Zhe Guo - Africa Agriculture Watch (AAgWa) Launch Event.pdf

AKADEMIYA2063
AKADEMIYA2063AKADEMIYA2063
Leveraging Artificial Intelligence (AI) & Satellite Remote
Sensing Data for Decision-making in the African
Agricultural Sector
AFRICA AGRICULTURE WATCH
(AAgWa)
• AI Trends in Remote Sensing
• Dr. Zhe Guo
Senior GIS Coordinator
International Food Policy Research Institute
Leveraging Artificial Intelligence (AI) & Satellite Remote Sensing Data for Decision-making in the African
Agricultural Sector
CGIAR (Consultative Group on International
Agricultural Research) Centers
Leveraging Artificial Intelligence (AI) & Satellite Remote Sensing Data for Decision-making in the African
Agricultural Sector
The Remote sensing have been successfully applied in the many fields
such as agriculture, environmental sciences, ecology, urban planning
especially in U.S. and Europe
• USDA’s Crop Data Layer
• ESA’s Copernicus projects
• Time series of land cover, cropland, and forest changes from
University of Maryland
Researchers are exploring the potential applications of remote
sensing in Africa, but they face challenges due to the spatial
heterogeneity of smallholder agriculture and the complexity
of farming practices in the region.
Leveraging Artificial Intelligence (AI) & Satellite Remote Sensing Data for Decision-making in the African
Agricultural Sector
The rapid evolution of remote sensing technology is introducing promising
solutions for remote sensing applications in Africa for agricultural studies,
especially in the following areas:
• Access to publicly available satellite datasets such as Landsat (30m, 16-day revisit) and Sentinel (10m,
5-day revisit) is becoming increasingly widespread.
• Free cloud computing platforms like Google Earth Engine provide a scalable and cost-effective way to
process large amounts of remote sensing data.
• Low/no cost machine learning packages and high-end computers allow for the development of
sophisticated algorithms for analyzing remote sensing data, including the ability to classify land cover
and detect changes over time.
• Satellite data can now be accessed in near real-time, enabling more timely and accurate monitoring of
agricultural systems and environmental conditions.
• The availability of more ground truth data is improving the accuracy of remote sensing analyses and
enabling the development of more robust models
Leveraging Artificial Intelligence (AI) & Satellite Remote Sensing Data for Decision-making in the African
Agricultural Sector
Leveraging Artificial Intelligence (AI) & Satellite Remote Sensing Data for Decision-making in the African
Agricultural Sector
Leveraging Artificial Intelligence (AI) & Satellite Remote Sensing Data for Decision-making in the African
Agricultural Sector
Space agencies on food security: $15 million
NASA Harvest project
Leveraging Artificial Intelligence (AI) & Satellite Remote Sensing Data for Decision-making in the African
Agricultural Sector
Descartes Lab
Spatial Data Analytics:
Smallholder crop type and yield estimation using satellite data and
machine learning approach
• New advances in AI offer promise for smallholder crop
area and yield estimation
o Publicly available satellite data - Sentinel(10m, 5-day revisit)
o Free cloud computing platform (Google Earth Engine)
o No/low cost of (deep) learning packages
• Crop type mapping in South Africa
o Deploy TensorFlow, an open source deep learning platform with time
series of sentinel data for crop type mapping.
o Limited ground truth samples (<500 samples per crop)
o Distinguished major crop types including inter-cropping and fallow land
in Free State with R-squared of 0.71
• Crop yield estimation in Ethiopia
o The deep learning neural networks outperform other machine learning
algorithms.
o vegetation index from Satellite + climate variables + soil give the best
model performance
o The maize yield estimate has R-squared of 0.62 across three AEZ zones.
For more information, please contact Zhe Guo (z.guo@cgiar.org)
Fallow
Maize
Pasture
SoyaBeans
Sunflower
Vegetables
WheatMaize
WheatSoya
Non crop area
Reference
Predicted
Predicted
yield
Reference yield
a a
Leveraging Artificial Intelligence (AI) & Satellite Remote Sensing Data for Decision-making in the African
Agricultural Sector
Hierarchy of Relevant Crop-related Statistics That
Might Be Improved Using Earth Science Data
• Cropland (areas)
Permanent (areas)
Arable (areas)
Rainfed/irrigated (system areas)
Growing seasons (periods)
Cropping patterns (areas)
Crop specific (areas and yields)
Leveraging Artificial Intelligence (AI) & Satellite Remote Sensing Data for Decision-making in the African
Agricultural Sector
Spatial
Production
Allocation
Model
(SPAM)
SPAM model estimates spatial distribution of 42+ crop
types including area, production, and yield at pixel level by
disaggregating the data from coarser units, such as
countries and sub-national provinces, to finer units.
SPAM model uses:
o Entropy-based, data-fusion approach
o Combines a variety of inputs including tabular and
spatial raster data
o Assesses cropping system distribution and
performance of 42+ crops
o Spatial resolution: ~10km/1km
o Spatial Extent: Global/country
o Temporal resolution: every 5 years (2000, 2005,
2010, 2017, 2020)
SPAM Outputs
The outputs of the SPAM model produce maps of 42 crop types by 2 cropping systems
and 3 variables, a total of 42*6*6=1512 data layers.
o Variables (per crop and cropping system*)
• Harvest area (ha)
• Physical area (ha)
• Production (mt)
• Yield (kg/ha)
• Value of production (Int$)
• Value of production/harvested area (Int$/ha)
* Cropping systems: I, H, L, S, R(rainfed), A(sum of all)
Leveraging Artificial Intelligence (AI) & Satellite Remote Sensing Data for Decision-making in the African
Agricultural Sector
Nightlight density during Covid-19
in Nigeria
March 2019 March 2020
NO2 concentration during Covid19
in Nigeria
March 2019 March 2020
Agricultural Drought Monitoring
and Forecasting System
Leveraging Artificial Intelligence (AI) & Satellite Remote
Sensing Data for Decision-making in the African
Agricultural Sector
AFRICA AGRICULTURE WATCH
(AAgWa)
THANK YOU!
For more information, please contact Zhe Guo, z.guo@cgiar.org
1 de 15

