Section 6 multistage separation processes

A
MULTISTAGE SEPARATION
PROCESSES
CHE 452
ENG. AMAL MAGDY
SECTION (6)
Multistage Distillation
Calculations
• Binary System
• Sorel plate to plate calculations
• Ponchon Sevarit method
• Lewis plate to plate calculations
• McCabe Thiele method
McCabe Thiele method
• The graphical representation of Lewis method
• Like Lewis Method the tower is divided into top section
and bottom section
• McCabe Thiele method depends on the x-y diagram only
• Each section has its own operating line
y
x
McCabe Thiele method
Calculation steps
• Calculation steps are done through three main
steps:
1. Material Balance:
• OMB  F = D + W
• CMB  𝑭. 𝒙𝒇 = 𝑫. 𝒙𝑫 +𝑾. 𝒙𝒘
Get D & W
McCabe Thiele method
Calculation steps
• Calculation steps are done through three main
steps:
2. Operating Line for Top Section:
𝒚𝒏+𝟏 =
𝑳
𝑳+𝑫
𝒙𝒏 +
𝑫
𝑳+𝑫
𝒙𝑫
Or
𝒚𝒏+𝟏 =
𝑹
𝑹 + 𝟏
∗ 𝒙𝒏 +
𝒙𝑫
𝑹 + 𝟏
To draw this line you should have two points:
At xn = 0  yn+1 =
𝒙𝑫
𝑹+𝟏
At xn = xD  yn+1 = xD
xD
xF
xW
1
R
xD

McCabe Thiele method
Calculation steps
• Calculation steps are done through three main
steps:
3. Operating Line for Bottom Section:
𝒚𝒎
′ =
𝑳′
𝑽′ 𝒙𝒎+𝟏
′
−
𝑾
𝑽′ 𝒙𝒘
To draw this line you should have two points:
At 𝒙𝒎+𝟏
′
= 0  𝒚𝒎
′
=−
𝑾
𝑽′ 𝒙𝑾
At 𝒙𝒎+𝟏
′
= xw  𝒚𝒎
′ = xw
xD
xF
xW
V'
Wx
- W
McCabe Thiele method
Calculation steps
• The diagram of the whole tower will be:
• The number of theoretical stages = No. of stages in
top section + No. of stages in top section + Reboiler
• For Top Section
• NTS = 6 +
𝑎
𝑏
• For Bottom Section
• NTS = 1 + Reboiler
xD
xF
xW
1
R
xD

a
b
V'
Wx
- W
McCabe Thiele method
Calculation steps
• Q-line is calculations:
𝒒 =
𝑯𝑽 − 𝒉𝒇
𝑯𝑽 − 𝒉𝑳
=
𝑯𝑽 − 𝒉𝒇
𝝀
Slope of q-line =
𝒒
𝒒 −𝟏
• Q-line direction depends on the phase of feed:
1. Subcooled Feed  q > 1
2. Saturated Liquid Feed  q = 1
3. Partially Vaporized Feed  0 < q < 1
4. Saturated Vapor Feed  q = 0
5. Superheated Feed  q < 1
1
2
3
4
5
xD
xF
xW
McCabe Thiele method
Calculation steps
• Minimum reflux ratio:
It is the point that resulted from the extension of
the line plotted from (xD, xD) to the intersection of
q-line with the equilibrium curve
xD
xF
xW
1
R
x
min
D

