11904040shaiful-191024200113.pptx

WELCOMETO
MY
PRESENTATION
A Presentation on Definite Integral 1
Presented By
Shaiful Islam
Student ID: 11904040
Department of Mathematics
Comilla University
CourseTitle: Integration Calculus
Course Code : MTH 122
PresentedTo
Md. Joni Alam
Lecturer
Department of Mathematics
Comilla University
Contents
2
Topics: Definite Integral
 History of Integration
 Definition & Types of Integration
 Some Basic Properties of Definite Integral
 Application of Integration in Real Life
 Conclusion
Topics Introduction : Definite Integral 3
𝑑𝑥
Then integrating the function 𝑓(𝑥) of ( i) produce the anti-derivative is of the form 𝐹 𝑥 + c.
∫𝑓 𝑥 𝑑𝑥 = 𝐹 𝑥 + 𝑐
The expression ∫𝑓 𝑥 𝑑𝑥 is called the Indefinite Integral.
Integration :
The process of finding anti-derivative is called Integration.
𝑑
Gottfried Wilhelm Leibniz (1646–
1716), German philosopher and
Mathematician.
History of Integration :
The principles of integration were formulated independently by Isaac Newton and Gottfried
Wilhelm Leibniz in the late 17th century, who thought of the integral as an infinite sum of
rectangles of infinitesimal width. Bernhard Riemann gave a rigorous mathematical
definition of integrals.
Thus if, 𝐹 𝑥 = 𝑓(𝑥) ( i )
Topics Brief : Definite Integral 4
Integration
Types :
Definite Integration
Indefinite Integration
Definite Integral
Given a function f(x) that is continuous on the interval [a,b] we divide the interval into n subintervals of
equal width h, and from each interval choose a point, xi. Then the definite integral of f(x) from a to b is,
𝑎
𝑏
𝑛→∞
𝑖=1
𝑛
𝑓(𝑥) 𝑑𝑥 = lim 𝑓(xi) . ℎ
5
𝑥2 𝑑𝑥
−1
𝑥2 𝑑𝑥
The number “a” that is at the bottom of the integral sign is called the lower limit of the integral and
the number “b” at the top of the integral sign is called the upper limit of the integral. Also, despite
the fact that a and b were given as an interval the lower limit does not necessarily need to be smaller
than the upper limit. Collectively we’ll often call a and b the interval of integration.
Ý́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́
X X
x= a x= b
́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́ A B
C
D
y= f(x)
Y
Properties Of Definite Integral 5
𝑏
1 𝑑𝑥 = 𝑏 − 𝑎
𝑎
The definite integral of 1 is equal to the length of interval of the integral.
i.
A constant factor can be moved across the integral sign.
ii.
𝑏 𝑏
𝑘. 𝑓(𝑥) 𝑑𝑥 = 𝑘. 𝑓(𝑥) 𝑑𝑥
𝑎 𝑎
Definite integral is independent of variable od integration.
iii.
iv.
𝑏 𝑏
𝑓(𝑥) 𝑑𝑥 = 𝑓(𝑧) 𝑑𝑧
𝑎 𝑎