Recomendados

Racine Ly - Africa Agriculture Watch (AAgWa) Launch Event por
Racine Ly - Africa Agriculture Watch (AAgWa) Launch EventRacine Ly - Africa Agriculture Watch (AAgWa) Launch Event
Racine Ly - Africa Agriculture Watch (AAgWa) Launch EventAKADEMIYA2063
29 vistas16 diapositivas
land health surveillance highlights por
land health surveillance highlightsland health surveillance highlights
land health surveillance highlightsWorld Agroforestry (ICRAF)
422 vistas22 diapositivas
Liangzhi You (IFPRI) • 2021 IFPRI Egypt Seminar Series: "Fostering Digitaliza... por
Liangzhi You (IFPRI) • 2021 IFPRI Egypt Seminar Series: "Fostering Digitaliza...Liangzhi You (IFPRI) • 2021 IFPRI Egypt Seminar Series: "Fostering Digitaliza...
Liangzhi You (IFPRI) • 2021 IFPRI Egypt Seminar Series: "Fostering Digitaliza...International Food Policy Research Institute (IFPRI)
116 vistas19 diapositivas
AKADEMIYA2063-CORAF Regional Learning Event, July 6 2021: Predicting Crop Pr... por
 AKADEMIYA2063-CORAF Regional Learning Event, July 6 2021: Predicting Crop Pr... AKADEMIYA2063-CORAF Regional Learning Event, July 6 2021: Predicting Crop Pr...
AKADEMIYA2063-CORAF Regional Learning Event, July 6 2021: Predicting Crop Pr...AKADEMIYA2063
32 vistas16 diapositivas
Andrea Cruciani, Agricolus por
Andrea Cruciani, AgricolusAndrea Cruciani, Agricolus
Andrea Cruciani, AgricolusData Driven Innovation
252 vistas26 diapositivas
Artifical intelligence in agriculture por
Artifical intelligence in agricultureArtifical intelligence in agriculture
Artifical intelligence in agricultureYogeshDadhich4
112 vistas19 diapositivas