SHEET (4)
Example (2)
A continuous fractionating column is to be designed to separate 100 kgmole/h of a
mixture of 60% benzene and 40% toluene into a top product containing 2% toluene
and a bottom product containing 3% benzene. Feed enters the column at 30°C. Pressure
in the column is atmospheric and the reflux ratio is 1.2 the minimum.
Calculate:
a. Flowrates of the top and the bottom products
b. Number of ideal plates
c. Steam consumption if saturated steam at 3 atm is available.
d. Cooling water consumption if cooling water at 30°C are available and left the system at
45°C.
Example (2)
Additional Data:
Relative volatility=2.5
Bubble and dew points of feed are 90 and 100°C.
Liquid specific heats of benzene and toluene are 0.43 and 0.45 cal/g.°C respectively
Latent heats of benzene and toluene are 7400 and 8000 cal/gmole respectively
Latent heat of steam at 3 atmosphere is 517 cal/g
Solution (2)
Givens:
F = 100 kgmole/h , 𝑃 = 1 𝑎𝑡𝑚 , 𝑇 = 30°𝐶 & 𝑅 = 1.2 𝑅𝑚𝑖𝑛
𝑥𝑓 = 0.6 , 𝑥𝐷 = 0.98 & 𝑥𝑤 = 0.03
Answer:
a. Flowrates of the top and the bottom products
F = D + W
D + W = 100  (1)
𝑭. 𝒙𝒇 = 𝑫. 𝒙𝑫 +𝑾. 𝒙𝒘
100 ∗ 0.6 = 0.98 𝐷 + 0.03 𝑊  (2)
From (1) & (2)
D = 60 kgmole/h , W = 40 kgmole/h
Solution (2)
b. Number of ideal plates
• Draw the equilibrium curve
Using the given relative volatility, assume xA to get yA at equilibrium
𝒚𝑨 =
𝜶. 𝒙𝑨
𝟏 + (𝜶 − 𝟏) 𝒙𝑨
xA yA
0 0
0.1 0.217
0.3 0.517
0.5 0.714
0.7 0.854
0.9 0.957
1 1
0
0.2
0.4
0.6
0.8
1
0 0.2 0.4 0.6 0.8 1
y
A
xA
Solution (2)
b. Number of ideal plates and feed location
• Determine Rmin
𝒒 =
𝑯𝑽 − 𝒉𝒇
𝑯𝑽 − 𝒉𝑳
=
𝑯𝑽 − 𝒉𝒇
𝝀
𝜆 = 0.6 ∗ 7400 + 0.4 ∗ 8000 = 7640 cal/gmole
𝐶𝑃𝑚𝑖𝑥
= 𝑥𝑖 ∗ 𝐶𝑃𝑖
= 0.6* 0.43+ 0.4*0.45 = 0.438 cal/g.°C
Mavg = 0.6 * 78 + 0.4 * 92 = 83.6 g/gmole
𝐻𝑉 − ℎ𝑓 = 𝜆 + 𝐶𝑃𝑚𝑖𝑥
∗ 𝑇𝐵𝑢𝑏𝑏𝑙𝑒 − 𝑇𝑓 = 7640 + 0.438 ∗ 90 − 30 ∗ 83.6 = 9837.008 cal/gmole
𝑞 =
𝐻𝑉 − ℎ𝑓
𝜆
=
9837.008
7640
= 1.288
Solution (2)
b. Number of ideal plates and feed location
Slope of q-line =
𝒒
𝒒 −𝟏
= 𝟒. 𝟒𝟕𝟐
• Determine Rmin
𝑥𝐷
𝑅𝑚𝑖𝑛 + 1
= 0.51
Rmin = 0.92
R = 1.2 * Rmin = 1.104
𝑥𝐷
𝑅 + 1
= 0.466
0
0.2
0.4
0.6
0.8
1
0 0.2 0.4 0.6 0.8 1
y
A
xA
Solution (2)
b. Number of ideal plates and feed
location
NTS = 17.7 + Reboiler
0
0.2
0.4
0.6
0.8
1
0 0.2 0.4 0.6 0.8 1
y
A
xA
Solution (2)
c. Steam consumption if saturated steam at 3 atm is available.
Q r = mst.lst = V’.lr
lr = yr * lA + (1 - yr ) * lB
lr = 0.07*7400 + 0.93*8000 = 7958 cal/gmole
Slope of op. line in bottom section =
𝐿′
𝑉′ = 1.25
L’ = V’ + W
L’ = 200 kgmole/h & V’ = 160 kgmole/h
Q r = V’.lr = 160 * 7958 *1000 = 1273.28*106 cal/h
lst. = 517*18*1000 = 9306*103 cal/kmole
Q r = mst.lst = 1273.28*106  mst. = 136.82 kmole = 2462.82 kg
0
0.2
0.4
0.6
0.8
1
0 0.2 0.4 0.6 0.8 1
y
A
xA
Solution (2)
d. Cooling water consumption if cooling water at 30°C is available and left the system at
45°C.
Qcond=V1 . lmix =mw . Cpw . ΔT
V1 = Lo + D
Lo = R * D = 1.104* 60 = 66.24 kmole  V1 = 126.24 kmole/h
lmix = (0.98*7400 + 0.02*8000) * 1000 = 7412*103 cal/kmole
Qcond. = 935690*103 cal/h
Cpw = 1 cal/g.°C
ΔT = 15°C
Qcond = mw . Cpw . ΔT  mw = 62379.3 kg/h
Special cases in Binary
systems
1. Enriching Section:
• Feed is saturated vapor
• NTS in bottom section = 0
XD
XW XF
Special cases in Binary
systems
2. Stripping Section:
• Feed is saturated liquid
• NTS in top section = 0
XD
XW XF
Special cases in Binary
systems
3. Complex Feed or Multiple feeds:
• Feed (1) is saturated liquid
• Feed (2) is saturated vapor
• The slope of the middle section operating line
=
𝐿′
𝑉′
• Where,
• L’ = F1 + L
• V’ = V
XD
XF1
XW
1
R
xD