If the upper limit and the lower limit of a definite integral are the same, then the integral is zero.
𝑎
𝑓(𝑥) 𝑑𝑥 = 0
𝑎
Properties Of Definite Integral 6
Reversing the limit of integration change the sign of definite integral .
v.
𝑏 𝑎
𝑓(𝑥) 𝑑𝑥 = − 𝑓(𝑥) 𝑑𝑥
𝑎 𝑏
The definite integral of the sum and difference is equal to the sum and difference of the integral respectively.
vi.
𝑏 𝑎 𝑎
𝑓 𝑥 ± 𝑔(𝑥) 𝑑𝑥 = 𝑓(𝑥) 𝑑𝑥 ± 𝑔(𝑥) 𝑑𝑥
𝑎
Suppose that a point c belongs to the interval
𝑏 𝑏
𝑎, 𝑏 then the definite integral of the function f(x) over 𝑎, 𝑏 is equal
vii.
to the sum of integrals over 𝑎, 𝑐
𝑏
𝑐
and 𝑐, 𝑏 .
𝑐 𝑏
𝑓(𝑥) 𝑑𝑥 = 𝑓(𝑥) 𝑑𝑥 + 𝑓(𝑥) 𝑑𝑥
viii.
0 0
𝑎 𝑎
𝑎 𝑎
𝑓(𝑥) 𝑑𝑥 = 𝑓(𝑎 − 𝑥) 𝑑𝑥
Properties Of Definite Integral 7
+𝑎 𝑎
𝑓(𝑥) 𝑑𝑥 = 𝑓 𝑥 + 𝑓(−𝑥) 𝑑𝑥
−𝑎 0
−𝑎
𝑎
𝑓 𝑥 𝑑𝑥 = 2
𝑎
𝑓(𝑥) 𝑑𝑥
 If 𝑓 𝑥 = 𝑓 𝑥 or it is an even function then
 If 𝑓 𝑥 = −𝑓 𝑥 −𝑎
𝑎
or it is an odd function then
0
𝑓 𝑥 𝑑𝑥 = 0
ix.
Y
X X
x= a x= b
́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́ A B
Area under a curve (area of ABCD)
Y
C
D B
Area between two a curve (area of ABCD)
C
D
y= f(x)
y1= f(x)
y2= g(x)
xi.
x.
́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́ Ý́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́
X
A
́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́
X
x= a x= b
Y
S
S
𝑎
𝑏
S = 𝑓 𝑥 𝑑𝑥 = 𝐹 𝑏 − 𝐹(𝑎)
𝑎
𝑏
S = (𝑓 𝑥 − 𝑔 𝑥 )𝑑𝑥
Applications
8
There are numerous applications of integrals. Using technology such as computer software, internet
sources, graphing calculators and smartphone apps can make solving integral problems easier. Some
applications of integrals are:
1Displacement: Displacement is thevector quantity that represents the difference between the final
position of an object and its initial position. In other words, how far it traveled from point A to point
B. Displacement is the integral of velocity, which looks like
𝑠 𝑡 = 𝑣(𝑡) 𝑑𝑡
2 Change of Velocity: The integral of acceleration is the change in velocity, which is
∆𝑣 = 𝑎 𝑡 𝑑𝑡
3 Work:
or, v f -v0 = 𝑎 𝑡 𝑑𝑡
𝑤 = 𝐹(𝑥) 𝑑𝑥
Applications
9
Area under the curve
Finite Infinite
4 Area:
Integration can be used to find areas, volumes, central points, arc length, center of mass, work, pressure
and many useful things.
But a definite integral has start and end values: in other words there is an interval 𝑎, 𝑏 . We can find
out the actual area under a curve
Conclusion
10
A definite integral has upper and lower limits on the integrals, and it’s definite because,
at the end of the problem, we have a number – it is a finite answer.
THANKS A LOT
1 de 12