Más contenido relacionado

Similar a Zhe Guo - Africa Agriculture Watch (AAgWa) Launch Event.pdf

AGRI 1171_Precision Agriculture.pptx por
AGRI 1171_Precision Agriculture.pptxAGRI 1171_Precision Agriculture.pptx
AGRI 1171_Precision Agriculture.pptxssuserbb3537
89 vistas16 diapositivas
precision_agriculture.pdf por
precision_agriculture.pdfprecision_agriculture.pdf
precision_agriculture.pdfssuserbb3537
27 vistas16 diapositivas
Land Health Surveillance Information for decision making por
Land Health Surveillance Information for decision makingLand Health Surveillance Information for decision making
Land Health Surveillance Information for decision makingCIMMYT
1.9K vistas22 diapositivas
Precision agriculture por
Precision agriculturePrecision agriculture
Precision agricultureAboul Ella Hassanien
17.6K vistas32 diapositivas
A Digitally Integrated Africa Soil Information Service (AfSIS) por
A Digitally Integrated Africa Soil Information Service (AfSIS)A Digitally Integrated Africa Soil Information Service (AfSIS)
A Digitally Integrated Africa Soil Information Service (AfSIS)CIAT
924 vistas43 diapositivas
Adoption of precision farming technologies in pakistan por
Adoption of precision farming technologies in pakistanAdoption of precision farming technologies in pakistan
Adoption of precision farming technologies in pakistanWaqas Javed
367 vistas19 diapositivas

Similar a Zhe Guo - Africa Agriculture Watch (AAgWa) Launch Event.pdf(20)

AGRI 1171_Precision Agriculture.pptx por ssuserbb3537
AGRI 1171_Precision Agriculture.pptxAGRI 1171_Precision Agriculture.pptx
AGRI 1171_Precision Agriculture.pptx
ssuserbb353789 vistas
precision_agriculture.pdf por ssuserbb3537
precision_agriculture.pdfprecision_agriculture.pdf
precision_agriculture.pdf
ssuserbb353727 vistas
Land Health Surveillance Information for decision making por CIMMYT
Land Health Surveillance Information for decision makingLand Health Surveillance Information for decision making
Land Health Surveillance Information for decision making
CIMMYT1.9K vistas
A Digitally Integrated Africa Soil Information Service (AfSIS) por CIAT
A Digitally Integrated Africa Soil Information Service (AfSIS)A Digitally Integrated Africa Soil Information Service (AfSIS)
A Digitally Integrated Africa Soil Information Service (AfSIS)
CIAT924 vistas
Adoption of precision farming technologies in pakistan por Waqas Javed
Adoption of precision farming technologies in pakistanAdoption of precision farming technologies in pakistan
Adoption of precision farming technologies in pakistan
Waqas Javed367 vistas
Use Case: PostGIS and Agribotics por PGConf APAC
Use Case: PostGIS and AgriboticsUse Case: PostGIS and Agribotics
Use Case: PostGIS and Agribotics
PGConf APAC730 vistas
Application of remote sensing in precision farming por Suman Dey
 Application of remote sensing in precision farming  Application of remote sensing in precision farming
Application of remote sensing in precision farming
Suman Dey401 vistas
Precision agriculture por SuryaBv1
Precision agriculturePrecision agriculture
Precision agriculture
SuryaBv1538 vistas
Digital Agriculture in J & K 13_08_22.pdf por SKUASTKashmir
Digital Agriculture in J & K 13_08_22.pdfDigital Agriculture in J & K 13_08_22.pdf
Digital Agriculture in J & K 13_08_22.pdf
SKUASTKashmir26 vistas
Artificial Intelligence and IoT's por Amruta Raut
Artificial Intelligence and IoT'sArtificial Intelligence and IoT's
Artificial Intelligence and IoT's
Amruta Raut94 vistas
Precision farming rohit pandey por Govardhan Lodha
Precision farming rohit pandeyPrecision farming rohit pandey
Precision farming rohit pandey
Govardhan Lodha16.1K vistas
GeoAgris por eliomart
GeoAgris GeoAgris
GeoAgris
eliomart429 vistas
Various aspects of Precision Farming.pptx por TechzArena
Various aspects of Precision Farming.pptxVarious aspects of Precision Farming.pptx
Various aspects of Precision Farming.pptx
TechzArena41 vistas
geo-spatial-technologies-for-agriculture.pdf por ssuser2d064b2
geo-spatial-technologies-for-agriculture.pdfgeo-spatial-technologies-for-agriculture.pdf
geo-spatial-technologies-for-agriculture.pdf
ssuser2d064b227 vistas

