Utilizamos tu perfil de LinkedIn y tus datos de actividad para personalizar los anuncios y mostrarte publicidad más relevante. Puedes cambiar tus preferencias de publicidad en cualquier momento.
Próxima SlideShare
Cargando en…5
×

# Why would you recommend me THAT?

2.292 visualizaciones

With so many advances in machine learning recently, it’s not unreasonable to ask: why aren’t my recommendations perfect by now?

Aish provides a walkthrough of the open problems in the area of recommender systems, especially as they apply to Netflix’s personalization and recommender algorithms. He also provides a brief overview of recommender systems, and sketches out some tentative solutions for the problems he presents.

• Full Name
Comment goes here.

Are you sure you want to Yes No
• Sé el primero en comentar

### Why would you recommend me THAT?

1. 1. R ≈ UM
2. 2. R ≈ UM
3. 3. K U P α θ φz r β
4. 4. Convex combination of topics proportions and movie proportions within topic
5. 5. φ3φ2 φ1 User
6. 6. ?
7. 7. P(rel|usr,vid) ≈ P(cons|usr,vid) = {1,0}
8. 8. P(cons|pos,evi,rel)P(pos|rel)P(evi|usr,vid) P(rel|usr,vid,obv-ctxt,unobv-ctxt) PositionTheir final decision Evidence The recommender
9. 9. P(cons|pos,evi,rel)P(pos|rel)P(evi|usr,vid) P(rel|usr,vid,obv-ctxt,unobv-ctxt)
10. 10. TakeRate = #plays / #presentations
11. 11. P(cons|...) = {1,?}
12. 12. N N P P N ? P ? ? ? ? N ? ? ? ? ?? ?
13. 13. ? ? P P ? ? P ? ? ? ? ? ? ? ? ? ?? ?
15. 15. RU M u1 u2 u3 u4 m1 m2 m3 m4 Tri,j,1 ri,j,2 ri,j,3 t1 t2 t3
16. 16. P(cons|pos,evi,rel)P(pos|rel)P(evi|rel) P(rel|usr,vid,obv-ctxt,unobv-ctxt)
17. 17. KickAssLadies Sci-Fi Exciting Super Heros Netflix Original Stars: Krysten Ritter Detective Show
18. 18. R’U M u1 u2 u3 u4 m1 m2 m3 m4 ri,j
19. 19. + ≠
20. 20. P( | )
21. 21. itm usr posevi con rel ctx