Recomendados

Definite Integral and Properties of Definite Integral por
Definite Integral and Properties of Definite IntegralDefinite Integral and Properties of Definite Integral
Definite Integral and Properties of Definite IntegralShaifulIslam56
4.9K vistas12 diapositivas
Integration material por
Integration material Integration material
Integration material Surya Swaroop
43 vistas72 diapositivas
Integration por
IntegrationIntegration
Integrationsakhi pathak
211 vistas72 diapositivas
Beginning direct3d gameprogrammingmath04_calculus_20160324_jintaeks por
Beginning direct3d gameprogrammingmath04_calculus_20160324_jintaeksBeginning direct3d gameprogrammingmath04_calculus_20160324_jintaeks
Beginning direct3d gameprogrammingmath04_calculus_20160324_jintaeksJinTaek Seo
193 vistas55 diapositivas
U6 Cn2 Definite Integrals Intro por
U6 Cn2 Definite Integrals IntroU6 Cn2 Definite Integrals Intro
U6 Cn2 Definite Integrals IntroAlexander Burt
1K vistas9 diapositivas

Más contenido relacionado

Similar a 11904040shaiful-191024200113.pptx

Indefinite Integral por
Indefinite IntegralIndefinite Integral
Indefinite IntegralRich Elle
2.4K vistas8 diapositivas
Akshay por
AkshayAkshay
AkshayAkshay Rajput
327 vistas14 diapositivas
Integration por
IntegrationIntegration
IntegrationOladokun Sulaiman Olanrewaju
599 vistas21 diapositivas
Presentation of calculus on application of derivative por
Presentation of calculus on application of derivativePresentation of calculus on application of derivative
Presentation of calculus on application of derivativeUrwaArshad1
254 vistas24 diapositivas
Integration presentation por
Integration presentationIntegration presentation
Integration presentationUrmila Bhardwaj
10.2K vistas38 diapositivas
On an extension of a c algebra por
On an extension of a  c algebraOn an extension of a  c algebra
On an extension of a c algebraAlexander Decker
203 vistas5 diapositivas

Similar a 11904040shaiful-191024200113.pptx(20)

Indefinite Integral por Rich Elle
Indefinite IntegralIndefinite Integral
Indefinite Integral
Rich Elle2.4K vistas
Presentation of calculus on application of derivative por UrwaArshad1
Presentation of calculus on application of derivativePresentation of calculus on application of derivative
Presentation of calculus on application of derivative
UrwaArshad1254 vistas
Mathematical blog #1 por Steven Pauly
Mathematical blog #1Mathematical blog #1
Mathematical blog #1
Steven Pauly323 vistas
An elementary introduction to information geometry por Frank Nielsen
An elementary introduction to information geometryAn elementary introduction to information geometry
An elementary introduction to information geometry
Frank Nielsen217 vistas
Information geometry: Dualistic manifold structures and their uses por Frank Nielsen
Information geometry: Dualistic manifold structures and their usesInformation geometry: Dualistic manifold structures and their uses
Information geometry: Dualistic manifold structures and their uses
Frank Nielsen375 vistas
INTEGRATION-1.pptx por SayanSen36
INTEGRATION-1.pptxINTEGRATION-1.pptx
INTEGRATION-1.pptx
SayanSen3637 vistas
Statistical Inference Part II: Types of Sampling Distribution por Dexlab Analytics
Statistical Inference Part II: Types of Sampling DistributionStatistical Inference Part II: Types of Sampling Distribution
Statistical Inference Part II: Types of Sampling Distribution
Dexlab Analytics714 vistas
AIOU Code 803 Mathematics for Economists Semester Spring 2022 Assignment 2.pptx por Zawarali786
AIOU Code 803 Mathematics for Economists Semester Spring 2022 Assignment 2.pptxAIOU Code 803 Mathematics for Economists Semester Spring 2022 Assignment 2.pptx
AIOU Code 803 Mathematics for Economists Semester Spring 2022 Assignment 2.pptx
Zawarali78624 vistas
The Fundamental theorem of calculus por AhsanIrshad8
The Fundamental theorem of calculus The Fundamental theorem of calculus
The Fundamental theorem of calculus
AhsanIrshad8145 vistas
1) What is a function- What is its domain and range- 2) How do you ch.docx por deant5
1) What is a function- What is its domain and range-  2) How do you ch.docx1) What is a function- What is its domain and range-  2) How do you ch.docx
1) What is a function- What is its domain and range- 2) How do you ch.docx
deant52 vistas
Project in Calcu por patrickpaz
Project in CalcuProject in Calcu
Project in Calcu
patrickpaz398 vistas