Más de AKADEMIYA2063

AKADEMIYA2063_SE-GH2forEnergyTransition_MD[56] - Read-Only (1).pptx por
AKADEMIYA2063_SE-GH2forEnergyTransition_MD[56]  -  Read-Only (1).pptxAKADEMIYA2063_SE-GH2forEnergyTransition_MD[56]  -  Read-Only (1).pptx
AKADEMIYA2063_SE-GH2forEnergyTransition_MD[56] - Read-Only (1).pptxAKADEMIYA2063
2 vistas8 diapositivas
Augustin Wambo Yamdjeu - 2023 ReSAKSS Conference.pptx por
Augustin Wambo Yamdjeu - 2023 ReSAKSS Conference.pptxAugustin Wambo Yamdjeu - 2023 ReSAKSS Conference.pptx
Augustin Wambo Yamdjeu - 2023 ReSAKSS Conference.pptxAKADEMIYA2063
2 vistas25 diapositivas
Mr. Kenao Lao - 2023 ReSAKSS Conference.pptx por
 Mr. Kenao Lao - 2023 ReSAKSS Conference.pptx Mr. Kenao Lao - 2023 ReSAKSS Conference.pptx
Mr. Kenao Lao - 2023 ReSAKSS Conference.pptxAKADEMIYA2063
7 vistas13 diapositivas
Mr. Wondwosen Tefera - 2023 ReSAKSS Conference.pptx por
Mr. Wondwosen Tefera - 2023 ReSAKSS Conference.pptxMr. Wondwosen Tefera - 2023 ReSAKSS Conference.pptx
Mr. Wondwosen Tefera - 2023 ReSAKSS Conference.pptxAKADEMIYA2063
4 vistas19 diapositivas
Dr. Keith Fuglie - 2023 ReSAKSS Conference.pptx por
 Dr. Keith Fuglie - 2023 ReSAKSS Conference.pptx Dr. Keith Fuglie - 2023 ReSAKSS Conference.pptx
Dr. Keith Fuglie - 2023 ReSAKSS Conference.pptxAKADEMIYA2063
3 vistas8 diapositivas
Dr. Greenwell Matchaya et al - 2023 ReSAKSS Conference.pptx por
Dr. Greenwell Matchaya et al - 2023 ReSAKSS Conference.pptxDr. Greenwell Matchaya et al - 2023 ReSAKSS Conference.pptx
Dr. Greenwell Matchaya et al - 2023 ReSAKSS Conference.pptxAKADEMIYA2063
4 vistas15 diapositivas

Más de AKADEMIYA2063(20)

