Se ha denunciado esta presentación.
Utilizamos tu perfil de LinkedIn y tus datos de actividad para personalizar los anuncios y mostrarte publicidad más relevante. Puedes cambiar tus preferencias de publicidad en cualquier momento.
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Nanosca...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Worldwi...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
TMA-alc...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Guiding...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
• Desig...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifiqueCellular...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Control...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Titaniu...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifiquePlaying ...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Before
...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Control...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Chemica...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Cell sp...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Hinderi...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Covalen...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Functio...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
S. Clai...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Wettabi...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifiqueAging ef...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Protein...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Influen...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifiqueNew mate...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Influen...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Anti-ba...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifiqueSurface ...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifiqueInfluenc...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Reduced...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Propert...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifiqueSurface ...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Cell vi...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
• Phase...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifiqueGiant co...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Nanothe...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Core/Sh...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Platfor...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Gold na...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
GNRs
Si...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
• Nanos...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
F. Rose...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Future ...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifiqueAcknowle...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Upconve...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Cell vi...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
OFF
OFF...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
TEM a s...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Excitat...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
UCNPs f...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
43°C
La...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Strateg...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
972 nm
...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Rare ea...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Drug lo...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Cellula...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Lanthan...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
T sensi...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
C
O
F
C...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Lumines...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Surface...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Krämer ...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Vetrone...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
NIR-I: ...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Yb3+
or...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
NIR-I: ...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Feature...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
The sur...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
PEOlate...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Surface...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Surface...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
 Morph...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifiqueMorpholo...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique3DTEM an...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
UC lumi...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Quantit...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Synthes...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Applica...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Challen...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
M. Clou...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
0 50 10...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifiqueStress o...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifiqueIn situ ...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Spider ...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifiqueHierarch...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Fibril ...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifiqueNanoscal...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
SAXS&WA...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Fibrils...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Hierarc...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
F. Vari...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Guiding...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifiqueComposit...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Surface...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
100 nm1...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Tempera...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
SEM mic...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Surface...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Surface...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
TiAlV: ...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Contro
...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
UC emis...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Biomate...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Amorpho...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Covalen...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
The ato...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
TiO2: S...
INRSScience in ACTION for a World in EVOLUTION
Université du Québec
Institut national de la recherche scientifique
Spectro...
Próxima SlideShare
Cargando en…5
×

Nanoscale Properties of Biocompatible materials

69 visualizaciones

Publicado el

Autor: Federico Rosei
Fecha: 2017/11/22

Publicado en: Ingeniería
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Nanoscale Properties of Biocompatible materials

  1. 1. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Nanoscale Properties ofNanoscale Properties of Biocompatible materialsBiocompatible materials Induction Ceremony, Academia de IngegneriaInduction Ceremony, Academia de Ingegneria Mexico City, Nov 22nd 2017Mexico City, Nov 22nd 2017 Nano–Femto Laboratory (NFL)Nano–Femto Laboratory (NFL) INRS – Énergie, Matériaux et Télécommunications,INRS – Énergie, Matériaux et Télécommunications, Université du Québec, Varennes (Québec)Université du Québec, Varennes (Québec) rosei@emt.inrs.carosei@emt.inrs.ca Federico RoseiFederico Rosei UNESCO Chair in Materials and Technologies for EnergyUNESCO Chair in Materials and Technologies for Energy Conversion, Saving and Storage (MATECSS)Conversion, Saving and Storage (MATECSS)
  2. 2. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Worldwide Societal Challenges (Broad, General => affect everybody) • Clean and sustainable energy • Preserving and protecting the environment • Improving our health and quality of life “Our generation will ultimately be defined by how we live up to the energy challenge” The Future of Energy Supply: Challenges and Opportunities; N. Armaroli, V. Balzani, Angew. Chem. Int. Ed. 2007, 46, 52.
  3. 3. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique TMA-alcohol assembly Multi-ferroic BFCO Template-driven assembly Biomaterials – TiO2 Nanoscale phenomena -1,5 10 -4 -1 10 -4 -5 10 -5 0 0 1 10 9 2 10 9 3 10 9 4 10 9 -50-40-30-20-100 I ds (A) EL(photons/s) V ds (V) V gs = -30 V gs = -20 V gs = -40 V gs = -10 OLETs Chemical mapping Molecular Self-assembly Gatti J Phys Chem C (2014) MacLeod Langmuir (2015) Group IV nanostructures Moutanabbir Phys Rev B (2012) Multifunctional materials Nechache Nature Phot (2015) Li Small (2015) Zhao Small (2015) Organic Electronics Dadvand Angew Chem (2012) Dadvand J Mater Chem C (2013) Organic/hybrid Photovoltaics Dembele J Mater Chem A (2015) Dynamic Transmission Electron Microscopy Nikolova Phys Rev B (2013) Nikolova J Appl Phys (2014) Nanostructured catalysts Chen Adv Func Mater (2012) Nanostructured Biomaterials MacLeod Nature Mater (2013) Cloutier Diam Rel Mater (2014) Cloutier Trends Biotech (2015) Surface polymerization Surface Polymerization Di Giovannantonio ACS Nano (2013) Gutzler Nanoscale (2014) Vasseur Nature Comm (2016) QD solar cells Jin Adv. Sci. (2016) Zhou Adv. En. Mater. (2016) Emerging Phenomena Complexity
  4. 4. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Guiding Principles • The role of surfaces & interfaces in materials functionalities (e.g.: catalysis relates to surface structure and properties) & devices • Structure vs. function in materials: understanding role of morphology & composition in materials properties functionalities => harnessing this knowledge in devices • Examples in: – Supramolecular host/guest architectures – Biocompatible materials – Multifunctional materials
  5. 5. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique • Designing “intelligent” surfaces involves properly managing interactions with surface of, and at interface between, material and host tissue at the nanoscale • Healing process after surgery: formation of interfacial layer between implant and bone (2–4 months) Implant Interface Biomaterials: Towards Intelligent Surfaces F. Variola et al., Small 5, 996 (2009) Average size of a cell: 10 to 15 μm Average size of a protein: 10 to 15 nm
  6. 6. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifiqueCellular reactions occur at surfaces/interfaces Osteogenic cell (osteoblast precursor) Osteoblast Osteoid (uncalcified bone matrix) Calcified bone matrix Cellular interaction Interfacial interaction! Deposition of bone matrix by osteoblasts Cell/substrate interactions result in cellular signaling, which regulates cell attachment, spreading, migration, differentiation, gene expression What the cell “feels” is in the nanoscale range Average size of a cell: 10 to 15 μm Average size of a protein: 10 to 15 nm
  7. 7. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Controlled chemical oxidation Strategy: Nanotechnology Self-assembly: Covalent attachment of proteins (growth factors) New generation of implant surfaces Improving healing response and tissue integration Cell cultures (osteogenic cells: critical for successful integration of implants in bone; fibroblasts: formation of fibrous capsules weakens bone/implant interface – complications for permanent implants) TiO2, Ti alloys: High biocompatibility, resistance to corrosion, excellent mechanical properties (intrinsic) F. Variola et al. Biomaterials (2008) L. Richert et al. Adv. Mater. (2008) F. Vetrone et al. NanoLetters (2009) S. Clair et al. J. Chem. Phys. (2008) L. Richert et al. Surf. Sci. (2010)
  8. 8. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Titanium, Titanium alloys Biocompatibility, resistance to corrosion, excellent mechanical properties (intrinsic) Improving biocompatibility by nanoscale surface modification Develop nanotextured surfaces by controlled surface modification of TiO2 / TiAlV using chemical oxidation or plasma based approaches Surface Modification of Biomaterials
  9. 9. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifiquePlaying tetris at the nanoscale General Objective: Control of cell behavior by controlling surface topography and chemistry Understanding how molecules assemble at surfaces
  10. 10. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Before Oxidation After Oxidation 22.4±7nm Nanostructured Biomaterials J.H. Yi et al., Surf. Sci. 600, 4613 (2006) L. Richert et al., Adv. Mater. 20, 1488 (2008) Titanium, Titanium alloys Nanotextured surfaces by controlled chemical oxidation of Ti (H2SO4/H2O2) • Comparative SEM images: primary osteoblasts - 3 days culture on smooth (control, left) & nanotextured (right) portions of Ti6Al4V disk. • Side-by-side surfaces obtained by treating half the disk for 1 hour.