Más de AlphaKoiSylvester

WK8.pptx por
WK8.pptxWK8.pptx
WK8.pptxAlphaKoiSylvester
5 vistas20 diapositivas
WK9.pptx por
WK9.pptxWK9.pptx
WK9.pptxAlphaKoiSylvester
6 vistas15 diapositivas
Presentation group 2 Acct.pptx por
Presentation group 2 Acct.pptxPresentation group 2 Acct.pptx
Presentation group 2 Acct.pptxAlphaKoiSylvester
6 vistas19 diapositivas
tcp-ippresentation-150614172243-lva1-app6892.pptx por
tcp-ippresentation-150614172243-lva1-app6892.pptxtcp-ippresentation-150614172243-lva1-app6892.pptx
tcp-ippresentation-150614172243-lva1-app6892.pptxAlphaKoiSylvester
5 vistas25 diapositivas
ch2_v1.ppt por
ch2_v1.pptch2_v1.ppt
ch2_v1.pptAlphaKoiSylvester
9 vistas41 diapositivas
integration-131127090901-phpapp01.pptx por
integration-131127090901-phpapp01.pptxintegration-131127090901-phpapp01.pptx
integration-131127090901-phpapp01.pptxAlphaKoiSylvester
4 vistas24 diapositivas

Último

231112 (WR) v1 ChatGPT OEB 2023.pdf por
231112 (WR) v1  ChatGPT OEB 2023.pdf231112 (WR) v1  ChatGPT OEB 2023.pdf
231112 (WR) v1 ChatGPT OEB 2023.pdfWilfredRubens.com
137 vistas21 diapositivas
Azure DevOps Pipeline setup for Mule APIs #36 por
Azure DevOps Pipeline setup for Mule APIs #36Azure DevOps Pipeline setup for Mule APIs #36
Azure DevOps Pipeline setup for Mule APIs #36MysoreMuleSoftMeetup
88 vistas21 diapositivas
OEB 2023 Co-learning To Speed Up AI Implementation in Courses.pptx por
OEB 2023 Co-learning To Speed Up AI Implementation in Courses.pptxOEB 2023 Co-learning To Speed Up AI Implementation in Courses.pptx
OEB 2023 Co-learning To Speed Up AI Implementation in Courses.pptxInge de Waard
165 vistas29 diapositivas
Education and Diversity.pptx por
Education and Diversity.pptxEducation and Diversity.pptx
Education and Diversity.pptxDrHafizKosar
107 vistas16 diapositivas
2022 CAPE Merit List 2023 por
2022 CAPE Merit List 2023 2022 CAPE Merit List 2023
2022 CAPE Merit List 2023 Caribbean Examinations Council
3.9K vistas76 diapositivas

Último(20)

OEB 2023 Co-learning To Speed Up AI Implementation in Courses.pptx por Inge de Waard
OEB 2023 Co-learning To Speed Up AI Implementation in Courses.pptxOEB 2023 Co-learning To Speed Up AI Implementation in Courses.pptx
OEB 2023 Co-learning To Speed Up AI Implementation in Courses.pptx
Inge de Waard165 vistas
Education and Diversity.pptx por DrHafizKosar
Education and Diversity.pptxEducation and Diversity.pptx
Education and Diversity.pptx
DrHafizKosar107 vistas
Narration ppt.pptx por TARIQ KHAN
Narration  ppt.pptxNarration  ppt.pptx
Narration ppt.pptx
TARIQ KHAN110 vistas
Classification of crude drugs.pptx por GayatriPatra14
Classification of crude drugs.pptxClassification of crude drugs.pptx
Classification of crude drugs.pptx
GayatriPatra1465 vistas
SIMPLE PRESENT TENSE_new.pptx por nisrinamadani2
SIMPLE PRESENT TENSE_new.pptxSIMPLE PRESENT TENSE_new.pptx
SIMPLE PRESENT TENSE_new.pptx
nisrinamadani2173 vistas
Use of Probiotics in Aquaculture.pptx por AKSHAY MANDAL
Use of Probiotics in Aquaculture.pptxUse of Probiotics in Aquaculture.pptx
Use of Probiotics in Aquaculture.pptx
AKSHAY MANDAL81 vistas
Are we onboard yet University of Sussex.pptx por Jisc
Are we onboard yet University of Sussex.pptxAre we onboard yet University of Sussex.pptx
Are we onboard yet University of Sussex.pptx
Jisc71 vistas
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx por ISSIP
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptxEIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx
ISSIP256 vistas
Structure and Functions of Cell.pdf por Nithya Murugan
Structure and Functions of Cell.pdfStructure and Functions of Cell.pdf
Structure and Functions of Cell.pdf
Nithya Murugan317 vistas
Ch. 7 Political Participation and Elections.pptx por Rommel Regala
Ch. 7 Political Participation and Elections.pptxCh. 7 Political Participation and Elections.pptx
Ch. 7 Political Participation and Elections.pptx
Rommel Regala69 vistas
Universe revised.pdf por DrHafizKosar
Universe revised.pdfUniverse revised.pdf
Universe revised.pdf
DrHafizKosar108 vistas
JiscOAWeek_LAIR_slides_October2023.pptx por Jisc
JiscOAWeek_LAIR_slides_October2023.pptxJiscOAWeek_LAIR_slides_October2023.pptx
JiscOAWeek_LAIR_slides_October2023.pptx
Jisc72 vistas