(XD,XD)
(XW,XW
)
XF2
L’/V’
Special cases in Binary
systems
4. Top Side Product:
• The top product is saturated liquid
• The middle section operating line is
determined using:
𝑥 = 𝑦 =
𝑆 . 𝑥𝑠 + 𝐷 . 𝑥𝐷
𝑆 + 𝐷
XD
XS
XW
1
R
xD

(XD,XD)
(XW,XW)
XF
x=y
Special cases in Binary
systems
5. Bottom Side Product:
• The bottom product is saturated liquid
• The middle section operating line is
determined using:
𝑥 = 𝑦 =
𝑆 . 𝑥𝑠 + 𝑊 . 𝑥𝑊
𝑆 + 𝑊
XW
1
R
xD

(XD,XD)
(XW,XW
)
XS
x=y
XD
XF
Special cases in Binary
systems
6. Open Steam:
• The bottom section operating line is
determined by matching (xw, xw) with (x,y)
that calculated using the following equation:
𝑥 = 𝑦 =
𝑊 . 𝑥𝑊
𝑊 − 𝑆
XD
XF
XW
1
R
xD

(XD,XD)
(XW,ys)
S
W
x
W W

.
Example (3)
A continuous distillation is supplied with two equimolar feed streams, one is saturated
liquid containing 40% benzene and the other is saturated vapor with 20% benzene.
The required top product is 98% benzene while the bottom product is 2% benzene.
Reflux ratio used is 4.
a. Calculate the required number of theoretical stages and the correct feed location of each
feed.
b. If the two streams are to be mixed before entering the tower, find the required number
of stages.
Equilibrium data are given below:
Mole % of benzene in
liquid phase
0 10 20 30 40 50 60 70 80 90 95 100
Mole % of benzene in
vapor phase
0 20.8 37.2 50.7 61.9 71.3 79.1 85.7 91.2 95.9 98 100
Solution (3)
Assume F1 = F2 = 100 mole
F1 + F2 = D + W = 200  (1)
𝐹1 . 𝑥𝑓1
+ 𝐹2 . 𝑥𝑓2
= 𝐷 . 𝑥𝐷 + 𝑊 . 𝑥𝑤  (2)
From (1) & (2)
D = 58.3 mole
W = 141.7 mole
XD
XF1
XW
1
R
xD

(XD,XD)
(XW,XW
)
XF2
L’/V’
Solution (3)
𝑥𝐷
𝑅+1
= 0.196  get the top section op. line
L = D * R = 233.2 mole
L’ = F1 + L = 333.2 mole
V’ = V = L + D = 291.5 mole
Slope of the middle section op. line =
𝐿′
𝑉′ = 1.143
 Get the middle section op. line
Then calculate the number of stages
XD
XF1
XW
1
R
xD

(XD,XD)
(XW,XW
)
XF2
L’/V’
Solution (3)
The final shape will be:
0
0.2
0.4
0.6
0.8
1
0 0.2 0.4 0.6 0.8 1
y
A
xA
Solution (3)
b. If the two feeds are mixed together:
Assume F1 = F2 = 100 mole
F1 + F2 = F = 200
𝐹1 . 𝑥𝑓1
+ 𝐹2 . 𝑥𝑓2
= 𝐹 . 𝑥𝑓  𝑥𝑓 = 0.3
Then begin to solve as mentioned in example 2 (b)
Section 6   multistage separation processes
1 de 31

Recomendados

Reflux ratio por
Reflux ratioReflux ratio
Reflux ratiochemicalengppt
13.6K vistas9 diapositivas
1.1 Vapor Liquid Equilibrium por
1.1 Vapor Liquid Equilibrium1.1 Vapor Liquid Equilibrium
1.1 Vapor Liquid EquilibriumSouth-Eastern Finland University of Applied Sciences
2.6K vistas21 diapositivas
LEACHING CONCEPT, TECHNIQUE AND SINGLE AND MULTISTAGE LEACHING por
LEACHING CONCEPT, TECHNIQUE AND SINGLE AND MULTISTAGE LEACHINGLEACHING CONCEPT, TECHNIQUE AND SINGLE AND MULTISTAGE LEACHING
LEACHING CONCEPT, TECHNIQUE AND SINGLE AND MULTISTAGE LEACHINGKrishna Peshivadiya
11.5K vistas23 diapositivas
Design of packed columns por
Design of packed columnsDesign of packed columns
Design of packed columnsalsyourih
98.4K vistas52 diapositivas
Distillation Column por
Distillation ColumnDistillation Column
Distillation ColumnKhalid Nawaz
21.8K vistas23 diapositivas