AKADEMIYA2063_SE-GH2forEnergyTransition_MD[56] - Read-Only (1).pptx por AKADEMIYA2063
AKADEMIYA2063_SE-GH2forEnergyTransition_MD[56]  -  Read-Only (1).pptxAKADEMIYA2063_SE-GH2forEnergyTransition_MD[56]  -  Read-Only (1).pptx
AKADEMIYA2063_SE-GH2forEnergyTransition_MD[56] - Read-Only (1).pptx
AKADEMIYA20632 vistas
Augustin Wambo Yamdjeu - 2023 ReSAKSS Conference.pptx por AKADEMIYA2063
Augustin Wambo Yamdjeu - 2023 ReSAKSS Conference.pptxAugustin Wambo Yamdjeu - 2023 ReSAKSS Conference.pptx
Augustin Wambo Yamdjeu - 2023 ReSAKSS Conference.pptx
AKADEMIYA20632 vistas
Mr. Kenao Lao - 2023 ReSAKSS Conference.pptx por AKADEMIYA2063
 Mr. Kenao Lao - 2023 ReSAKSS Conference.pptx Mr. Kenao Lao - 2023 ReSAKSS Conference.pptx
Mr. Kenao Lao - 2023 ReSAKSS Conference.pptx
AKADEMIYA20637 vistas
Mr. Wondwosen Tefera - 2023 ReSAKSS Conference.pptx por AKADEMIYA2063
Mr. Wondwosen Tefera - 2023 ReSAKSS Conference.pptxMr. Wondwosen Tefera - 2023 ReSAKSS Conference.pptx
Mr. Wondwosen Tefera - 2023 ReSAKSS Conference.pptx
AKADEMIYA20634 vistas
Dr. Keith Fuglie - 2023 ReSAKSS Conference.pptx por AKADEMIYA2063
 Dr. Keith Fuglie - 2023 ReSAKSS Conference.pptx Dr. Keith Fuglie - 2023 ReSAKSS Conference.pptx
Dr. Keith Fuglie - 2023 ReSAKSS Conference.pptx
AKADEMIYA20633 vistas
Dr. Greenwell Matchaya et al - 2023 ReSAKSS Conference.pptx por AKADEMIYA2063
Dr. Greenwell Matchaya et al - 2023 ReSAKSS Conference.pptxDr. Greenwell Matchaya et al - 2023 ReSAKSS Conference.pptx
Dr. Greenwell Matchaya et al - 2023 ReSAKSS Conference.pptx
AKADEMIYA20634 vistas
Dr. Getaw Tadesse - 2023 ReSAKSS Conference.pptx por AKADEMIYA2063
Dr. Getaw Tadesse - 2023 ReSAKSS Conference.pptxDr. Getaw Tadesse - 2023 ReSAKSS Conference.pptx
Dr. Getaw Tadesse - 2023 ReSAKSS Conference.pptx
AKADEMIYA20634 vistas
Dr. Fatima Kareem - 2023 ReSAKSS Conference.pptx por AKADEMIYA2063
Dr. Fatima Kareem - 2023 ReSAKSS Conference.pptxDr. Fatima Kareem - 2023 ReSAKSS Conference.pptx
Dr. Fatima Kareem - 2023 ReSAKSS Conference.pptx
AKADEMIYA20635 vistas
Dr. Fleur Wouterse - 2023 ReSAKSS Conference.pptx por AKADEMIYA2063
Dr. Fleur Wouterse - 2023 ReSAKSS Conference.pptxDr. Fleur Wouterse - 2023 ReSAKSS Conference.pptx
Dr. Fleur Wouterse - 2023 ReSAKSS Conference.pptx
AKADEMIYA20637 vistas
Dr. Ebenezer M. Kwofie - 2023 ReSAKSS Conference.pptx por AKADEMIYA2063
Dr. Ebenezer M. Kwofie - 2023 ReSAKSS Conference.pptxDr. Ebenezer M. Kwofie - 2023 ReSAKSS Conference.pptx
Dr. Ebenezer M. Kwofie - 2023 ReSAKSS Conference.pptx
AKADEMIYA20634 vistas
Dr. Agnes Quisumbing - 2023 ReSAKSS Conference por AKADEMIYA2063
 Dr. Agnes Quisumbing - 2023 ReSAKSS Conference Dr. Agnes Quisumbing - 2023 ReSAKSS Conference
Dr. Agnes Quisumbing - 2023 ReSAKSS Conference
AKADEMIYA20634 vistas
Lea Magne-Domgho - 2023 ReSAKSS Conference.pptx por AKADEMIYA2063
Lea Magne-Domgho - 2023 ReSAKSS Conference.pptxLea Magne-Domgho - 2023 ReSAKSS Conference.pptx
Lea Magne-Domgho - 2023 ReSAKSS Conference.pptx
AKADEMIYA20634 vistas
Prince Agyemang - 2023 ReSAKSS Conference.pptx por AKADEMIYA2063
Prince Agyemang - 2023 ReSAKSS Conference.pptxPrince Agyemang - 2023 ReSAKSS Conference.pptx
Prince Agyemang - 2023 ReSAKSS Conference.pptx
AKADEMIYA20634 vistas
Dr. Paul Guthiga - 2023 ReSAKSS Conference.pptx por AKADEMIYA2063
Dr. Paul Guthiga - 2023 ReSAKSS Conference.pptxDr. Paul Guthiga - 2023 ReSAKSS Conference.pptx
Dr. Paul Guthiga - 2023 ReSAKSS Conference.pptx
AKADEMIYA20635 vistas
Dr. John Ulimwengu - 2023 ReSAKSS Conference.pptx por AKADEMIYA2063
Dr. John Ulimwengu - 2023 ReSAKSS Conference.pptxDr. John Ulimwengu - 2023 ReSAKSS Conference.pptx
Dr. John Ulimwengu - 2023 ReSAKSS Conference.pptx
AKADEMIYA20637 vistas
Silver Nanema - 2023 ReSAKSS Conference.pptx por AKADEMIYA2063
Silver Nanema - 2023 ReSAKSS Conference.pptxSilver Nanema - 2023 ReSAKSS Conference.pptx
Silver Nanema - 2023 ReSAKSS Conference.pptx
AKADEMIYA20636 vistas
Mrs. Tsitsi Makombe - 2023 ReSAKSS Conference por AKADEMIYA2063
Mrs. Tsitsi Makombe - 2023 ReSAKSS Conference Mrs. Tsitsi Makombe - 2023 ReSAKSS Conference
Mrs. Tsitsi Makombe - 2023 ReSAKSS Conference
AKADEMIYA20638 vistas
Ms. Julie Collins - 2023 ReSAKSS Conference.pptx por AKADEMIYA2063
Ms. Julie Collins - 2023 ReSAKSS Conference.pptxMs. Julie Collins - 2023 ReSAKSS Conference.pptx
Ms. Julie Collins - 2023 ReSAKSS Conference.pptx
AKADEMIYA206317 vistas
Dr. Ousmane Badiane - 2023 ReSAKSS Conference.pptx por AKADEMIYA2063
Dr. Ousmane Badiane - 2023 ReSAKSS Conference.pptxDr. Ousmane Badiane - 2023 ReSAKSS Conference.pptx
Dr. Ousmane Badiane - 2023 ReSAKSS Conference.pptx
AKADEMIYA206328 vistas
Dr Jean Paul Latyr FAYE - 2023 ReSAKSS Conference.pptx por AKADEMIYA2063
Dr Jean Paul Latyr FAYE - 2023 ReSAKSS Conference.pptxDr Jean Paul Latyr FAYE - 2023 ReSAKSS Conference.pptx
Dr Jean Paul Latyr FAYE - 2023 ReSAKSS Conference.pptx
AKADEMIYA206310 vistas