  11. 11. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Control 5 m in 30 m in 1 h 4 h Overnight Celldensity (ControlBase100) 0 200 400 600 6 hours 3 days Control 5 m in 30 m in 1 h 4 h Overnight Celldensity (ControlBase100) 0 100 200 300 400 500 600 6 hours 3 days Control 5 m in 30 m in 1 h 4 h Overnight Celldensity (ControlBase100) 0 200 400 600 800 6 hours 3 days b a c Measure of cell density by SEM after 6 h (black) and 3 days (red) on different etched Ti6Al4V substrates (& control) for different cell lines: (b) fibroblasts (c) osteoblasts Selectivity of nanotextured Ti6Al4V Reduced proliferation of fibroblasts Enhanced behavior towards osteoblast adhesion and growth Influence on cell behavior L. Richert et al., Adv. Mater. 20, 1488 (2008) F. Vetrone et al. NanoLetters 9, 659 (2009) F. Variola et al. Small 5, 996 (2009) L. Richert et al., Surf. Sci. 604, 1445 (2010) O. Seddiki et al., Appl. Surf. Sci. 308, 275 (2014) L. Cardenas et al., Nanoscale 6, 8664 (2014)
  12. 12. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Chemical oxidation: general strategy Ti nanostructured by oxidation: etchant acidity/basicity changed by mixing trifluoromethanesulfonic (triflic) acid (CF3SO3H), sulfuric acid (H2SO4), trifluoroacetic acid (CF3COOH) & ammonium hydroxide (NH4OH). CF3SO3H (>>> more acidic than H2SO4) combined with 30% aqueous H2O2 => spongelike network of nanopores similar to H2SO4/H2O2. CF3COOH (weaker fluorinated acid) with 30% aqueous H2O2 => distinct pattern with patches of nanopores across surface. Concentrated aqueous NH4OH & 30% aqueous H2O2 (basic oxidative etchant) => large, shallower pits (diameter ~50–100 nm) with irregular polygonal shapes.F. Vetrone et al. NanoLetters 9, 659 (2009) F. Variola et al. Small 5, 996 (2009) scale bar: 100 nm L. Richert et al., Surf. Sci. 604, 1445 (2010)
  13. 13. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Cell spreading Comparative cell spreading number & proliferation profile of primary calvaria- derived osteogenic cells on control & nanotextured Ti. (a) Cell adhesion / spreading visualized by epifluorescence of phalloidin (actin cytoskeleton) and DAPI (nuclei) staining. (b) Proportions of cells in stages I-IV at 4 h postplating. (c) Cell spreading at days 3, 12. F. Vetrone et al. NanoLetters 9, 659 (2009)
  14. 14. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Hindering cell growth (a-c) Osteogenic cell growth on control Ti and surfaces etched with NH4OH/H2O2. (Scale bar: 500 μm). (c) 14 days culture: Alizarin red staining for mineral => high calcification on control surface (L); none on treated surfaces (R). (d, e) Fibroblasts growth on control Ti and surfaces etched with NH4OH/H2O2. (d) Evaluation of cell number (MTT viability test) (e) SEM image. (Scale bar: 100 μm). surface features limit growth of osteogenic *and* fibroblastic cells F. Vetrone et al. NanoLetters 9, 659 (2009)
  15. 15. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Covalent Attachment of Bioactive Molecules to Ti Surfaces
  16. 16. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Functionalized nanostructured Ti AFM images (5x5 μm2 ) of Ti substrates; (a) smooth surface, clean; (b) smooth surface, coated with Dodecylphosphoric acid (DDPA); (c) nanotextured surface, clean; (d) nanotextured surface, coated with DDPA; (e) height profiles along lines in b, d. S. Clair et al., J. Chem. Phys. 128, 144795 (2008)
  17. 17. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique S. Clair et al., J. Chem. Phys. 128, 144795 (2008) STM images of DDPA covered titanium; (a) and (b) smooth substrate; (c) and (d) nanotextured substrate; (e) height profiles along dashed lines in a, c. Molecular resolution visible in b (0.7 nm pitch) Functionalized nanostructured Ti – 2
  18. 18. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Wettability of functionalized TiO2 Water static contact angle and ellipsometry for dodecylphosphoric acid coated TiO2. On nanotextured surfaces, ellipsometry estimates deposited organic material (not real film thickness) S. Clair et al., J. Chem. Phys. 128, 144795 (2008) High hydrophobicity
  19. 19. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifiqueAging effects Aging DDPA films on titanium (storage in air or Phosphate Buffered Saline solution) Filled circles: smooth substrate; Open circles: nanotextured substrate. S. Clair et al., J. Chem. Phys. 128, 144795 (2008) F. Variola et al. in preparation Perspectives: SAMs on Ti disks with crystalline oxide layer (by annealing). Formation of organic film is delayed => lower water contact angles are found => significant influence of substrate order on molecular self-assembly.