Más contenido relacionado

La actualidad más candente

Introduction to multicomponent distillation por
Introduction to multicomponent distillationIntroduction to multicomponent distillation
Introduction to multicomponent distillationSujeet TAMBE
12.9K vistas31 diapositivas
Crystalization (Mass Transfer) por
Crystalization (Mass Transfer)Crystalization (Mass Transfer)
Crystalization (Mass Transfer)KrishnaKantNayak2
6.8K vistas77 diapositivas
Distillation por
DistillationDistillation
DistillationSujeet TAMBE
53.5K vistas72 diapositivas
Absorption and Stripping - mass transfer por
Absorption and Stripping - mass transferAbsorption and Stripping - mass transfer
Absorption and Stripping - mass transfermegr1412
12.3K vistas15 diapositivas
Processing of petroleum types of reflux por
Processing of petroleum types of refluxProcessing of petroleum types of reflux
Processing of petroleum types of refluxKarnav Rana
3.1K vistas8 diapositivas

La actualidad más candente(20)

Introduction to multicomponent distillation por Sujeet TAMBE
Introduction to multicomponent distillationIntroduction to multicomponent distillation
Introduction to multicomponent distillation
Sujeet TAMBE12.9K vistas
Absorption and Stripping - mass transfer por megr1412
Absorption and Stripping - mass transferAbsorption and Stripping - mass transfer
Absorption and Stripping - mass transfer
megr141212.3K vistas
Processing of petroleum types of reflux por Karnav Rana
Processing of petroleum types of refluxProcessing of petroleum types of reflux
Processing of petroleum types of reflux
Karnav Rana3.1K vistas
Gas absorption ppt por Ankit_Mistry
Gas absorption pptGas absorption ppt
Gas absorption ppt
Ankit_Mistry11.3K vistas
Distillation Column Design por EPIC Systems
Distillation Column DesignDistillation Column Design
Distillation Column Design
EPIC Systems 38.1K vistas
Feed conditions in distillation column with respect to feed plate and reflux por Ihsan Wassan
Feed conditions in distillation column with respect to feed plate and refluxFeed conditions in distillation column with respect to feed plate and reflux
Feed conditions in distillation column with respect to feed plate and reflux
Ihsan Wassan1.3K vistas
Distillation column design por Faruk Eyigün
Distillation column designDistillation column design
Distillation column design
Faruk Eyigün9.2K vistas
Design of-absorption-column por Ali Hassan
Design of-absorption-columnDesign of-absorption-column
Design of-absorption-column
Ali Hassan18K vistas
Flooding of a distillation column por Karnav Rana
Flooding of a distillation columnFlooding of a distillation column
Flooding of a distillation column
Karnav Rana2.9K vistas

Similar a Section 6 multistage separation processes

Section 5 multistage separation processes por
Section 5   multistage separation processesSection 5   multistage separation processes
Section 5 multistage separation processesAmal Magdy
79 vistas20 diapositivas
pressure drop calculation in sieve plate distillation column por
pressure drop calculation in sieve plate distillation columnpressure drop calculation in sieve plate distillation column
pressure drop calculation in sieve plate distillation columnAli Shaan Ghumman
4.9K vistas8 diapositivas
[W f stoecker]_refrigeration_and_a_ir_conditioning_(book_zz.org) por
[W f stoecker]_refrigeration_and_a_ir_conditioning_(book_zz.org)[W f stoecker]_refrigeration_and_a_ir_conditioning_(book_zz.org)
[W f stoecker]_refrigeration_and_a_ir_conditioning_(book_zz.org)Mike Mentzos
44.5K vistas161 diapositivas
Section 2 multistage separation processes por
Section 2   multistage separation processesSection 2   multistage separation processes
Section 2 multistage separation processesAmal Magdy
55 vistas24 diapositivas
Chapter2 por
Chapter2Chapter2
Chapter2GF Cleiton
3.4K vistas5 diapositivas
lecture 2.pdf por
lecture 2.pdflecture 2.pdf
lecture 2.pdfSourav Poddar
58 vistas172 diapositivas

Similar a Section 6 multistage separation processes(20)