11904040shaiful-191024200113.pptx

  • 2. A Presentation on Definite Integral 1 Presented By Shaiful Islam Student ID: 11904040 Department of Mathematics Comilla University CourseTitle: Integration Calculus Course Code : MTH 122 PresentedTo Md. Joni Alam Lecturer Department of Mathematics Comilla University
  • 3. Contents 2 Topics: Definite Integral  History of Integration  Definition & Types of Integration  Some Basic Properties of Definite Integral  Application of Integration in Real Life  Conclusion
  • 4. Topics Introduction : Definite Integral 3 𝑑𝑥 Then integrating the function 𝑓(𝑥) of ( i) produce the anti-derivative is of the form 𝐹 𝑥 + c. ∫𝑓 𝑥 𝑑𝑥 = 𝐹 𝑥 + 𝑐 The expression ∫𝑓 𝑥 𝑑𝑥 is called the Indefinite Integral. Integration : The process of finding anti-derivative is called Integration. 𝑑 Gottfried Wilhelm Leibniz (1646– 1716), German philosopher and Mathematician. History of Integration : The principles of integration were formulated independently by Isaac Newton and Gottfried Wilhelm Leibniz in the late 17th century, who thought of the integral as an infinite sum of rectangles of infinitesimal width. Bernhard Riemann gave a rigorous mathematical definition of integrals. Thus if, 𝐹 𝑥 = 𝑓(𝑥) ( i )
  • 5. Topics Brief : Definite Integral 4 Integration Types : Definite Integration Indefinite Integration Definite Integral Given a function f(x) that is continuous on the interval [a,b] we divide the interval into n subintervals of equal width h, and from each interval choose a point, xi. Then the definite integral of f(x) from a to b is, 𝑎 𝑏 𝑛→∞ 𝑖=1 𝑛 𝑓(𝑥) 𝑑𝑥 = lim 𝑓(xi) . ℎ 5 𝑥2 𝑑𝑥 −1 𝑥2 𝑑𝑥 The number “a” that is at the bottom of the integral sign is called the lower limit of the integral and the number “b” at the top of the integral sign is called the upper limit of the integral. Also, despite the fact that a and b were given as an interval the lower limit does not necessarily need to be smaller than the upper limit. Collectively we’ll often call a and b the interval of integration. Ý́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́ X X x= a x= b ́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́ A B C D y= f(x) Y
  • 6. Properties Of Definite Integral 5 𝑏 1 𝑑𝑥 = 𝑏 − 𝑎 𝑎 The definite integral of 1 is equal to the length of interval of the integral. i. A constant factor can be moved across the integral sign. ii. 𝑏 𝑏 𝑘. 𝑓(𝑥) 𝑑𝑥 = 𝑘. 𝑓(𝑥) 𝑑𝑥 𝑎 𝑎 Definite integral is independent of variable od integration. iii. iv. 𝑏 𝑏 𝑓(𝑥) 𝑑𝑥 = 𝑓(𝑧) 𝑑𝑧 𝑎 𝑎 If the upper limit and the lower limit of a definite integral are the same, then the integral is zero. 𝑎 𝑓(𝑥) 𝑑𝑥 = 0 𝑎
