torch – a deep learning framework, and you will learn about how Torch offers certain valuable features for research that no other framework focuses on. You will also learn about new features introduced in a refreshed version of Torch.

In this short talk, you will get an overview of Torch – a deep learning framework, and you will learn about how Torch offers certain valuable features for research that no other framework focuses on. You will also learn about new features introduced in a refreshed version of Torch.

Anuncio
Anuncio

Más Contenido Relacionado

Presentaciones para usted (20)

A los espectadores también les gustó (20)

Anuncio

Similares a Soumith Chintala at AI Frontiers: A Dynamic View of the Deep Learning World (20)

Más de AI Frontiers (20)

Anuncio

Más reciente (20)

Soumith Chintala at AI Frontiers: A Dynamic View of the Deep Learning World

  1. 1. Soumith Chintala Facebook AI Research A dynamic view of the deep learning world
  2. 2. Overview • What is Torch? • The Community • Today’s AI • What Next?
  3. 3. What is ? • Interactive Scientific computing framework
  4. 4. What is ? • Interactive Scientific computing framework
  5. 5. What is ? • Similar to Matlab / Python+Numpy
  6. 6. What is ? • Easy integration into and from C • Example: using CuDNN functions
  7. 7. What is ? • Strong GPU support
  8. 8. Neural Networks • nn: neural networks made easy • building blocks of differentiable modules
  9. 9. autograd by • Write imperative programs • Backprop defined for every operation in the language
  10. 10. Distributed Learning • Multi-GPU and Multi-Node • distlearn by • MPI-like model • scales to a large amount of nodes
  11. 11. Core Philosophy • Interactive computing • No compilation time • Imperative programming • Easy to understand, think and debug • Minimal abstraction • Thinking linearly • Maximal Flexibility • No constraints on interfaces or classes
  12. 12. Community
  13. 13. Community
  14. 14. Community
  15. 15. Community
  16. 16. Community
  17. 17. Community
  18. 18. Community
  19. 19. Community
  20. 20. Today’s AI • Reasonably solved to be used in production
  21. 21. Today’s AI • Classification and Detection • in images, videos, volumetric data, sparse datasets DenseCap: Johnson et. al. https://github.com/jcjohnson/densecap
  22. 22. Today’s AI • Segmentation DeepMask: Pinhero et. al.
  23. 23. Today’s AI • Text Classification (sentiment analysis etc.) • Text Embeddings • Graph embeddings • Machine Translation • Ads ranking
  24. 24. Today’s AI static datasets + static model structure
  25. 25. Today’s AI static datasets + static model structure model does not change over training time
  26. 26. Today’s AI static datasets + static model structure model does not change over training time offline learning
  27. 27. Active and Future AI Research • Agents training in different and new environments
  28. 28. Active and Future AI Research • RL Agents in different and new environments • Example: OpenAI Universe
  29. 29. Active and Future AI Research • RL Agents in different and new environments • Example: OpenAI Universe • Online Learning • Example: self-driving cars
  30. 30. Active and Future AI Research • RL Agents in different and new environments • Example: OpenAI Universe • Online Learning • Example: self-driving cars • Dynamic Neural Networks • self-adding new memory or layers • changing evaluation path based on inputs
  31. 31. Active and Future AI Research • RL Agents in different and new environments • Example: OpenAI Universe • Online Learning • Example: self-driving cars • Dynamic Neural Networks • self-adding new memory or layers • changing evaluation path based on inputs • Structured Prediction • Viterbi style decoders
  32. 32. A Next-Gen Framework • Interop with environments • Like Universe, VizDoom, etc. • Easy data loaders • Rich scientific ecosystem (such as SciPy) • Neural Networks are not the only methods to be used • Dynamic Neural Networks • with no specific or static structure • Minimal Abstractions • better debugging and low-level programming in the hands of researcher • Graph Compilers • To speed up structured prediction and fuse operations • Numba, XLA, Theano
  33. 33. Let’s share! Torch Caffe TensorFlow Theano MXNet, etc. Eigen TH CuDNN MKL Numba XLA NNVM MPI NCCL

×