Section 5 multistage separation processes por Amal Magdy
Section 5   multistage separation processesSection 5   multistage separation processes
Section 5 multistage separation processes
Amal Magdy79 vistas
pressure drop calculation in sieve plate distillation column por Ali Shaan Ghumman
pressure drop calculation in sieve plate distillation columnpressure drop calculation in sieve plate distillation column
pressure drop calculation in sieve plate distillation column
Ali Shaan Ghumman4.9K vistas
[W f stoecker]_refrigeration_and_a_ir_conditioning_(book_zz.org) por Mike Mentzos
[W f stoecker]_refrigeration_and_a_ir_conditioning_(book_zz.org)[W f stoecker]_refrigeration_and_a_ir_conditioning_(book_zz.org)
[W f stoecker]_refrigeration_and_a_ir_conditioning_(book_zz.org)
Mike Mentzos44.5K vistas
Section 2 multistage separation processes por Amal Magdy
Section 2   multistage separation processesSection 2   multistage separation processes
Section 2 multistage separation processes
Amal Magdy55 vistas
Chapter2 por GF Cleiton
Chapter2Chapter2
Chapter2
GF Cleiton3.4K vistas
205938300 problemas-de-diseno-de-reactores por MelanieQuiroz6
205938300 problemas-de-diseno-de-reactores205938300 problemas-de-diseno-de-reactores
205938300 problemas-de-diseno-de-reactores
MelanieQuiroz6230 vistas
Section 3 multistage separation processes por Amal Magdy
Section 3   multistage separation processesSection 3   multistage separation processes
Section 3 multistage separation processes
Amal Magdy18 vistas
Design and balance : Styrene Oxide Production por ARITRA MUKHERJEE
Design and balance : Styrene Oxide ProductionDesign and balance : Styrene Oxide Production
Design and balance : Styrene Oxide Production
ARITRA MUKHERJEE2.6K vistas
Rhodes solutions-ch4 por sbjhbsbd
Rhodes solutions-ch4Rhodes solutions-ch4
Rhodes solutions-ch4
sbjhbsbd180 vistas
Section 4 multistage separation processes por Amal Magdy
Section 4   multistage separation processesSection 4   multistage separation processes
Section 4 multistage separation processes
Amal Magdy24 vistas
Tarea 5 hidraulica iii-cabrera arias roberto alejandro por Alejandro Cabrera
Tarea 5 hidraulica iii-cabrera arias roberto alejandroTarea 5 hidraulica iii-cabrera arias roberto alejandro
Tarea 5 hidraulica iii-cabrera arias roberto alejandro
Alejandro Cabrera87 vistas
Fluid mechanic white (cap2.1) por Raul Garcia
Fluid mechanic   white (cap2.1)Fluid mechanic   white (cap2.1)
Fluid mechanic white (cap2.1)
Raul Garcia57.1K vistas
FINAL DESIGN-OF-ABSORPTION-COLUMN por Ali Hassan
FINAL DESIGN-OF-ABSORPTION-COLUMNFINAL DESIGN-OF-ABSORPTION-COLUMN
FINAL DESIGN-OF-ABSORPTION-COLUMN
Ali Hassan230 vistas
Thermodynamics Hw#4 por littlepine13
Thermodynamics Hw#4Thermodynamics Hw#4
Thermodynamics Hw#4
littlepine13623 vistas

Último

REACTJS.pdf por
REACTJS.pdfREACTJS.pdf
REACTJS.pdfArthyR3
39 vistas16 diapositivas
GPS Survery Presentation/ Slides por
GPS Survery Presentation/ SlidesGPS Survery Presentation/ Slides
GPS Survery Presentation/ SlidesOmarFarukEmon1
7 vistas13 diapositivas
2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptx por
2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptx2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptx
2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptxlwang78
314 vistas19 diapositivas
Trust Metric-Based Anomaly Detection via Deep Deterministic Policy Gradient R... por
Trust Metric-Based Anomaly Detection via Deep Deterministic Policy Gradient R...Trust Metric-Based Anomaly Detection via Deep Deterministic Policy Gradient R...
Trust Metric-Based Anomaly Detection via Deep Deterministic Policy Gradient R...IJCNCJournal
5 vistas25 diapositivas
Field Programmable Gate Arrays : Architecture por
Field Programmable Gate Arrays : ArchitectureField Programmable Gate Arrays : Architecture
Field Programmable Gate Arrays : ArchitectureUsha Mehta
23 vistas74 diapositivas
CPM Schedule Float.pptx por
CPM Schedule Float.pptxCPM Schedule Float.pptx
CPM Schedule Float.pptxMathew Joseph
8 vistas5 diapositivas

Último(20)