Último

Ending Stagnation: A New Economic Strategy for Britain por
Ending Stagnation: A New Economic Strategy for BritainEnding Stagnation: A New Economic Strategy for Britain
Ending Stagnation: A New Economic Strategy for BritainResolutionFoundation
414 vistas78 diapositivas
PPT - SIGMA-GIZ Academies - Topic 4 - Moldova - National center for Personal ... por
PPT - SIGMA-GIZ Academies - Topic 4 - Moldova - National center for Personal ...PPT - SIGMA-GIZ Academies - Topic 4 - Moldova - National center for Personal ...
PPT - SIGMA-GIZ Academies - Topic 4 - Moldova - National center for Personal ...Support for Improvement in Governance and Management SIGMA
26 vistas9 diapositivas
COP28 President Launches Global Decarbonization Accelerator por
COP28 President Launches Global Decarbonization AcceleratorCOP28 President Launches Global Decarbonization Accelerator
COP28 President Launches Global Decarbonization AcceleratorEnergy for One World
32 vistas3 diapositivas
Cover Letter for Canada VISITOR visa.pdf por
Cover Letter for Canada VISITOR visa.pdfCover Letter for Canada VISITOR visa.pdf
Cover Letter for Canada VISITOR visa.pdfAriful Saimon
8 vistas2 diapositivas
Arrow Adoption Training for Kinship Families por
Arrow Adoption Training for Kinship FamiliesArrow Adoption Training for Kinship Families
Arrow Adoption Training for Kinship FamiliesArrowMarketing
42 vistas46 diapositivas
Answer to UNESCO – Youth Employment Through Heritage and Culture in Yemen por
Answer to UNESCO – Youth Employment Through Heritage and Culture in YemenAnswer to UNESCO – Youth Employment Through Heritage and Culture in Yemen
Answer to UNESCO – Youth Employment Through Heritage and Culture in YemenKevin Lognoné
6 vistas22 diapositivas

Último(20)