  20. 20. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Protein adsorption on nano-Ti • Protein adsorption on control (smooth) & nanotextured Ti L. Richert, F. Variola, F. Rosei, J. Wuest, A. Nanci, Surf. Sci. 604, 1445 (2010) SEM images of sputtered titanium before (a) and after (b) treatment with H2SO4/H2O2. |ΔD/Δf | values of QMC measurements for proteins adsorbed on untreated (Control) & nanopatterned (Nano) surfaces. surfaces exert differential activity on proteins by promoting or limiting adhesion. S. Clair et al., J. Chem. Phys. 128, 144795 (2008)
  21. 21. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Influencing healing speed Inter-related material/surface (synergistic) factors – understanding cell–surface interactions from a fundamental point of view: • Surface composition • Surface energy • Surface roughness • Surface topography • Surface charge distribution • Surface crystallinity Interfacial interactions - Surface modification - The next challenge…
  22. 22. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifiqueNew materials: non-permeable, self-cleaning, anti-septic Lotus leafLotus leaf (artificial): nm sized hydrophobic wax size: water rolls (not slides) -> cleans sol-gel based technique -> on market Self-cleaning plastic, textiles:Self-cleaning plastic, textiles: CNT stabilized enzymes in polymer Textiles with ‘Stain Defender’ Air-D-FenseAir-D-Fense (InMat, New Jersey): nanoclay/butyl thin film: 3000 fold decreased permeability - Nanopatterned surfaces promote cell activity (Nanoletters 9, 659 (2009)): What happens to much smaller cells, e.g. bacteria? M. Cloutier, D. Mantovani, F. Rosei, Trends in Biotechnology 33, 637 (2015)
  23. 23. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Influence of surface morphology on bacterial adhesion Motivation: - Nanopatterned surfaces promote cell activity (e.g. F. Vetrone et. al, Nanoletters 9, 659 (2009)) - What happens to much smaller cells, e.g. bacteria?
  24. 24. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Anti-bacterial surfaces Nosocomial infections (Nis): major issue in hospitals, healthcare service units & generally closed/crowded ecosystems. Contamination from instruments & surfaces by pathogenic bacteria => frequent cause of Nis. Addressing this problem requires developing functional coatings: High antibacterial activity Good mechanical properties & strong adhesion Biocompatibility High deposition rate for large-scale applications - DLC films  excellent biocompatibility, mechanical hardness, wear-resistance & chemical inertness - Ag: antibacterial element; broad-spectrum antibiotic used since ancient times, with low toxicity for humans - nanostructured titanium
  25. 25. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifiqueSurface preparation . Substrates: Ti sheet, cut in 1x1 cm2 pieces Small scale roughness (1x1 µm2 ) Large scale roughness (50x50 µm2 ) As received 30 nm 500 nm Polished (mirror) 1-2 nm 30 nm Piranha treatment, 25˚ 5-7 nm 15 nm Piranha treatment, 80˚ 6-10 300 nm Bacterial adhesion influenced by surface properties: composition, topography & wettability SEM images of Ti surfaces: (a) as received (untreated), (b) after polishing, (c, d) after treating polished samples for 1 hour in piranha solution at 25 °C (c) & at 80 °C (d). O. Seddiki et al., Appl. Surf. Sci. 308, 275 (2014) M. Cloutier et al., Diam. Rel. Mater. 48, 65 (2014)
  26. 26. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifiqueInfluence of surface morphology on bacterial adhesion - Contrary to primary calvaria-derived osteogenic cells (Vetrone et al, Nanoletters) surfaces with lower roughness significantly inhibit E-coli adhesion. - Next: study effect of other etchants (e.g. ammonium persulfate) on cell adhesion, to clarify role of oxidative etchant on antibacterial activity Bacteria tested: E-coli P T25 T80 O. Seddiki et al., Appl. Surf. Sci. 308, 275 (2014) M. Cloutier et al., Diam. Rel. Mater. 48, 65 (2014) M. Cloutier, D. Mantovani, F. Rosei, Trends in Biotechnology 33, 637 (2015)
  27. 27. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Reduced graphene oxide (rGO) on 316L stainless steel • Stainless steel 316L (SS316L): widely used in implantable devices, coronary/cardiovascular stents, cranial fixation, orthopedic stents & dental implants. • Challenges: limited resistance to corrosion & wear => material degradation, harmful metallic ions release => clinical complications (thrombus, apoptosis) • Solution: coating SS316L by direct synthesis of reduced graphene oxide (rGO) => protective layer against corrosion & degradation • Approach: coronene solution drop cast on electropolished SS316L, followed by annealing (600-800 C, 30 min) in flowing atmosphere of 98% nitrogen + 2% hydrogen in quartz tube, then cooled over 10 min in N2/H2 flow L. Cardenas et al., Nanoscale 6, 8664 (2014); Patent pending M. Cloutier, D. Mantovani, F. Rosei, Trends in Biotechnology 33, 637 (2015)
  28. 28. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Properties of rGO on SS316L • (a) Raman spectra of rGO (red), coronene on untreated SS316L (black) & coronene on glass (blue) on same area where optical images were taken for: (b) rGO/SS316L & (c) coronene / untreated SS316L. • Scale bars: 20 µm L. Cardenas et al., Nanoscale 6, 8664 (2014); Patent pending M. Cloutier, D. Mantovani, F. Rosei, Trends in Biotechnology 33, 637 (2015)
  29. 29. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifiqueSurface morphology & properties • Wettability (static water contact angles): Mean static contact angle between rGO/treated SS316L & water: 62±2 • Untreated & treated SS316L used as references (mean contact angles 92± 2 & 52±2) • => rGO layer improves SS316L wettability due to hydroxyl & carboxylic groups Untreated SS316L: patterns of well- defined grain boundaries ~ stainless steel. After treatment => smoother surface. rGO coating => steel surface covered by flake multi-layers. (d) flakes completely cover surface (SEM). L. Cardenas et al., Nanoscale 6, 8664 (2014); Patent pending M. Cloutier, D. Mantovani, F. Rosei, Trends in Biotechnology 33, 637 (2015)
  30. 30. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Cell viability and cytotoxicity • HUVEC cell growth on untreated SS316L, treated SS316L & rGO (triple sampling, repeated surveys) based on Alamar blue assay (common to screen adverse effect of nanomaterials in cell culture. Fluorescence signals => proportional to number & metabolic activity of cells) Cytotoxicity tests on rGO, treated SS & untreated SS. Human Umbilical Vein Endothelial Cells (HUVECs) growth used to quantify cytotoxicity. HUVECs (cells that line inner surface of blood vessels) are sensitive compared to fibroblasts & smooth muscle cells L. Cardenas et al., Nanoscale 6, 8664 (2014); Patent pending M. Cloutier, D. Mantovani, F. Rosei, Trends in Biotechnology 33, 637 (2015)
