SlideShare a Scribd company logo
1 of 40
Download to read offline
Program 1:
clear all;close all;clc;clf;
t=0:0.01*pi:4*pi;
x=sin(t);
y=x;
z=x;
n=length(y);
for i=1:n
if (x(i)<0)
y(i)=0;
z(i)=-1*z(i);
end
end
u=figure(1);
set(u,'color','w')
subplot 221
plot(t,x)
title('input:sinusoidal wave')
subplot 222
plot(t,y)
title('half wave rectifier')
subplot 223
plot(t,z)
title('full wave rectifier')
subplot 224
plot(t,z,'--')
hold on
line([pi/2 3*(pi/2)-0.5],[1 -1*sin(3*(pi/2)-
0.5)]);
line([3*pi/2 5*(pi/2)-0.5],[1 1*sin(5*(pi/2)-
0.5)]);
line([5*pi/2 7*(pi/2)-0.5],[1 -1*sin(7*(pi/2)-
0.5)]);
title('smoothed rectifier signal')
Program 2:
clc;close all;clear all;
t=0:0.1*pi:2*pi;
n=length(t);
r=0.5*ones(1,n);
r1=ones(1,n);
[x y]=pol2cart(t,r);
[x1 y1]=pol2cart(t,r1);
x2=x1+1;
e=figure(1)
set(e,'color','w');
subplot 221
plot(x,y)
title('radius=0.5m')
axis([-3 3 -3 3]);
subplot 222
plot(x1,y1)
title('radius=1m')
0 5 10 15
-1
-0.5
0
0.5
1
input:sinusoidal wave
0 5 10 15
0
0.5
1
half wave rectifier
0 5 10 15
0
0.5
1
full wave rectifier
0 5 10 15
0
0.5
1
smoothed rectifier signal
axis([-3 3 -3 3]);
subplot 223
plot(x2,y1)
title('radius=1m,shifted')
axis([-3 3 -3 3]);
for i=1:2:4
for j=1:2:4
x2=x+i;
y2=y+j;
subplot 224
plot(x2,y2)
text(1.7,2,'core')
title('pcf')
hold on;
end
end
-2 0 2
-2
0
2
radius=0.5m
-2 0 2
-2
0
2
radius=1m
-2 0 2
-2
0
2
radius=1m,shifted
0 1 2 3 4
0
1
2
3
4
core
pcf
corecorecore
Program 3:
clear all;close all;clc;
[x,y,z]=cylinder(5);
[x1,y1,z1]=cylinder;
figure(1)
subplot 221
surf(x1,y1,z1)
subplot 222
surf(x,y,z)
subplot 223
axis square
surf(x,y,z)
hold on
surf(x1,y1,z1)
-1
0
1
-1
0
1
0
0.5
1
-5
0
5
-5
0
5
0
0.5
1
-5
0
5
-5
0
5
0
0.5
1
Program 4:
clear all;close all;clc;
t=0:0.1*pi:2*pi;
subplot 221
cylinder(cos(t))
subplot 222
cylinder(sin(t))
subplot 223
cylinder(exp(t))
subplot 224
cylinder(log(t))
colormap gray
-1
0
1
-1
0
1
0
0.5
1
-1
0
1
-1
0
1
0
0.5
1
-1000
0
1000
-1000
0
1000
0
0.5
1
-2
0
2
-2
0
2
0
0.5
1
Program 5:
clear all;close all;clc;
t=0:0.1*pi:2*pi;
subplot 221
cylinder(cos(t))
subplot 222
cylinder(sin(t))
subplot 223
cylinder(exp(t))
subplot 224
cylinder(log(t))
colormap spring
-1
0
1
-1
0
1
0
0.5
1
-1
0
1
-1
0
1
0
0.5
1
-1000
0
1000
-1000
0
1000
0
0.5
1
-2
0
2
-2
0
2
0
0.5
1
Program 6:
clear all;close all;clc;
t=0:0.1*pi:2*pi;
subplot 321
cylinder(2+sin(t))
subplot 322
cylinder(2+cos(t))
subplot 323
cylinder(t.^4)
subplot 324
cylinder(t.^2)