Ending Stagnation: A New Economic Strategy for Britain por ResolutionFoundation
Ending Stagnation: A New Economic Strategy for BritainEnding Stagnation: A New Economic Strategy for Britain
Ending Stagnation: A New Economic Strategy for Britain
COP28 President Launches Global Decarbonization Accelerator por Energy for One World
COP28 President Launches Global Decarbonization AcceleratorCOP28 President Launches Global Decarbonization Accelerator
COP28 President Launches Global Decarbonization Accelerator
Cover Letter for Canada VISITOR visa.pdf por Ariful Saimon
Cover Letter for Canada VISITOR visa.pdfCover Letter for Canada VISITOR visa.pdf
Cover Letter for Canada VISITOR visa.pdf
Ariful Saimon8 vistas
Arrow Adoption Training for Kinship Families por ArrowMarketing
Arrow Adoption Training for Kinship FamiliesArrow Adoption Training for Kinship Families
Arrow Adoption Training for Kinship Families
ArrowMarketing42 vistas
Answer to UNESCO – Youth Employment Through Heritage and Culture in Yemen por Kevin Lognoné
Answer to UNESCO – Youth Employment Through Heritage and Culture in YemenAnswer to UNESCO – Youth Employment Through Heritage and Culture in Yemen
Answer to UNESCO – Youth Employment Through Heritage and Culture in Yemen
Kevin Lognoné6 vistas
Taking care for elders por SERUDS INDIA
Taking care for eldersTaking care for elders
Taking care for elders
SERUDS INDIA15 vistas
Food for Elderly homeless por SERUDS INDIA
Food for Elderly homelessFood for Elderly homeless
Food for Elderly homeless
SERUDS INDIA9 vistas
AABS project overview por WorldFish
AABS project overviewAABS project overview
AABS project overview
WorldFish29 vistas
Advancing and democratizing business data in Canada- Patrick Gill & Stephen Tapp por OECD CFE
Advancing and democratizing business data in Canada- Patrick Gill & Stephen TappAdvancing and democratizing business data in Canada- Patrick Gill & Stephen Tapp
Advancing and democratizing business data in Canada- Patrick Gill & Stephen Tapp
OECD CFE6 vistas
Support Girl students with Education por SERUDS INDIA
Support Girl students with EducationSupport Girl students with Education
Support Girl students with Education
SERUDS INDIA6 vistas
Financial sustainability of schemes managed by PHED in Punjab_Krishnakumar Th... por India Water Portal
Financial sustainability of schemes managed by PHED in Punjab_Krishnakumar Th...Financial sustainability of schemes managed by PHED in Punjab_Krishnakumar Th...
Financial sustainability of schemes managed by PHED in Punjab_Krishnakumar Th...
Mukhya Mantri Gramin Peyjal Nishchay Yojana (MGPNY) – Bihar_Pankaj Kumar_AKRS... por India Water Portal
Mukhya Mantri Gramin Peyjal Nishchay Yojana (MGPNY) – Bihar_Pankaj Kumar_AKRS...Mukhya Mantri Gramin Peyjal Nishchay Yojana (MGPNY) – Bihar_Pankaj Kumar_AKRS...
Mukhya Mantri Gramin Peyjal Nishchay Yojana (MGPNY) – Bihar_Pankaj Kumar_AKRS...
India Water Portal19 vistas