  31. 31. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique • Phase-contrast microscopy images (2D cultures): cell morphology & spreading not affected compared to control for all three samples (rGO, untreated SS & treated SS) Cell viability and cytotoxicity L. Cardenas et al., Nanoscale 6, 8664 (2014); Patent pending M. Cloutier, D. Mantovani, F. Rosei, Trends in Biotechnology 33, 637 (2015)
  32. 32. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifiqueGiant core-shell QD nanothermometers The concept Double PL emission Color (& lifetime of 650 nm band) changes with temperatureMultiparametric response High sensitivity H. Zhao et al., Nanoscale 8, 4217 (2016) H. Zhao et al., Small 11, 5741 (2015) G. Sirigu et al., Phys. Rev. B, in press (2017)
  33. 33. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Nanotheranostics Nanotheranostics: drugs & imaging agents combined into single formulation => targeted therapeutics (e.g. radiation therapy and/or drug delivery) & diagnostics for personalized medicine Advantages of nanotheranostics Targeted delivery Combined imaging tracking & therapeutics
  34. 34. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Core/Shell structure of RE3+ co-doped UCNPs Functional group Chemotherapeutic drugs RE based multifunctional nanoplatform (MFNP) NIR light NIR Imaging(e.g.,optical,MR Targeting (passive and UV/VIS Combination therapy (e.g. Chemotherapy, UC-PDT) Thin silica shell of SNC Photodynamic therapy (PDT) drugs Singlet oxygen (1 O2)
  35. 35. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Platform concept Gold Nanorods (GNRs) UCNPs GNRs/UCNPs Nanocomposite Near infrared light (NIR) Red emission Green emission 43ºC
  36. 36. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Gold nanorods (GNRs) with tunable optical absorptions at visible & NIR wavelengths Photophysical processes in GNRs. Light irradiation => excitation of longitudinal plasmon resonance mode => mostly absorption & resonant light scattering Gold nanorods (GNRs) based platforms for photothermal therapy Tong et al. 2009 Photochem Photobiol. PL
  37. 37. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique GNRs SiO2 NaGdF4: Er3+ , Yb3+ UCNPs Prashant et al. 2008 Acc. Chem. Res. GNRsUCNPs UCNPs&GNRs + = GNR@SiO2@UCNPs Nanocomposite Absorbance[a.u.] Y. Huang et al., J. Phys. Chem. B 120, 4992 (2016) Y. Huang et al., Nanoscale 7, 5178 (2015)
  38. 38. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique • Nanostructured materials  new properties • Controlling cell–surface interactions: • Nanostructuring Ti/Ti alloys: enhanced biocompatibility (accelerated formation of calcified tissue) • Selectivity (osteoblasts vs. fibroblasts) • New concepts for antibacterial coatings: • Nanotextured surfaces – changes in wettability • rGO coatings, cytotoxicity • Giant QDs to measure nanoscale temperature • Nanotheranostics Conclusions and OutlookConclusions and Outlook
  39. 39. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique F. Rosei, A. Pignolet, T.W. Johnston, J. Mater. Ed. 31, 65 (2009) F. Rosei and T.W. Johnston, J. Mater. Ed. 31, 293 (2009) F. Rosei and T.W. Johnston, J. Mater. Ed. 32, 163 (2010) F. Rosei and T.W. Johnston, J. Mater. Ed. 33, 161 (2011) F. Rosei and T.W. Johnston, J. Mater. Ed. 34, 197 (2012) F. Rosei and T.W. Johnston, J. Mater. Ed. 35, 127 (2013)
  40. 40. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Future Opportunities 3D printing (additive manufacturing) of multifunctional material systems Combined with Surface functionalization (altering wettability, controlled drug release)
  41. 41. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifiqueAcknowledgementsAcknowledgementsGe/Si, Si, Ge nanostructuresGe/Si, Si, Ge nanostructures:: • F. Ratto (CNR), D. Riabinina, C. Durand (Univ./CEA Grenoble), K. Dunn, L. Nikolova, J. Derr (Univ. Paris), M. Chaker (INRS), J. Margot (UdeM) Nanostencil / functional materialsNanostencil / functional materials:: • A. Pignolet, C. Cojocaru (NRC), R. Nechache, S. Li (USTB), A. Vomiero (Lulea), D. Obi, C. Harnagea (INRS), J. Chakrabartty, S. Barth (TU Wien), G. Chen (Jinan) Organic molecules: supramolecular structures, 2D polymers, organic electronic devicesOrganic molecules: supramolecular structures, 2D polymers, organic electronic devices • INRS: J. Miwa (UNSW), A. Dadvand (NRC), F. Cicoira (EPM), C. Santato (EPM), J. MacLeod & J. Lipton-Duffin (QUT), T. Dembele, C. Yan (Souzhou Dresden), G. Galeotti, R. Gutzler (Max Planck), L. Cardenas (CNRS), M. El Garah, K. Moonoosawmy, M. Rybachuk (Griffith), S. Clair (CNRS); D.F. Perepichka (McGill) • B.J. Eves, G.P. Lopinski (NRC–SIMS, Ottawa) Nanostructured Biomaterials: • K.G. Nath (Corning Japan), F. Variola (UofO), C. Brown (Oxford), O. Seddiki, A. Vittorini, F. Vetrone (INRS), L. Richert (CNRS), A. Nanci, J.D. Wuest (UdeM), D. Mantovani (Laval) Carbon Nanotubes: • S. Miglio, M.A. El Khakani (INRS), P. Castrucci, M. Scarselli, M. De Crescenzi (Roma 2) AFOSRAFOSR
  42. 42. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Upconverting Nanoparticles Photon upconversion: sequential absorption of two or more photons => emission of light at shorter wavelength than excitation wavelength (anti-Stokes type emission) Near infrared light (NIR) Activator (Er3+ , Ho3+ and Tm3+ ) Host Sensitizer(Yb3+ ) Visible light F. Wang, X Liu. Analyst 2010 (135): 1839
  43. 43. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Cell viability of GNR@SiO2@UCNPs Viability of Hela cells treated with different samples with and without laser irradiation at 980 nm. Standard deviations are shown (n=3). Y. Huang et al., J. Phys. Chem. B 120, 4992 (2016) Y. Huang et al., Nanoscale 7, 5178 (2015)
  44. 44. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique OFF OFF OFF ON ON Drug loading and drug release Production of singlet oxygen under consumption of ABDA (different samples over time) Production of singlet oxygen under consumption of ABDA (absence & presence of laser irradiation) Y. Huang et al., J. Phys. Chem. B 120, 4992 (2016) Y. Huang et al., Nanoscale 7, 5178 (2015)
  45. 45. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique TEM a single core/shellTEM a single core/shell XRDEDX Cd:S molar ratio 1:1 Cd:S molar ratio 1:0.8  CdS shell: Zinc Blende (ZB) and Wurtzite (WZ)  Gradient interfacial layer facilitates hole transfer, regulates transition from double- to single- color emission. Double 5.5 nm Single 4.9 nm H. Zhao et al, Nanoscale, 2016, 8, 4217 L. Jin et al, Nano Energy, 2016, 30, 531 Mechanism for double emission Controlling molar ratio of Cd/S to control the interfacial gradient layer Cation exchangeSILAR
  46. 46. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Excitation/emission & interatomic energy transfer process in UCNPs http://foundry.lbl.gov/schuckgroup/index.html Upconversion in rare earths