subplot 325
cylinder(exp(-t)+2)
subplot 326
cylinder(t.^2)
hold on
cylinder(t)
-5
0
5
-5
0
5
0
0.5
1
-5
0
5
-5
0
5
0
0.5
1
-2000
0
2000
-2000
0
2000
0
0.5
1
-50
0
50
-50
0
50
0
0.5
1
-5
0
5
-5
0
5
0
0.5
1
-50
0
50
-50
0
50
0
0.5
1
Program 7:
clear all;close all;clc;
syms x;
y=sin(x);
subplot 211
ezplot(y)
grid on
subplot 212
ezplot(y,[0:4*pi])
-6 -4 -2 0 2 4 6
-1
-0.5
0
0.5
1
x
sin(x)
0 2 4 6 8 10 12
-1
-0.5
0
0.5
1
x
sin(x)
Program 8:
clear all;close all;clc;
syms t;
y=sin(t);
figure(1)
subplot 221
ezsurf(y,[-pi pi])
subplot 222
ezsurf(y)
z=sin(t)*cos(3*t);
subplot 223
ezpolar(z)
subplot 224
ezpolar(z,[0 pi]);
-2
0
2
-2
0
2
-1
0
1
t
sin(t)
y -5
0
5
-5
0
5
-1
0
1
t
sin(t)
y
0.5
1
30
210
60
240
90
270
120
300
150
330
180 0
r = cos(3 t) sin(t)
0.5
1
30
210
60
240
90
270
120
300
150
330
180 0
r = cos(3 t) sin(t)
Program 9:
clear all;close all;clc;
syms t;
y=t^3;
subplot 221
ezplot(y)
y1=diff(y);
y2=diff(y,2);
y3=diff(y,3);
subplot 222
ezplot(y1)
subplot 223
ezplot(y2)
subplot 224
ezplot(y3)
-5 0 5
-200
-100
0
100
200
t
t3
-5 0 5
0
50
100
t
3 t2
-5 0 5
-40
-20
0
20
40
t
6 t
-5 0 5
5
5.5
6
6.5
7
x
6
Program 10:
clear all;close all;clc;
t=1:0.1:5;
y=t.^2;
dy1=diff(y)./diff(t);
td1=t(2:length(t));
figure(1)
subplot 121
plot(t,y)
grid on
title('using numerical')
subplot 122
plot(td1,dy1)
title('numerical diff')
1 2 3 4 5
0
5
10
15
20
25
using numerical
1 2 3 4 5
2
3
4
5
6
7
8
9
10
numerical diff
Program 11:
clear all;close all;clc;
t=1:0.1:5;
y=rand(1,length(t));
dy1=diff(y)./diff(t);
td1=t(2:length(t));
subplot 211
plot(t,y)
title('noise signal over 5 second')
subplot 212
plot(td1,dy1)
title('the rate of change of the noise w.r.t
time')
1 1.5 2 2.5 3 3.5 4 4.5 5
0
0.5
1
noise signal over 5 second
1 1.5 2 2.5 3 3.5 4 4.5 5
-10
-5
0
5
10
the rate of change of the noise w.r.t time
:12Program
clear all;close all;clc;
x=0:0.1:10;
y=0:0.1:10;
[x1 y1]=meshgrid(x,y);
for i=1:length(x)
for j=1:length(y)
if (y1(i,j)>=0 && y1(i,j)<2)
z1(i,j)=0;
elseif (y1(i,j)>=2 && y1(i,j)<4)
z1(i,j)=2;
elseif (y1(i,j)>=4 && y1(i,j)<6)
z1(i,j)=4;
elseif (y1(i,j)>=6 && y1(i,j)<8)
z1(i,j)=6;
else
z1(i,j)=8;
end
end
end
surf(x1,y1,z1)
0
2
4
6
8
10
0
5
10
0
2
4
6
8
:13Program
clear all;close all;clc;
phi=0:0.01*pi:2*pi;
n=length(phi);
r=ones(1,n);
a=figure(1);
set(a,'color','g')
subplot 121
e=polar(phi,r);
set(e,'linewidth',4)
subplot 122
[x y]=pol2cart(phi,r);
plot(x,y,'k')
0.5
1
30
210
60
240
90
270
120
