LinkedIn emplea cookies para mejorar la funcionalidad y el rendimiento de nuestro sitio web, así como para ofrecer publicidad relevante. Si continúas navegando por ese sitio web, aceptas el uso de cookies. Consulta nuestras Condiciones de uso y nuestra Política de privacidad para más información.
LinkedIn emplea cookies para mejorar la funcionalidad y el rendimiento de nuestro sitio web, así como para ofrecer publicidad relevante. Si continúas navegando por ese sitio web, aceptas el uso de cookies. Consulta nuestra Política de privacidad y nuestras Condiciones de uso para más información.
Publicado el
Uncovering new, valuable insights from big data requires organizations to collect, store, and analyze increasing volumes of data from multiple, often disparate sources at disparate points in time. This makes it difficult to handle big data with data warehouses or relational database management systems alone. A Data Lake allows you to store massive amounts of data in its original form, without the need to enforce a predefined schema, enabling a far more agile and flexible architecture, which makes it easier to gain new types of analytical insights from your data.
Learning Objectives:
• Introduce key architectural concepts to build a Data Lake using Amazon S3 as the storage layer
• Explore storage options and best practices to build your Data Lake on AWS
• Learn how AWS can help enable a Data Lake architecture
• Understand some of the key architectural considerations when building a Data Lake
• Hear some important Data Lake implementation considerations when using Amazon S3 as your Data Lake
Parece que ya has recortado esta diapositiva en .
Inicia sesión para ver los comentarios