Chemical Controls on Ore Formation
CuClo +FeCl2
o + 2H2S + 0.5O2= CuFeS2 + 3H+ + 3Cl- + 0.5H2O
Deposition of Chalcopyrite (CuFeS2)
Deposition favoured by an increase in f O2,
an increase in f H2S and an increase in pH
What about temperature?
Decreasing Temperature – the Main Control
on Porphyry Copper Ore Formation?
(Hezarkhani and Williams-Jones, 1998)
Modelling ore deposition in the Sungun porphyry, Iran.
Solubility of chalcopyrite in a 1 m NaCl solution.
Copper solubility
drops to ~ 4,000
ppm at 400 oC,
the temperature of
ore formation and
1 ppm at 300 oC
Decreasing Temperature – the Main Control
on Porphyry Copper Ore Formation
(Landtwing et al., 2005)
Copper concentrations in fluuid inclusions of the
Bingham porphyry, USA
Cu-Mo Zoning in Porphyry Systems
Porphyry Cu-Mo
deposits are commonly
zoned with a deeper,
higher temperature
molybdenite-rich zone
and a shallower, lower
temperature
chalcopyrite-rich zone.
Cooling of an aqueous
fluid initially containing
2 m NaCl, 0.5 m KCl,
4000 ppm Cu and 1000
ppm Mo in equilibrium
with K-feldspar,
muscovite and quartz.
Magma Emplacement, and the Nature of
the Exsolved Fluid
0.01 0.1 1 10 100
0
500
1000
1500
0
1.5
3.0
4.5
Vapour
Liquid
600C
800C
Halite
H2O-NaCl
V
V L
L
H
Magmatic
fluid
Pressure
(bar)
Depth
(Km)
Fluid inclusions
NaCl wt.%
Transport of Metals
by Vapour?
Extinct fumarole
Summit of Merapi volcano, Indonesia
Fumarole emitting magmatic
gases at 600 oC
Mo3O8.nH2O
Ilsemanite
Quartz
monz
onite
porphyry
E
quigranular
monz
onite
>
0
.
7
%
C
u
>
0
.
7
%
C
u
>
0
.
3
5
%
C
u
>
0
.
3
5
%
Cu
>
0
.
3
5
%
C
u
< 0.35% Cu
S
edimentary
R
ocks
upper lim it of
critical-type
inclus
ions
1
-
5
v
o
l
.
%
q
u
a
r
t
z
v
e
i
n
s
1
-
5
v
o
l.
%
q
u
a
rt
z
v
e
i
n
s
< 1 vol %
quartz veins
5-10 vol. %
quartz veins
brine inclusions
critical-type inclusions
vapor-rich inclusions
2.5
3.0
3.5
2.0
P
aleo-depth
(k
m)
NNW
halite
opaq ue
va por
va por
va por
va por
sylvite
liq uid
liq uid
liq uid
chalc opyrite
10 mm
10 mm
10 mm
hema tite
1997 Pit
SS
E
The Bingham Porphyry Deposit - A Case
for the Vapour Transport of Copper
(Williams-Jones and Heinrich, 2005)
The Solubility of Chalcopyrite in Water
Vapour
Increasing PH2O promotes hydration (and solubility)
and increasing temperature inhibits hydration.
Migdisov et al. (2014)
From Hypogene to Supergene
Supergene
Hypogene
Chalcopyrite
Bornite
Malachite
Oxidised zone
Primary zone
Enriched zone
Leached zone
Mineralized gravel
Mineralized bedrock
Barren gravel
Supergene enrichment
FeS2 + H2O + 7/2O2= Fe2+ + 2SO4
2- + 2H+
2Fe2+ + 2H2O + 1/2O2 = Fe2O3 + 4H+; 2Cu+ + H2O = Cu2O + 2H+
2Cu+ + SO4
2- = Cu2S + 4O2
Leached zone – acidity creation
CuFeS2 + 4O2= Fe2+ + Cu2+ + 2SO4
2-
Oxidised zone – Fe and Cu oxides, acidity creation
Enriched zone – reduction and sulphide deposition