300
150
330
180 0
-1 -0.5 0 0.5 1
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
:14Program
clear all;close all;clc;
phi=0:0.01*pi:2*pi;
n=length(phi);
r=ones(1,n);
a=figure(1);
set(a,'color','g')
subplot 121
e=polar(phi,r);
set(e,'linewidth',4)
subplot 122
[x y]=pol2cart(phi,r);
plot(x,y,'k')
hold on
for i=1:length(x)/4;
if (sqrt(x(i).^2+y(i).^2)<=1)
line([ 0 x(i)],[0 y(i)])
end
end
0.5
1
30
210
60
240
90
270
120
300
150
330
180 0
-1 -0.5 0 0.5 1
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
:15Program
clear all;close all;clc;
a=[50 0;0 50];
b=repmat(a,[3 3]);
e=figure(1)
set(e,'color','m')
image(b)
colormap gray
axis off
Program 16:
clear all;close all;clc;
t=0:0.1*pi:4*pi;
y=sin(t);
n=length(t);
noise=0.1*randn(1,n);
ynoise=y+noise;
r=figure(1);
set(r,'color','g')
subplot 221
plot(t,y,'r')
title('signal')
subplot 222
plot(t,noise,'k')
title('noise')
subplot 223
plot(t,ynoise,'color','b')
title('ynoise')
0 5 10 15
-1
-0.5
0
0.5
1
signal
0 5 10 15
-0.4
-0.2
0
0.2
0.4
noise
0 5 10 15
-2
-1
0
1
2
ynoise
:17Program
clear all;close all;clc;
t=0:0.1*pi:4*pi;
n=length(t);
y1=2*sin(0.5*t);%first input
y2=2*cos(0.5*t);%second input
y3=cos(5*t); %carrier
ya=y1.*y3;
yb=y2.*y3;
subplot 221
plot(t,y1,'-.',t,y2,'-')
subplot 222
plot(t,y3)
title('carrier')
subplot 223
plot(t,ya)
title('carrier * sin')
subplot 224
plot(t,yb)
title('carrier *cos')
0 5 10 15
-2
-1
0
1
2
0 5 10 15
-1
-0.5
0
0.5
1
carrier
0 5 10 15
-2
-1
0
1
2
carrier * sin
0 5 10 15
-2
-1
0
1
2
carrier *cos
Program 18:
clear all;close all;clc;
t=0:0.01*pi:4*pi;
x=cos(4*pi*t)+cos(8*pi*t)+cos(12*pi*t);
fx=fft(x,512);
w=1/(0.01*pi*2)*linspace(0,1,256);
subplot 421
plot(t,x)
xlabel('time')
ylabel('amplitude')
subplot 422
plot(w,abs(fx(1:256)))
xlabel('frequency HZ')
ylabel('amplitude')
axis([0 20 0 200])
filter=ones(1,256);
filter(1,90:256)=0;
subplot 423
plot(w,filter)
xlabel('frequency HZ')
ylabel('amplitude')
axis([0 20 0 2])
subplot 424
result=abs(fx(1:256)).*filter;
plot(w,result)
xlabel('frequency HZ')
ylabel('amplitude')
axis([0 20 0 200])
subplot 413
plot(w,result)
xlabel('frequency')
ylabel('amplitude')
axis([0 16 0 200])
iresult=ifft((fx),length(t));
subplot 414
plot(t,iresult)
xlabel('time')
ylabel('amplitude')
axis([0 14 -2 2])
Program 19:
z=[10 4 6 9 3];
subplot 221
pie(z)
subplot 222
pie(z,[0 0 0 1 0]);
subplot 223
pie(z,[1 1 1 1 1])
subplot 224
pie3(z,[0 0 0 1 0]);
0 2 4 6 8 10 12 14
-2
0
2
4