  47. 47. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique UCNPs for biomedical applications • Significantly reduced background autofluorescence • Remarkable penetration depths in vivo & high spatial resolution • Fluorescence bands lie within “biological window” (650-1350 nm) • Low cyto- and phototoxicity to biological specimen Advantages: Biomedical applications of UCNPs • Imaging diagnostics • Photodynamic therapy • Photothermal therapy • Drug delivery system UCNPs injection ▶ UCNPs locating a tumor in a live mouse Peng et al. Nano Res. 2012 (5): 770
  48. 48. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique 43°C Laser Nanoparticle-based photothermal therapy Photothermal therapy (PTT) is based on laser heating of metal nanoparticles. Advantages of Au NPs as antitumor photothermal agents: 1)Unique optical properties 2)Photostability 3)Low toxicity 4)Well-known synthesis protocolsDickerson et al. 2011 Chem. Soc. Rev
  49. 49. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Strategies to achieve high luminescence efficiency and deep tissue penetration
  50. 50. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique 972 nm 983 nm GNR@SiO2 Synthesis Procedure Mix GNRs solution with tetraethyl orthosilicate (TEOS) in methanol and NaOH to form a porous silica shell GNRs Synthesis Seed solution (μL) CTAB (g) Ascorbic acid (aq) (μL, mM) AgNO3 (aq) (mL, mM) 32 0.72 80, 64 0.60, 4 GNRs GNR@SiO2 Synthesis of GNRs and GNR@SiO2
  51. 51. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Rare earth (RE) doped nanoparticles (NPs) Advantages: Large anti-Stokes Narrow emission bandwidth Long-lived luminescence High photostability: Low autofluorescence Deep tissue penetration Upconversion emission spectrum of (0.5 mol%) Tm3+ (25 mol%) Yb3+ -doped LiYF4 nanocrystals spanning the UV to NIR regions. Multimodal NPs: Optical imaging Magnetic resonance imaging (MRI) Computed tomography (CT) scans Therapeutic functionality Mahalingam et al. Adv. Mater. 2009, 21, 4025.
  52. 52. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Drug loading and drug release Drug loading (ZnPc) efficiency: 2.5 wt.% Upconversion emission spectrum of UCNPs and UV-visible absorption spectra of ZnPc
  53. 53. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Cellular uptake of UCNPs and GNR@SiO2@UCNPs Control UCNPs GNR@SiO2@UCNPs
  54. 54. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Lanthanide Trifluoroacetate Precursors OA/OD 240ºC Ligand Exchange Citric Acid OA = Oleic Acid OD = Octadecene Oleate Stabilized NaGdF4:Er3+ , Yb3+ (Hydrophobic) Citrate Stabilized NaGdF4:Er3+ , Yb3+ (Hydrophilic) TEM of NaGdF4:Er3+ , Yb3+ UCNPs Synthesis of hydrophobic OA capped UCNP and subsequent hydrophilic ligand exchange Synthesis of NaGdF4:Er3+ , Yb3+ UCNPs α-NaGdF4 JCPDS: 27-0697
  55. 55. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique T sensing using NaGdF4:Er3+ ,Yb3+ UCNPs Upconversion luminescence spectra of NaGdF4:Er3+ , Yb3+ UCNPs at two different temperatures Temperature dependence of ratio calculated from luminescence spectra. Dots are experimental results, red line is best linear fit
  56. 56. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique C O F Cu Gd Na Yb Au Si Yb Au Au Gd Gd Yb Gd Yb Gd Cu Gd Yb AuYb Cu Yb Au Er Er Er Er Er * Stars indicate typical diffraction peaks of GNRs * * * * Synthesis of GNR@SiO2@UCNPs
  57. 57. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Luminescence of GNR@SiO2@UCNPs Thermal change of GNR@SiO2@UCNPs determined using calibration curve of intensity ratio Upconversion luminescence spectra of UCNPs and GNRs@SiO2@UCNPs
  58. 58. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique
  59. 59. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique
  60. 60. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Surface quenching site RE ion (Sensitizer, e.g. Yb3+ ) RE ion (Activator, e.g. Er3 +, Tm3+ ) Host  Crystal structures of host, energy transfer process, surface deactivations High luminescence efficiency => high performance nanotheranostics Wang, Liu, J. Am. Chem. Soc., 2008, 130, 5642 Boyer et al., Nano Lett., 2007, 7, 847
  61. 61. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Krämer et al., Chem. Mater., 2004, 16, 1244 c: Hexagonal (β) and d: Cubic (α)  Green plus red emissions of hexagonal phase are 4.4 times stronger than those of cubic one Crystal structures of α-NaREF4 and β-NaREF4 built by CERIUS2 software ( Http://www.accelrys.com/cerius2). (Thoma et al. Inorg. Chem. 1966, 5, 1222) Influences of crystal structures on UC efficiency  Low crystal field symmetry  Low phonon cut-off energy
  62. 62. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Vetrone et al., Adv. Funct. Mater., 2009, 19, 2924 UC luminescence spectra of colloidal β-NaGdF4: 20%Yb3+ , 2%Er3+ UCNPs Influence on UC efficiency  Suppression of surface deactivation  Modulation of the energy transfer Core-only Active core/inert shell Active core / active shell NaGdF4 Yb3+ Er3+ NaGdF4 Yb3+ Er3+ NaGdF4 NaGdF4 Yb3+ Er3+ NaGdF4 Yb3+
  63. 63. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique NIR-I: 700-950 nm NIR-II: 100-1350 nm NIR-III: 1550-1870 nm Hemmer et al., Nanoscale Horiz. 2016, 1, 168 Deep tissue penetration: firm requirement for in vivo application
  64. 64. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Yb3+ or Nd3+ ? Wang et al., ACS Nano 2013, 7, 7200
  65. 65. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique NIR-I: 700-950 nm NIR-II: 100-1350 nm NIR-III: 1550-1870 nm RF: Eva Hemmer, Antonio Benayas, François Légaré and Fiorenzo Vetrone*, Nanoscale Horiz., 2016, 1, 168—184. Deep tissue penetration is a firm requirement for in vivo application
  66. 66. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Features: •Single step approach •Uniform, monodispersed nanoparticles •More potential to control particle morphology Schematic illustration of one-step thermolysis Chen, Chem. Rev. 2014, 114, 5161 Morphology controlled synthesis of RE-doped NPs by thermolysis
  67. 67. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique The surface engineering of RE-doped NPs is a crucial step for biomedical applications. Silica based nanocapsules (SNCs)  RE-doped NPs caped by hydrophobic ligands (e.g. oleic acid) are not dispersible in an aqueous solution or physiological buffer. • Ligand exchange • Ligand oxidation • Ligand removal • Ligand attraction • Surface silanization (e.g. Silica nanocapsules)  Strategies of surface engineering for hydrophobic RE-doped NPs:  Limitations: poor colloidal stability under physiological conditions Silica nanocapsules (SNCs) are especially suitable for the application of nanotheranostics. TEM images of: (a) ‘naked’, and (b) PEO-SiO2 coated MnO nanoparticles. T1-weighted MRI images of MDA-MB-231 cells incubated with PEOMSNs at various concentrations for 24 h. RF: B. Y. W. Hsu, M. Wang, Y. Zhang, V. Vijayaragavan, S. Y. Wong, A. Y.-C. Chang, K. K. Bhakoo, X. Li and J. Wang, Nanoscale, 2014, 6, 293- 299.