Zhe Guo - Africa Agriculture Watch (AAgWa) Launch Event.pdf

  • 1. Leveraging Artificial Intelligence (AI) & Satellite Remote Sensing Data for Decision-making in the African Agricultural Sector AFRICA AGRICULTURE WATCH (AAgWa) • AI Trends in Remote Sensing • Dr. Zhe Guo Senior GIS Coordinator International Food Policy Research Institute
  • 2. Leveraging Artificial Intelligence (AI) & Satellite Remote Sensing Data for Decision-making in the African Agricultural Sector CGIAR (Consultative Group on International Agricultural Research) Centers
  • 3. Leveraging Artificial Intelligence (AI) & Satellite Remote Sensing Data for Decision-making in the African Agricultural Sector The Remote sensing have been successfully applied in the many fields such as agriculture, environmental sciences, ecology, urban planning especially in U.S. and Europe • USDA’s Crop Data Layer • ESA’s Copernicus projects • Time series of land cover, cropland, and forest changes from University of Maryland Researchers are exploring the potential applications of remote sensing in Africa, but they face challenges due to the spatial heterogeneity of smallholder agriculture and the complexity of farming practices in the region.
  • 4. Leveraging Artificial Intelligence (AI) & Satellite Remote Sensing Data for Decision-making in the African Agricultural Sector The rapid evolution of remote sensing technology is introducing promising solutions for remote sensing applications in Africa for agricultural studies, especially in the following areas: • Access to publicly available satellite datasets such as Landsat (30m, 16-day revisit) and Sentinel (10m, 5-day revisit) is becoming increasingly widespread. • Free cloud computing platforms like Google Earth Engine provide a scalable and cost-effective way to process large amounts of remote sensing data. • Low/no cost machine learning packages and high-end computers allow for the development of sophisticated algorithms for analyzing remote sensing data, including the ability to classify land cover and detect changes over time. • Satellite data can now be accessed in near real-time, enabling more timely and accurate monitoring of agricultural systems and environmental conditions. • The availability of more ground truth data is improving the accuracy of remote sensing analyses and enabling the development of more robust models
  • 5. Leveraging Artificial Intelligence (AI) & Satellite Remote Sensing Data for Decision-making in the African Agricultural Sector
  • 6. Leveraging Artificial Intelligence (AI) & Satellite Remote Sensing Data for Decision-making in the African Agricultural Sector
  • 7. Leveraging Artificial Intelligence (AI) & Satellite Remote Sensing Data for Decision-making in the African Agricultural Sector Space agencies on food security: $15 million NASA Harvest project
  • 8. Leveraging Artificial Intelligence (AI) & Satellite Remote Sensing Data for Decision-making in the African Agricultural Sector Descartes Lab
  • 9. Spatial Data Analytics: Smallholder crop type and yield estimation using satellite data and machine learning approach • New advances in AI offer promise for smallholder crop area and yield estimation o Publicly available satellite data - Sentinel(10m, 5-day revisit) o Free cloud computing platform (Google Earth Engine) o No/low cost of (deep) learning packages • Crop type mapping in South Africa o Deploy TensorFlow, an open source deep learning platform with time series of sentinel data for crop type mapping. o Limited ground truth samples (<500 samples per crop) o Distinguished major crop types including inter-cropping and fallow land in Free State with R-squared of 0.71 • Crop yield estimation in Ethiopia o The deep learning neural networks outperform other machine learning algorithms. o vegetation index from Satellite + climate variables + soil give the best model performance o The maize yield estimate has R-squared of 0.62 across three AEZ zones. For more information, please contact Zhe Guo (z.guo@cgiar.org) Fallow Maize Pasture SoyaBeans Sunflower Vegetables WheatMaize WheatSoya Non crop area Reference Predicted Predicted yield Reference yield a a
  • 10. Leveraging Artificial Intelligence (AI) & Satellite Remote Sensing Data for Decision-making in the African Agricultural Sector Hierarchy of Relevant Crop-related Statistics That Might Be Improved Using Earth Science Data • Cropland (areas) Permanent (areas) Arable (areas) Rainfed/irrigated (system areas) Growing seasons (periods) Cropping patterns (areas) Crop specific (areas and yields)
  • 11. Leveraging Artificial Intelligence (AI) & Satellite Remote Sensing Data for Decision-making in the African Agricultural Sector
  • 12. Spatial Production Allocation Model (SPAM) SPAM model estimates spatial distribution of 42+ crop types including area, production, and yield at pixel level by disaggregating the data from coarser units, such as countries and sub-national provinces, to finer units. SPAM model uses: o Entropy-based, data-fusion approach o Combines a variety of inputs including tabular and spatial raster data o Assesses cropping system distribution and performance of 42+ crops o Spatial resolution: ~10km/1km o Spatial Extent: Global/country o Temporal resolution: every 5 years (2000, 2005, 2010, 2017, 2020)
  • 13. SPAM Outputs The outputs of the SPAM model produce maps of 42 crop types by 2 cropping systems and 3 variables, a total of 42*6*6=1512 data layers. o Variables (per crop and cropping system*) • Harvest area (ha) • Physical area (ha) • Production (mt) • Yield (kg/ha) • Value of production (Int$) • Value of production/harvested area (Int$/ha) * Cropping systems: I, H, L, S, R(rainfed), A(sum of all)
  • 14. Leveraging Artificial Intelligence (AI) & Satellite Remote Sensing Data for Decision-making in the African Agricultural Sector Nightlight density during Covid-19 in Nigeria March 2019 March 2020 NO2 concentration during Covid19 in Nigeria March 2019 March 2020 Agricultural Drought Monitoring and Forecasting System
  • 15. Leveraging Artificial Intelligence (AI) & Satellite Remote Sensing Data for Decision-making in the African Agricultural Sector AFRICA AGRICULTURE WATCH (AAgWa) THANK YOU! For more information, please contact Zhe Guo, z.guo@cgiar.org