time
amplitude
0 5 10 15 20
0
100
200
frequency HZ
amplitude
0 5 10 15 20
0
1
2
frequency HZ
amplitude
0 5 10 15 20
0
100
200
frequency HZ
amplitude
0 2 4 6 8 10 12 14 16
0
100
200
frequency
amplitude
0 2 4 6 8 10 12 14
-2
0
2
time
amplitude
Program 20:
clear all ;close all; clc
x=-3:3;
y=x.^2;
bar(x,y)
31%
13%
19%
28%
9%
31%
13%
19%
28%
9%
31%
13%
19%
28%
9%
28%
19%
13%
9%
31%
Program 21:
clear all ;close all; clc
y=round(rand(2,3)*10);
subplot 221
bar(y)
subplot 222
barh(y)
subplot 223
bar(y,'stacked')
subplot 224
bar(y,1)
-3 -2 -1 0 1 2 3
0
1
2
3
4
5
6
7
8
9
Program 22:
clear all;close all;clc
t=0:0.1*pi:2*pi;
x=sin(t);
subplot 221
plot(t,x,'*r')
subplot 222
stem(t,x)
subplot 223
stairs(t,x)
subplot 224
fill(t,x,'g')
1 2
0
2
4
6
8
10
0 5 10
1
2
1 2
0
5
10
15
20
25
1 2
0
2
4
6
8
10
Program 23:
clear all ;close all;clc;
syms x t w a
f1=heaviside(x);
f2=heaviside(x-2);
f3=heaviside(x+2);
f4=heaviside(x+2)-heaviside(x-2);
subplot 221
ezplot(f1,[-5 5])
subplot 222
ezplot(f2,[-5 5])
subplot 223
ezplot(f3,[-5 5])
subplot 224
ezplot(f4,[-5 5])
0 2 4 6 8
-1
-0.5
0
0.5
1
0 2 4 6 8
-1
-0.5
0
0.5
1
0 2 4 6 8
-1
-0.5
0
0.5
1
0 2 4 6 8
-1
-0.5
0
0.5
1
Program 24:
clear all ;close all;clc;clf
t=0:0.01*pi:4*pi;
vint=cos(2*pi*4*t);
fvint=fft(vint,512);
w=1/(0.01*pi*2)*linspace(0,1,256);
subplot 211
plot(t,vint)
xlabel('time')
ylabel('amplitude')
subplot 212
plot(w,abs(fvint(1:256)))
xlabel('frequency')
ylabel('magnitude')
-5 0 5
0
0.5
1
x
heaviside(x)
-5 0 5
0
0.5
1
x
heaviside(x - 2)
-5 0 5
0
0.5
1
x
heaviside(x + 2)
-5 0 5
0
0.5
1
x
heaviside(x + 2) - heaviside(x - 2)
Program 25:
clear all ;close all;clc;clf
t=0:0.01*pi:4*pi;
x=cos(t);
y=sin(t);
plot(t,x,'-r',t,y,'.g')
legend('cos','sin')
title('sinusoidal signals')
xlabel('time')
ylabel('amplitude')
0 2 4 6 8 10 12 14
-1
-0.5
0
0.5
1
time
amplitude
0 2 4 6 8 10 12 14 16
0
50
100
150
200
frequency
magnitude
0 2 4 6 8 10 12 14
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
time
amplitude
sinusoidal signals
cos
sin
Program 26:
z=magic(3);
subplot 221
bar(z)
subplot 222
bar(z,'stacked')
subplot 223
bar(z,'grouped')
subplot 224
barh(z,'stacked')
1 2 3
0
2
4
6
8
10
1 2 3
0
5
10
15
1 2 3
0
2
4
6
8
10
0 5 10 15
1
2
3
Program 27:
z=magic(2);
subplot 221
bar(z)
subplot 222
bar(z,'c')
subplot 223
bar(z,'histic')
subplot 224
barh(z,'histic')
1 2
0
1
2
3
4
1 2
0
1
2
3
4
1 2
0
1
2
3
4
0 1 2 3 4
1
2
Program 28:
z=round(10.*rand(1,10));