  • 7. Properties Of Definite Integral 6 Reversing the limit of integration change the sign of definite integral . v. 𝑏 𝑎 𝑓(𝑥) 𝑑𝑥 = − 𝑓(𝑥) 𝑑𝑥 𝑎 𝑏 The definite integral of the sum and difference is equal to the sum and difference of the integral respectively. vi. 𝑏 𝑎 𝑎 𝑓 𝑥 ± 𝑔(𝑥) 𝑑𝑥 = 𝑓(𝑥) 𝑑𝑥 ± 𝑔(𝑥) 𝑑𝑥 𝑎 Suppose that a point c belongs to the interval 𝑏 𝑏 𝑎, 𝑏 then the definite integral of the function f(x) over 𝑎, 𝑏 is equal vii. to the sum of integrals over 𝑎, 𝑐 𝑏 𝑐 and 𝑐, 𝑏 . 𝑐 𝑏 𝑓(𝑥) 𝑑𝑥 = 𝑓(𝑥) 𝑑𝑥 + 𝑓(𝑥) 𝑑𝑥 viii. 0 0 𝑎 𝑎 𝑎 𝑎 𝑓(𝑥) 𝑑𝑥 = 𝑓(𝑎 − 𝑥) 𝑑𝑥
  • 8. Properties Of Definite Integral 7 +𝑎 𝑎 𝑓(𝑥) 𝑑𝑥 = 𝑓 𝑥 + 𝑓(−𝑥) 𝑑𝑥 −𝑎 0 −𝑎 𝑎 𝑓 𝑥 𝑑𝑥 = 2 𝑎 𝑓(𝑥) 𝑑𝑥  If 𝑓 𝑥 = 𝑓 𝑥 or it is an even function then  If 𝑓 𝑥 = −𝑓 𝑥 −𝑎 𝑎 or it is an odd function then 0 𝑓 𝑥 𝑑𝑥 = 0 ix. Y X X x= a x= b ́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́ A B Area under a curve (area of ABCD) Y C D B Area between two a curve (area of ABCD) C D y= f(x) y1= f(x) y2= g(x) xi. x. ́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́ Ý́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́ X A ́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́ X x= a x= b Y S S 𝑎 𝑏 S = 𝑓 𝑥 𝑑𝑥 = 𝐹 𝑏 − 𝐹(𝑎) 𝑎 𝑏 S = (𝑓 𝑥 − 𝑔 𝑥 )𝑑𝑥
  • 9. Applications 8 There are numerous applications of integrals. Using technology such as computer software, internet sources, graphing calculators and smartphone apps can make solving integral problems easier. Some applications of integrals are: 1Displacement: Displacement is thevector quantity that represents the difference between the final position of an object and its initial position. In other words, how far it traveled from point A to point B. Displacement is the integral of velocity, which looks like 𝑠 𝑡 = 𝑣(𝑡) 𝑑𝑡 2 Change of Velocity: The integral of acceleration is the change in velocity, which is ∆𝑣 = 𝑎 𝑡 𝑑𝑡 3 Work: or, v f -v0 = 𝑎 𝑡 𝑑𝑡 𝑤 = 𝐹(𝑥) 𝑑𝑥
  • 10. Applications 9 Area under the curve Finite Infinite 4 Area: Integration can be used to find areas, volumes, central points, arc length, center of mass, work, pressure and many useful things. But a definite integral has start and end values: in other words there is an interval 𝑎, 𝑏 . We can find out the actual area under a curve
  • 11. Conclusion 10 A definite integral has upper and lower limits on the integrals, and it’s definite because, at the end of the problem, we have a number – it is a finite answer.