REACTJS.pdf por ArthyR3
REACTJS.pdfREACTJS.pdf
REACTJS.pdf
ArthyR339 vistas
2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptx por lwang78
2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptx2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptx
2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptx
lwang78314 vistas
Trust Metric-Based Anomaly Detection via Deep Deterministic Policy Gradient R... por IJCNCJournal
Trust Metric-Based Anomaly Detection via Deep Deterministic Policy Gradient R...Trust Metric-Based Anomaly Detection via Deep Deterministic Policy Gradient R...
Trust Metric-Based Anomaly Detection via Deep Deterministic Policy Gradient R...
IJCNCJournal5 vistas
Field Programmable Gate Arrays : Architecture por Usha Mehta
Field Programmable Gate Arrays : ArchitectureField Programmable Gate Arrays : Architecture
Field Programmable Gate Arrays : Architecture
Usha Mehta23 vistas
MongoDB.pdf por ArthyR3
MongoDB.pdfMongoDB.pdf
MongoDB.pdf
ArthyR351 vistas
Ansari: Practical experiences with an LLM-based Islamic Assistant por M Waleed Kadous
Ansari: Practical experiences with an LLM-based Islamic AssistantAnsari: Practical experiences with an LLM-based Islamic Assistant
Ansari: Practical experiences with an LLM-based Islamic Assistant
M Waleed Kadous12 vistas
ASSIGNMENTS ON FUZZY LOGIC IN TRAFFIC FLOW.pdf por AlhamduKure
ASSIGNMENTS ON FUZZY LOGIC IN TRAFFIC FLOW.pdfASSIGNMENTS ON FUZZY LOGIC IN TRAFFIC FLOW.pdf
ASSIGNMENTS ON FUZZY LOGIC IN TRAFFIC FLOW.pdf
AlhamduKure10 vistas
Programmable Logic Devices : SPLD and CPLD por Usha Mehta
Programmable Logic Devices : SPLD and CPLDProgrammable Logic Devices : SPLD and CPLD
Programmable Logic Devices : SPLD and CPLD
Usha Mehta27 vistas
AWS Certified Solutions Architect Associate Exam Guide_published .pdf por Kiran Kumar Malik
AWS Certified Solutions Architect Associate Exam Guide_published .pdfAWS Certified Solutions Architect Associate Exam Guide_published .pdf
AWS Certified Solutions Architect Associate Exam Guide_published .pdf
Basic Design Flow for Field Programmable Gate Arrays por Usha Mehta
Basic Design Flow for Field Programmable Gate ArraysBasic Design Flow for Field Programmable Gate Arrays
Basic Design Flow for Field Programmable Gate Arrays
Usha Mehta10 vistas
Design_Discover_Develop_Campaign.pptx por ShivanshSeth6
Design_Discover_Develop_Campaign.pptxDesign_Discover_Develop_Campaign.pptx
Design_Discover_Develop_Campaign.pptx
ShivanshSeth656 vistas
Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc... por csegroupvn
Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc...Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc...
Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc...
csegroupvn16 vistas
GDSC Mikroskil Members Onboarding 2023.pdf por gdscmikroskil
GDSC Mikroskil Members Onboarding 2023.pdfGDSC Mikroskil Members Onboarding 2023.pdf
GDSC Mikroskil Members Onboarding 2023.pdf
gdscmikroskil72 vistas