figure(4)
subplot 211
hist(z,5)
subplot 212
hist(z,7)
1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
0 2 4 6 8 10 12
0
1
2
3
4
Program 29:
t=0:0.01*pi:2*pi;
y=sin(2*t).*cos(2*t);
figure(8)
subplot 221
polar(t,y,'--g')
subplot 222
polar(t,y,'bs')
subplot 223
polar(t,y,'dr')
subplot 224
f=polar(t,y);
set(f,'color','m')
set(f,'linewidth',2)
0.25
0.5
30
210
60
240
90
270
120
300
150
330
180 0
0.25
0.5
30
210
60
240
90
270
120
300
150
330
180 0
0.25
0.5
30
210
60
240
90
270
120
300
150
330
180 0
0.25
0.5
30
210
60
240
90
270
120
300
150
330
180 0
Program 30:
x=[1:10];
y=2.*rand(1,10);
figure(1)
set(figure(1),'color','yellow');
subplot 221
scatter(x,y)
subplot 222
scatter(x,y,'r')
subplot 223
scatter(x,y,3,'g')
subplot 224
stem(x,y)
0 5 10
0
0.5
1
1.5
2
0 5 10
0
0.5
1
1.5
2
0 5 10
0
0.5
1
1.5
2
0 5 10
0
0.5
1
1.5
2
Program 31:
clear all;close all;clc
[x,y,z]=sphere(100);
x1=x(:);
y1=y(:);
z1=z(:);
figure(1)
set(figure(1),'color','y')
scatter3(x1,y1,z1)
-1
-0.5
0
0.5
1
-1
-0.5
0
0.5
1
-1
-0.5
0
0.5
1
Program 32:
clear all;close all;clc
[x,y,z]=sphere(100);
x1=x(:);
y1=y(:);
z1=z(:);
figure(1)
set(figure(1),'color','y')
subplot 211
scatter3(x1,y1,z1,2,'k')
subplot 212
scatter3(x1,y1,z1,10,'g')
-1
-0.5
0 0.5
1
-1
-0.5
0
0.5
1
-1
0
1
-1
-0.5
0 0.5
1
-1
-0.5
0
0.5
1
-1
0
1
Program 32:
x=0:10;
y=0:10;
[xm ym]=meshgrid(x,y);
z=xm.^2/2+ym.^2/4;
figure(1)
subplot 221
mesh(z)
subplot 222
contour(x,y,z)
subplot 223
surf(x,y,z)
subplot 224
surfc(x,y,z)
0
10
20
0
10
20
0
50
100
0 5 10
0
2
4
6
8
10
0
5
10
0
5
10
0
50
100
0
5
10
0
5
10
0
50
100
Program 33:
%system of linear equation
%cramer method
a=[1 2 3;2 3 4;4 2 5];
b=[4;5;1];
d1=a;
d1(:,1)=b;
x(1)=det(d1)/det(a)
d2=a;
d2(:,2)=b;
x(2)=det(d2)/det(a)
d3=a;
d3(:,3)=b;
x(3)=det(d3)/det(a)
command window:
x =
-1.4000 1.8000 0.6000
Program 34:
%system of linear equation
%Gass elimination
a=[1 2 3;2 3 4;4 2 5];
b=[4;5;1];
x=inv(a)*b
x =
-1.4000
1.8000
0.6000
x=ab
x =
-1.4000
1.8000
0.6000
Program 35:
Program 36:
>> y=logspace(1,5);
>> size(y)
ans =
1 50
>> plot(y)
>> z=logspace(1,5,5);
>> area(z)
1 1.5 2 2.5 3 3.5 4 4.5 5
0
1
2
3
4
5
6
7
8
9
10
x 10
4
0 5 10 15 20 25 30 35 40 45 50
0
1
2
3
4
5
6
7
8
9
10
x 10
4
Program 37:
x=ones(10,10);
x(3,3)=10;
x(3,7)=10;
x(6,5)=10;
x(8,4:6)=10;
image(x)
colormap copper(2)
%colormap spring(2)
%colormap hsv
%colormap summer
1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8
9
10
Matlab plotting