  68. 68. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique PEOlated silica nanocapsules via interfacial templating condensation Silica encapsulation RF: Y. Zhang, M. Wang, Y.-g. Zheng, H. Tan, B. Y.-w. Hsu, Z.-c. Yang, S. Y. Wong, A. Y.-c. Chang, M. Choolani and X. Li, Chem. Mater., 2013, 25, 2976-2985. F127 Uniqueness: Benign approach Excellent colloidal stability Targeted delivery
  69. 69. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Surface functionalization for targeted delivery RF: Fabienne Danhiera, Olivier Feronb, Véronique Préata, Journal of Controlled Release, 2010, 148(2), 135–146.  Size ≥ 8 nm  Delivered by enhanced permeability and retention (EPR) effects  Enhanced the accumulation of drugs in tumor tissue  Delivered by the receptors overexpressed on the targeted cell membrane  Further enhanced the accumulation of drugs in tumor tissue
  70. 70. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Surface functionalization for targeted delivery + Folate PEO-bis-NH2 NHS DCC RF: H. Tan, Y. Zhang, M. Wang, Z. Zhang, X. Zhang, A. M. Yong, S. Y. Wong, A. Y.-c. Chang, Z.-K. Chen and X. Li, Biomaterials, 2012, 33, 237-246. Carboxylic functionalized SNCs Folic acid conjugated SNCs + Succinic anhydride F127 DMAC DMAC:N,N-dimethylacetamide, NHS:N-Hydroxysuccinimide, DCC:N,N'-Dicyclohexylcarbodiimide, DEC: 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide PEO–PPO-PEO
  71. 71. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique  Morphology and crystal structure study by transmission electron microscopy (TEM), high resolution TEM (HRTEM), 3 dimension TEM (3DTEM), and powder X-ray diffraction analysis (XRD)  UC and NIR luminescence emission study by photoluminescence spectroscopy  Composition analysis of MFNP by Fourier Transform Infrared (FTIR) Spectroscopy  Loading capacity measurement of UCNPs by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)  Stability against physiological aqueous environment by Dynamic Light Scattering (DLS)  Bio-compatability study by cell viability assay  Cellular uptake study by optical confocal microscopy, and MRI Characterization
  72. 72. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifiqueMorphologies of β-NaGdF4: 20%Yb3+ , 2%Er3+ UCNPs Uniform, Monodispersed, Narrow Size Distribution 43.5±2.5x24.7±1.6 (nm) 62.9±3.1x29.8±2.1 (nm)28.85±1.04x17.19±1.05 (nm) 21.2±1.09 (nm) 19.74±1.29x15.36±1.07 (nm) Diameter: the distance from corner to corner of the surface perpendicular to the c-axis Height: the vertical distance between the top and bottom surface Aspect ratio: Diameter/Height Increasing 0.62 2.14
  73. 73. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique3DTEM and HRTEM analysis of the hexagonal nanorods [001]
  74. 74. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique UC luminescence spectra display differences based on morphology of β- NaGdF4 : 20%Yb3+ , 2%Er3+ UCNPs  The UCPL intensity inversely proportional to the surface to volume ratio (S/V) in the logarithmic scale due to the surface quenching effects.  The emission ratio of green to red (fG/R) is related to the aspect ratio of UCNPs: the higher the fG/R is, the closer the aspect ratio to 1. Sha Liu, Theranostics 2013; 3(4):275-281
  75. 75. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Quantitative bacterial adhesion protocol . rinse sonication TSA petri dish 24h incubation (colony forming unit counting ) 1 hr Bacteria tested: E-coli
  76. 76. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Synthesis of LiYF4 based UCNPs co-doped with Yb3+ , Tm3+ , Nd3+ , and Gd3+  Selection of low symmetry lattice host  Suppression of surface related deactivations by active core/active shell/inert shell  Engineering energy transfers by tuning the dopants concentration Strategies to achieve high emission efficiency: Gd3+ as T1 contrast agent Energy transfer of Nd3+ → Yb3+ → Tm3+ LiYF4: Yb3+ Tm3+ Gd3+ LiYF4: Yb3+ Nd3+ LiYF4: LiYF4:Yb3+ ,Tm3+ @LiYF4:Yb3+ ,Nd3+ @Li(Y,Gd)F4
  77. 77. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Applications - Biocompatible materials (implantable): - Cardiovascular stents - Orthopaedic implants - Tissue engineering - Regenerative medicine - Antibacterial coatings Approach: Using advanced processing techniques to control Structure/property relationships in materials
  78. 78. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Challenges • Similar to those of any manufacturing area: – Improve performance – Reduce costs – Increase longevity Effective processing tools -Top down -Bottom up -Chemical (etching, oxidation) -Physical (plasma processing) Materials of interest: -Titanium, Ti alloys -Cr/Co alloys -Stainless steel
  79. 79. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique M. Cloutier et al., Diam. Rel. Mater. 48, 65 (2014) Raman spectroscopy (λ = 488 nm) of DLC films a) deconvoluted peaks & fitted background, b) Pos(G), c) I(D)/I(G) ratio, d) FWHM(G) & e) H content of as- deposited (squares) and aged (triangles) DLC films as a function of deposition power. Aging of DLC Samples After aging, Pos(G), I(D)/I(G) & FWHM(G) show same trends as their as-deposited counterparts, with similar values ⇒no significant phase change. H concentration increases (18 to 27%) in all samples (attributed to surface adsorbed water).