Section 6 multistage separation processes

  • 2. Multistage Distillation Calculations • Binary System • Sorel plate to plate calculations • Ponchon Sevarit method • Lewis plate to plate calculations • McCabe Thiele method
  • 3. McCabe Thiele method • The graphical representation of Lewis method • Like Lewis Method the tower is divided into top section and bottom section • McCabe Thiele method depends on the x-y diagram only • Each section has its own operating line y x
  • 4. McCabe Thiele method Calculation steps • Calculation steps are done through three main steps: 1. Material Balance: • OMB  F = D + W • CMB  𝑭. 𝒙𝒇 = 𝑫. 𝒙𝑫 +𝑾. 𝒙𝒘 Get D & W
  • 5. McCabe Thiele method Calculation steps • Calculation steps are done through three main steps: 2. Operating Line for Top Section: 𝒚𝒏+𝟏 = 𝑳 𝑳+𝑫 𝒙𝒏 + 𝑫 𝑳+𝑫 𝒙𝑫 Or 𝒚𝒏+𝟏 = 𝑹 𝑹 + 𝟏 ∗ 𝒙𝒏 + 𝒙𝑫 𝑹 + 𝟏 To draw this line you should have two points: At xn = 0  yn+1 = 𝒙𝑫 𝑹+𝟏 At xn = xD  yn+1 = xD xD xF xW 1 R xD 
  • 6. McCabe Thiele method Calculation steps • Calculation steps are done through three main steps: 3. Operating Line for Bottom Section: 𝒚𝒎 ′ = 𝑳′ 𝑽′ 𝒙𝒎+𝟏 ′ − 𝑾 𝑽′ 𝒙𝒘 To draw this line you should have two points: At 𝒙𝒎+𝟏 ′ = 0  𝒚𝒎 ′ =− 𝑾 𝑽′ 𝒙𝑾 At 𝒙𝒎+𝟏 ′ = xw  𝒚𝒎 ′ = xw xD xF xW V' Wx - W
  • 7. McCabe Thiele method Calculation steps • The diagram of the whole tower will be: • The number of theoretical stages = No. of stages in top section + No. of stages in top section + Reboiler • For Top Section • NTS = 6 + 𝑎 𝑏 • For Bottom Section • NTS = 1 + Reboiler xD xF xW 1 R xD  a b V' Wx - W
  • 8. McCabe Thiele method Calculation steps • Q-line is calculations: 𝒒 = 𝑯𝑽 − 𝒉𝒇 𝑯𝑽 − 𝒉𝑳 = 𝑯𝑽 − 𝒉𝒇 𝝀 Slope of q-line = 𝒒 𝒒 −𝟏 • Q-line direction depends on the phase of feed: 1. Subcooled Feed  q > 1 2. Saturated Liquid Feed  q = 1 3. Partially Vaporized Feed  0 < q < 1 4. Saturated Vapor Feed  q = 0 5. Superheated Feed  q < 1 1 2 3 4 5 xD xF xW
  • 9. McCabe Thiele method Calculation steps • Minimum reflux ratio: It is the point that resulted from the extension of the line plotted from (xD, xD) to the intersection of q-line with the equilibrium curve xD xF xW 1 R x min D 
  • 11. Example (2) A continuous fractionating column is to be designed to separate 100 kgmole/h of a mixture of 60% benzene and 40% toluene into a top product containing 2% toluene and a bottom product containing 3% benzene. Feed enters the column at 30°C. Pressure in the column is atmospheric and the reflux ratio is 1.2 the minimum. Calculate: a. Flowrates of the top and the bottom products b. Number of ideal plates c. Steam consumption if saturated steam at 3 atm is available. d. Cooling water consumption if cooling water at 30°C are available and left the system at 45°C.
  • 12. Example (2) Additional Data: Relative volatility=2.5 Bubble and dew points of feed are 90 and 100°C. Liquid specific heats of benzene and toluene are 0.43 and 0.45 cal/g.°C respectively Latent heats of benzene and toluene are 7400 and 8000 cal/gmole respectively Latent heat of steam at 3 atmosphere is 517 cal/g
  • 13. Solution (2) Givens: F = 100 kgmole/h , 𝑃 = 1 𝑎𝑡𝑚 , 𝑇 = 30°𝐶 & 𝑅 = 1.2 𝑅𝑚𝑖𝑛 𝑥𝑓 = 0.6 , 𝑥𝐷 = 0.98 & 𝑥𝑤 = 0.03 Answer: a. Flowrates of the top and the bottom products F = D + W D + W = 100  (1) 𝑭. 𝒙𝒇 = 𝑫. 𝒙𝑫 +𝑾. 𝒙𝒘 100 ∗ 0.6 = 0.98 𝐷 + 0.03 𝑊  (2) From (1) & (2) D = 60 kgmole/h , W = 40 kgmole/h
  • 14. Solution (2) b. Number of ideal plates • Draw the equilibrium curve Using the given relative volatility, assume xA to get yA at equilibrium 𝒚𝑨 = 𝜶. 𝒙𝑨 𝟏 + (𝜶 − 𝟏) 𝒙𝑨 xA yA 0 0 0.1 0.217 0.3 0.517 0.5 0.714 0.7 0.854 0.9 0.957 1 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 y A xA
  • 15. Solution (2) b. Number of ideal plates and feed location • Determine Rmin 𝒒 = 𝑯𝑽 − 𝒉𝒇 𝑯𝑽 − 𝒉𝑳 = 𝑯𝑽 − 𝒉𝒇 𝝀 𝜆 = 0.6 ∗ 7400 + 0.4 ∗ 8000 = 7640 cal/gmole 𝐶𝑃𝑚𝑖𝑥 = 𝑥𝑖 ∗ 𝐶𝑃𝑖 = 0.6* 0.43+ 0.4*0.45 = 0.438 cal/g.°C Mavg = 0.6 * 78 + 0.4 * 92 = 83.6 g/gmole 𝐻𝑉 − ℎ𝑓 = 𝜆 + 𝐶𝑃𝑚𝑖𝑥 ∗ 𝑇𝐵𝑢𝑏𝑏𝑙𝑒 − 𝑇𝑓 = 7640 + 0.438 ∗ 90 − 30 ∗ 83.6 = 9837.008 cal/gmole 𝑞 = 𝐻𝑉 − ℎ𝑓 𝜆 = 9837.008 7640 = 1.288