More Related Content

What's hot

08 interpolation lagrange
08 interpolation   lagrange08 interpolation   lagrange
08 interpolation lagrange
Mohammad Tawfik
 
Permutation graphsandapplications
Permutation graphsandapplicationsPermutation graphsandapplications
Permutation graphsandapplications
Joe Krall
 
Numerical analysis multivariable unconstrained
Numerical analysis  multivariable unconstrainedNumerical analysis  multivariable unconstrained
Numerical analysis multivariable unconstrained
SHAMJITH KM
 

What's hot (20)

Curve fitting
Curve fitting Curve fitting
Curve fitting
 
NUMERICAL METHODS
NUMERICAL METHODSNUMERICAL METHODS
NUMERICAL METHODS
 
Matlab introduction
Matlab introductionMatlab introduction
Matlab introduction
 
Probability And Its Axioms
Probability And Its AxiomsProbability And Its Axioms
Probability And Its Axioms
 
Matlab ppt
Matlab pptMatlab ppt
Matlab ppt
 
Curve fitting of exponential curve
Curve fitting of exponential curveCurve fitting of exponential curve
Curve fitting of exponential curve
 
Matlab Basic Tutorial
Matlab Basic TutorialMatlab Basic Tutorial
Matlab Basic Tutorial
 
Matlab plotting
Matlab plottingMatlab plotting
Matlab plotting
 
Beta gamma functions
Beta gamma functionsBeta gamma functions
Beta gamma functions
 
K10765 Matlab 3D Mesh Plots
K10765 Matlab 3D Mesh PlotsK10765 Matlab 3D Mesh Plots
K10765 Matlab 3D Mesh Plots
 
Numerical differentiation integration
Numerical differentiation integrationNumerical differentiation integration
Numerical differentiation integration
 
Parseval's Theorem
Parseval's TheoremParseval's Theorem
Parseval's Theorem
 
Gamma & Beta functions
Gamma & Beta functionsGamma & Beta functions
Gamma & Beta functions
 
Moment generating function
Moment generating functionMoment generating function
Moment generating function
 
Network and Tree in Graph Theory
Network and Tree in Graph TheoryNetwork and Tree in Graph Theory
Network and Tree in Graph Theory
 
Lesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic FunctionsLesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic Functions
 
08 interpolation lagrange
08 interpolation   lagrange08 interpolation   lagrange
08 interpolation lagrange
 
derogatory and non derogatory matrices
derogatory and non derogatory matricesderogatory and non derogatory matrices
derogatory and non derogatory matrices
 
Permutation graphsandapplications
Permutation graphsandapplicationsPermutation graphsandapplications
Permutation graphsandapplications
 
Numerical analysis multivariable unconstrained
Numerical analysis  multivariable unconstrainedNumerical analysis  multivariable unconstrained
Numerical analysis multivariable unconstrained
 

Viewers also liked (6)

Manual for the MATLAB program to solve the 2D truss
Manual for the MATLAB program to solve the 2D trussManual for the MATLAB program to solve the 2D truss
Manual for the MATLAB program to solve the 2D truss
 
solution for 2D truss1
solution for 2D truss1solution for 2D truss1
solution for 2D truss1
 
Fem in matlab
Fem in matlabFem in matlab
Fem in matlab
 
Isoparametric mapping
Isoparametric mappingIsoparametric mapping
Isoparametric mapping
 
MATLAB Programs For Beginners. | Abhi Sharma
MATLAB Programs For Beginners. | Abhi SharmaMATLAB Programs For Beginners. | Abhi Sharma
MATLAB Programs For Beginners. | Abhi Sharma
 
Matlab Introduction
Matlab IntroductionMatlab Introduction
Matlab Introduction
 

Similar to Matlab plotting

Fourier series example
Fourier series exampleFourier series example
Fourier series example
Abi finni
 
Matlab fair-record-model
Matlab fair-record-modelMatlab fair-record-model
Matlab fair-record-model
ajaydev1111
 

Similar to Matlab plotting (20)

DSP LAB COMPLETE CODES.docx
DSP LAB COMPLETE CODES.docxDSP LAB COMPLETE CODES.docx
DSP LAB COMPLETE CODES.docx
 
Gilat_ch05.pdf
Gilat_ch05.pdfGilat_ch05.pdf
Gilat_ch05.pdf
 
Digital Signal Processing
Digital Signal ProcessingDigital Signal Processing
Digital Signal Processing
 