  80. 80. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique 0 50 100 150 200 250 0.000 5.000 10.000 15.000 20.000 25.000 20um 5um 1um Power (W) RMSroughness(nm) SS316L 150W DLC on SS316L Roughness (RMS) of SS316L & DLC–SS316L samples. DLC coatings on stainless steel 0 50 100 150 200 250 300 350 -4.00 -3.50 -3.00 -2.50 -2.00 -1.50 -1.00 -0.50 0.00 Film stress (Gpa) Stress (GPa) in DLC coating Challenges: (i) stress control to prevent delamination; (ii) surface nanotexturing & incorporation of antibacterial elements (Ag,F) O. Seddiki et al., Appl. Surf. Sci. 308, 275 (2014) M. Cloutier et al., Diam. Rel. Mater. 48, 65 (2014)
  81. 81. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifiqueStress optimization Low stress film prepared at 200 W: most resistant to delamination after autoclave test (sterilization under high pressure saturated steam) O. Seddiki et al., Appl. Surf. Sci. 308, 275 (2014) M. Cloutier et al., Diam. Rel. Mater. 48, 65 (2014) M. Cloutier, D. Mantovani, F. Rosei, Trends in Biotechnology 33, 637 (2015)
  82. 82. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifiqueIn situ interface treatment  Developed in situ interface treatment (in same PECVD-PVD reactor as DLC deposition)  Modified interface (MI): vastly improved adhesion & minimal delamination after scratch & autoclave tests. 50µm50µm Endurance in autoclave (2 hour cycle) Scratch test DLC/MI/SSDLC/SS DLC/MI/SSDLC/SS O. Seddiki et al., Appl. Surf. Sci. 308, 275 (2014) M. Cloutier et al., Diam. Rel. Mater. 48, 65 (2014) M. Cloutier, D. Mantovani, F. Rosei, Trends in Biotechnology 33, 637 (2015)
  83. 83. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Spider silk knot (SEM): impressive ductility & toughness under shear, withstands both compressive & tensile stresses => No damage to inside regions of bends, (large compressive stress), or outer regions of bend (large tensile stress) “Visions” of silk C. Brown et al., ACS Nano 6, 1961 (2012) J. MacLeod, F. Rosei, Nature Mater. 12, 98 (2013)
  84. 84. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifiqueHierarchical structure of spider silk S. Keten, M. J. Buehler, Nanostructure and molecular mechanics of dragline spider silk protein assemblies, J. Roy. Soc. Interface 7, 1709–1721 (2010). AFM of spider silk fibre cross- section (a) two skin layers, with fiber centre towards image bottom-left (b) core region with globular morphology (A) Hierarchical organisation of spider silk (B) Stress-strain behaviour of wet and dry spider silk. C.P. Brown et al., Nanoscale 3, 3805C. Brown et al., Nanoscale 3, 870 (2011)
  85. 85. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Fibril morphology in spider silk: normal conditions => non- slip fibril kinematics, restricting shearing between fibrils, yet allowing local slipping under high shear stress, dissipating energy without bulk fracturing Mechanism could increase fracture resistance in synthetic materials under bending/torsion conditions. Nanoscale mechanics of spider silk C. Brown et al., Nanoscale 3, 870 (2011) C. Brown et al., Nanoscale 3, 3805 (2011)
  86. 86. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifiqueNanoscale mechanics of spider silk AFM-nanoindentation: protein interaction with water dominates energy processing, providing sacrificial bond => ‘plastic’ effect in inner core (black) in dry/ambient conditions. Hydrophobic outer core is elastic under these conditions Interactions with H20 => stiffness differential across fibre, provides balance between stiffness, strength & toughness under dry/ambient conditions. Wet conditions => balance destroyed as stiff outer core reverts to behaviour of inner core Basic features of spider silk are known => challenging to reproduce in a wet fibre C.P. Brown et al., Nanoscale 3, 3805
  87. 87. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique SAXS&WAXS: no change in crystal size with increasing hydration (a) Integrated region (to obtain SAXS/WAXS profiles); (200)&(120) peaks indicated with fibre axis direction & location. Inset: entire scattering pattern (b) Integrated average SAXS/WAXS profiles (0–100%) Inset right: enlarged view of WAXS region SAXS/WAXS insights C.P. Brown et al., Nanoscale 3, 3805
  88. 88. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Fibrils interaction: critical at high strains in bending, torsion & combined loading with high shear stress between fibrils. AFM: fibril structure across size ranges (A)–(D): fibrils in spider silk fibres core region, (E): two bundles of interlocking collagen fibrils in fascia, (F): collagen in tendon (A),(B),(E),(F): microns; (C),(D): nanometres Globular/banding patterns appear in each fibril & interlocking of globules/bands between fibrils. Fibrils and toughening mechanism Homogeneous properties: valid for axial tension with fibrils aligned parallel to fiber C. Brown et al., ACS Nano 6, 1961 (2012)
  89. 89. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Hierarchical supramolecular structure of spider silk: Network of rubber-like chains reinforced by β–sheet crystals. Increased extensibility in infiltrated fibres: due to higher proportion of rubber-like amorphous domains & size reduction of β–sheets from water infiltration process Y. Termonia, Macromolecules 27, 7378 (1994) S.M. Lee, Science 324, 488 (2009) Hierarchical Supramolecular Structure
  90. 90. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique F. Variola et al. Biomaterials 29, 1285 (2008) Morphological Analysis: Statistics 110000 nnmm 110000 nnmm 110000 nnmm 110000 nnmm 110000 nnmm Contr ol 15 min 30 min 1 h 4 h2 h Evolution of nanopit diameter vs. etching time in α-phase grains by SEM. Measurements at 15 min refer to β-phase grains (β-phase is preferentially etched)
  91. 91. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Guiding stem cells Human umbilical cord stem cells grown on control Ti surfaces, nanotextured Ti & control glass coverslips. (a) Day 1: HUC cells spread on all surfaces (elongated shape). Nanostructured Ti: areas of higher cell density. (b, c) Dual nuclear labeling with anti-Ki-67 antibody (red fluorescence) and DAPI (blue fluorescence) at day 3 => 1.6-fold increase of cycling cells compared to control Ti. Phalloidin labeling appears green in (a) and pale white in (b). Scale bar: 200 μm (a) and 100 μm (b)F. Vetrone et al. NanoLetters 9, 659 (2009)
