Presentation (1).pptx

26 de May de 2023
Presentation (1).pptx
Presentation (1).pptx
Presentation (1).pptx
Presentation (1).pptx
Presentation (1).pptx
Presentation (1).pptx
Presentation (1).pptx
Presentation (1).pptx
Presentation (1).pptx
Presentation (1).pptx
1 de 10

Más contenido relacionado

Similar a Presentation (1).pptx

Introduction to recommender systemsIntroduction to recommender systems
Introduction to recommender systemsRami Alsalman
MOVIE RECOMMENDATION SYSTEM.pptxMOVIE RECOMMENDATION SYSTEM.pptx
MOVIE RECOMMENDATION SYSTEM.pptxAyushkumar417871
Movie Recommendation System - MovieLens DatasetMovie Recommendation System - MovieLens Dataset
Movie Recommendation System - MovieLens DatasetJagruti Joshi
Getting to Know the Video Consumer - NAB Show 2018Getting to Know the Video Consumer - NAB Show 2018
Getting to Know the Video Consumer - NAB Show 2018Verimatrix
Building a Recommender systems by Vivek Murugesan - Technical Architect at Cr...Building a Recommender systems by Vivek Murugesan - Technical Architect at Cr...
Building a Recommender systems by Vivek Murugesan - Technical Architect at Cr...Rajasekar Nonburaj
Recommender systemsRecommender systems
Recommender systemsVivek Murugesan

Último

Gokul Dham Premiere League (2).pdfGokul Dham Premiere League (2).pdf
Gokul Dham Premiere League (2).pdfSandeepShaw23
Strade.pptxStrade.pptx
Strade.pptxEmanuele
Colosseo.pptxColosseo.pptx
Colosseo.pptxEmanuele
DateNight_10_storyboard.pdfDateNight_10_storyboard.pdf
DateNight_10_storyboard.pdfLorenaSantos152
FC-crossword-puzzleFC-crossword-puzzle
FC-crossword-puzzleVexana Yin
Jonathan Eltis – Dramaturge, Assistant Producer. Jonathan Eltis – Dramaturge, Assistant Producer.
Jonathan Eltis – Dramaturge, Assistant Producer. JonathanEltis

Presentation (1).pptx

Notas del editor

  1. Implemented popularity model, content based model, collaborative filtering model and latent factor based model and combining the above to form a hybrid model. Hyperparameter tuning, testing accuracy and evaluation of recommendations of each model
  2. The primary dataset used for this project is the movielens review dataset. consisting of 27,753,444 reviews over 58,098 different movies by 283,228 users.
  3. Item profile = Based on the the genre list for each movie, we build a movie profile. Example movie 1 belongs to genre [“Action”],movie 2 is a RomCom movie, and so on. Using the ratings data, which has ratings for a movie by the user, we build a user profile. Each entry in the user profile vector depicts the affinity of the user for that specific genre.