  • 16. Solution (2) b. Number of ideal plates and feed location Slope of q-line = 𝒒 𝒒 −𝟏 = 𝟒. 𝟒𝟕𝟐 • Determine Rmin 𝑥𝐷 𝑅𝑚𝑖𝑛 + 1 = 0.51 Rmin = 0.92 R = 1.2 * Rmin = 1.104 𝑥𝐷 𝑅 + 1 = 0.466 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 y A xA
  • 17. Solution (2) b. Number of ideal plates and feed location NTS = 17.7 + Reboiler 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 y A xA
  • 18. Solution (2) c. Steam consumption if saturated steam at 3 atm is available. Q r = mst.lst = V’.lr lr = yr * lA + (1 - yr ) * lB lr = 0.07*7400 + 0.93*8000 = 7958 cal/gmole Slope of op. line in bottom section = 𝐿′ 𝑉′ = 1.25 L’ = V’ + W L’ = 200 kgmole/h & V’ = 160 kgmole/h Q r = V’.lr = 160 * 7958 *1000 = 1273.28*106 cal/h lst. = 517*18*1000 = 9306*103 cal/kmole Q r = mst.lst = 1273.28*106  mst. = 136.82 kmole = 2462.82 kg 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 y A xA
  • 19. Solution (2) d. Cooling water consumption if cooling water at 30°C is available and left the system at 45°C. Qcond=V1 . lmix =mw . Cpw . ΔT V1 = Lo + D Lo = R * D = 1.104* 60 = 66.24 kmole  V1 = 126.24 kmole/h lmix = (0.98*7400 + 0.02*8000) * 1000 = 7412*103 cal/kmole Qcond. = 935690*103 cal/h Cpw = 1 cal/g.°C ΔT = 15°C Qcond = mw . Cpw . ΔT  mw = 62379.3 kg/h
  • 20. Special cases in Binary systems 1. Enriching Section: • Feed is saturated vapor • NTS in bottom section = 0 XD XW XF
  • 21. Special cases in Binary systems 2. Stripping Section: • Feed is saturated liquid • NTS in top section = 0 XD XW XF
  • 22. Special cases in Binary systems 3. Complex Feed or Multiple feeds: • Feed (1) is saturated liquid • Feed (2) is saturated vapor • The slope of the middle section operating line = 𝐿′ 𝑉′ • Where, • L’ = F1 + L • V’ = V XD XF1 XW 1 R xD  (XD,XD) (XW,XW ) XF2 L’/V’
  • 23. Special cases in Binary systems 4. Top Side Product: • The top product is saturated liquid • The middle section operating line is determined using: 𝑥 = 𝑦 = 𝑆 . 𝑥𝑠 + 𝐷 . 𝑥𝐷 𝑆 + 𝐷 XD XS XW 1 R xD  (XD,XD) (XW,XW) XF x=y
  • 24. Special cases in Binary systems 5. Bottom Side Product: • The bottom product is saturated liquid • The middle section operating line is determined using: 𝑥 = 𝑦 = 𝑆 . 𝑥𝑠 + 𝑊 . 𝑥𝑊 𝑆 + 𝑊 XW 1 R xD  (XD,XD) (XW,XW ) XS x=y XD XF
  • 25. Special cases in Binary systems 6. Open Steam: • The bottom section operating line is determined by matching (xw, xw) with (x,y) that calculated using the following equation: 𝑥 = 𝑦 = 𝑊 . 𝑥𝑊 𝑊 − 𝑆 XD XF XW 1 R xD  (XD,XD) (XW,ys) S W x W W  .
  • 26. Example (3) A continuous distillation is supplied with two equimolar feed streams, one is saturated liquid containing 40% benzene and the other is saturated vapor with 20% benzene. The required top product is 98% benzene while the bottom product is 2% benzene. Reflux ratio used is 4. a. Calculate the required number of theoretical stages and the correct feed location of each feed. b. If the two streams are to be mixed before entering the tower, find the required number of stages. Equilibrium data are given below: Mole % of benzene in liquid phase 0 10 20 30 40 50 60 70 80 90 95 100 Mole % of benzene in vapor phase 0 20.8 37.2 50.7 61.9 71.3 79.1 85.7 91.2 95.9 98 100
  • 27. Solution (3) Assume F1 = F2 = 100 mole F1 + F2 = D + W = 200  (1) 𝐹1 . 𝑥𝑓1 + 𝐹2 . 𝑥𝑓2 = 𝐷 . 𝑥𝐷 + 𝑊 . 𝑥𝑤  (2) From (1) & (2) D = 58.3 mole W = 141.7 mole XD XF1 XW 1 R xD  (XD,XD) (XW,XW ) XF2 L’/V’
  • 28. Solution (3) 𝑥𝐷 𝑅+1 = 0.196  get the top section op. line L = D * R = 233.2 mole L’ = F1 + L = 333.2 mole V’ = V = L + D = 291.5 mole Slope of the middle section op. line = 𝐿′ 𝑉′ = 1.143  Get the middle section op. line Then calculate the number of stages XD XF1 XW 1 R xD  (XD,XD) (XW,XW ) XF2 L’/V’
  • 29. Solution (3) The final shape will be: 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 y A xA
  • 30. Solution (3) b. If the two feeds are mixed together: Assume F1 = F2 = 100 mole F1 + F2 = F = 200 𝐹1 . 𝑥𝑓1 + 𝐹2 . 𝑥𝑓2 = 𝐹 . 𝑥𝑓  𝑥𝑓 = 0.3 Then begin to solve as mentioned in example 2 (b)