  92. 92. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifiqueCompositional/Morphological Analysis by SEM: TiAlV Back-scattered image of treated (4 h) Ti6Al4V surface Al (wt%) V (wt%) Bulk 6.3±0.2 3.5±0.4 α-phase 6.9±0.3 2.7±0.4 β-phase 4±0.8 11.2±1.7 F. Variola et al. Biomaterials 29, 1285 (2008) α-phase grains β-phase grains
  93. 93. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Surface Coverage Controls 95% Nano-textured samples 70% Biological Effects: fibroblasts F. Variola et al. Biomaterials 29, 1285 (2008)
  94. 94. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique 100 nm100 nm 100 nm100 nm Effect of Treatment Time: Increase in Oxide Layer Thickness and Microtexture AFM-Depth MeasurementsEllipsometry FT-IR Control 30 mins 4 hrs 30 mins: β-grains (V rich) preferentially etched (pitting starts elsewhere) 4 hrs: the whole surface is entirely Nanotextured AFM: Increasing cavity depth caused by β-grain preferential etchingTiO2 thickness (Ti-O stretching between 400-1000 cm-1 in IR) F. Variola et al. Biomaterials 29, 1285 (2008) F. Variola et al., Appl. Spectroscopy 63, 1187 (2009)
  95. 95. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Temperature 100 nm100 nm 100 nm100 nm 100 nm100 nm 100 nm100 nm Temperature and H2O2 Concentration: Increase Oxide Thickness and Create Sub-µ Texture % H2O2 F. Variola et al., Adv. Eng. Mater. 11, B227 (2009) F. Variola et al., Appl. Spectroscopy 63, 1187 (2009) 5 °C 25 °C 80 °C Microtexture is superimposed on nanotexture above 50 °C. FT-IR 5 °C 25 °C 50 °C 80 °C H2SO4 H2O2-25%-H2SO4-75% H2O2-50%-H2SO4-50% H2O2-75%-H2SO4-25% H2O2 H2SO4 H2O2 pirana 1 hr
  96. 96. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique SEM micrographs of untreated (a, b) polished Ti6Al4V surfaces & surfaces exposed to H2O2/H2SO4 for 1 h (c, d) and 20 h (e, f). Chemical oxidation induces both micro and nanotexture on TiAlV Surface Modification: Morphology F. Variola et al. Biomaterials 29, 1285 (2008)
  97. 97. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Surface Topography by AFM Before Oxidation After Oxidation: Drastic change in surface roughness J.H. Yi et al., Surf. Sci. 600, 4613 (2006) Evolution of average surface roughness (Ra) during treatment by AFM on 5x5 μm2 (*) and 0.5x0.5 μm2 . L. Richert et al., Adv. Mater. 20, 1488 (2008)
  98. 98. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Surface Chemistry of TiO2 by XPS Before Oxidation After Oxidation J.H. Yi et al., Surf. Sci. 600, 4613 (2006)
  99. 99. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique TiAlV: Surface crystallinity by Raman and XRD Raman spectra of an untreated Ti-alloy disk and one exposed to piranha solution (1 h) Grazing-angle XRD pattern of a treated alloy surface (4 h). Inset: XRD patterns in the 20-30° range F. Variola et al. Biomaterials 29, 1285 (2008)
  100. 100. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Contro l 15 min 30 min 1 h 2 h 4 h AFM topographies (5x5 mm2 ) of polished Ti-alloy disks F. Variola et al. Biomaterials 29, 1285 (2008) Morphological Analysis: AFM AFM: increasing cavity depth caused by β-grain preferential etching
  101. 101. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique UC emission and NIR spectra under excitation of 806 nm 200 nm Dual upconverting and near-infrared emitting core/shell LiYF4: Yb3+ , Tm3+ @LiYF4: Yb3+ , Nd3+ 3 F0→3 F4 1 D2→3 H6 1 D2→3 F4 1 G4 → 3 H6 1 G4→3 F4 3 F0→3 F4 1 D2→3 H6 1 D2→3 F4 1 G4 → 3 H6 1 G4→3 F4 Intensity(a.u) Intensity(a.u) Intensity(a.u) Intensity(a.u) 2 F 7/2→2 F 5/2 2 F 7/2→2 F 5/2 4F11/2→4F3/2
  102. 102. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Biomaterial Implants • Practical Goals: to design new devices allowing – Controlled healing – Faster healing – More stable implants • Consequently – Decrease patient morbidity – Decrease health cost – Increase patient happiness! (psychology) Hip and knee implants: over 300000* Dental implants: 100 000 to 200000** per year only in the US * Graves, E. Vital and health statistics, … Hyattsville, MD: National Center for Healt Statistics 1993 **Dunlap, J. Dent Econ, 78, 101 (1988) Fundamental goal: understanding cell – surface interactions
  103. 103. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Amorphous Nanotexture on Amorphous or Crystalline Ti Annealin F. Variola et al., in preparation Bottom: thermal oxidation (air, 400 °C, 3 hrs) Rutile Rutile Top: controls Etching of Crystalline TiO2 Is not possible Raman Annealing etched Sample yields Nanotextured Crystalline TiO2
  104. 104. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Covalent Immobilization = Surface Science! Based on silane chemistry: OH- surf.-- (SinH2n+2) -- biomolecule Plasma deposition of SAMs Functional group diversity Plasma treatments OH- OH- OH- Increase surface [OH-] OH- OH- OH- Quantum dots Different electrical properties Chemical linker Puleo & Nanci, Biomaterials, 20, 2311 (1999) Stupp & Braun, Science, 277, 1242 (1997)
  105. 105. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique The atomic concentration of the main cons dramatically, but suboxides such as TiO and Ti2O3 were no longer de main oxide layer after 30 min of etching. T comprises a mixture of amorphous TiO2, A O3, and small quantities of V2O5 after tre is composed of three different layers, nam with the metal), Ti2O3 (intermediate layer) layer) (Fig. These findings, coupled with IR and ellipsometric results, suggest t process increases mainly TiO2 to a degre allows detection of the underlying suboxid organization is not altered. This behavior i and can be explained by assuming that su TiO and Ti2O3 are transformed into TiO2 medium of piranha solution [72], and by as etching solution penetrates the nanopits a metal. When the solution reaches the subo further oxidized into TiO2, thereby increas the dioxide layer in a manner consistent w measurements. When the underlying meta
  106. 106. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique TiO2: Surface crystallinity by XRD J.H. Yi et al., Surf. Sci. 600, 4613 (2006)
  107. 107. INRSScience in ACTION for a World in EVOLUTION Université du Québec Institut national de la recherche scientifique Spectroscopic Analysis: FT-IR and Ellipsometry F. Variola et al. Biomaterials 29, 1285 (2008)

×