Newton two Equation method
Newton two Equation  method Newton two Equation  method
Newton two Equation method
 
Applied Digital Signal Processing 1st Edition Manolakis Solutions Manual
Applied Digital Signal Processing 1st Edition Manolakis Solutions ManualApplied Digital Signal Processing 1st Edition Manolakis Solutions Manual
Applied Digital Signal Processing 1st Edition Manolakis Solutions Manual
 
Dsp iit workshop
Dsp iit workshopDsp iit workshop
Dsp iit workshop
 
Fourier series example
Fourier series exampleFourier series example
Fourier series example
 
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
 
Crib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsCrib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC exams
 
Matlab file
Matlab file Matlab file
Matlab file
 
ME_541_HW_04
ME_541_HW_04ME_541_HW_04
ME_541_HW_04
 
Solution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 IntegrationSolution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 Integration
 
Ecg programa simulado
Ecg programa simuladoEcg programa simulado
Ecg programa simulado
 
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by AntonSolutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
 
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
Adaptive dynamic programming algorithm for uncertain nonlinear switched systemsAdaptive dynamic programming algorithm for uncertain nonlinear switched systems
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
 
Numerical Method Assignment
Numerical Method AssignmentNumerical Method Assignment
Numerical Method Assignment
 
Matlab fair-record-model
Matlab fair-record-modelMatlab fair-record-model
Matlab fair-record-model
 
Matlab programs
Matlab programsMatlab programs
Matlab programs
 
Gradually Varied Flow in Open Channel
Gradually Varied Flow in Open ChannelGradually Varied Flow in Open Channel
Gradually Varied Flow in Open Channel
 

More from Amr Rashed

More from Amr Rashed (17)

introduction to embedded system presentation
introduction to embedded system presentationintroduction to embedded system presentation
introduction to embedded system presentation
 
Discrete Math Ch5 counting + proofs
Discrete Math Ch5 counting + proofsDiscrete Math Ch5 counting + proofs
Discrete Math Ch5 counting + proofs
 
Discrete Math Chapter: 8 Relations
Discrete Math Chapter: 8 RelationsDiscrete Math Chapter: 8 Relations
Discrete Math Chapter: 8 Relations
 
Discrete Math Chapter 1 :The Foundations: Logic and Proofs
Discrete Math Chapter 1 :The Foundations: Logic and ProofsDiscrete Math Chapter 1 :The Foundations: Logic and Proofs
Discrete Math Chapter 1 :The Foundations: Logic and Proofs
 
Discrete Math Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums, ...
Discrete Math Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums, ...Discrete Math Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums, ...
Discrete Math Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums, ...
 
Introduction to deep learning
Introduction to deep learningIntroduction to deep learning
Introduction to deep learning
 
Discrete Structure Mathematics lecture 1
Discrete Structure Mathematics lecture 1Discrete Structure Mathematics lecture 1
Discrete Structure Mathematics lecture 1
 
Implementation of DNA sequence alignment algorithms using Fpga ,ML,and CNN
Implementation of DNA sequence alignment algorithms  using Fpga ,ML,and CNNImplementation of DNA sequence alignment algorithms  using Fpga ,ML,and CNN
Implementation of DNA sequence alignment algorithms using Fpga ,ML,and CNN
 
امن نظم المعلومات وامن الشبكات
امن نظم المعلومات وامن الشبكاتامن نظم المعلومات وامن الشبكات
امن نظم المعلومات وامن الشبكات
 
Machine learning workshop using Orange datamining framework
Machine learning workshop using Orange datamining frameworkMachine learning workshop using Orange datamining framework
Machine learning workshop using Orange datamining framework
 
مقدمة عن الفيجوال بيسك 9-2019
مقدمة عن الفيجوال بيسك  9-2019مقدمة عن الفيجوال بيسك  9-2019
مقدمة عن الفيجوال بيسك 9-2019
 
Deep learning tutorial 9/2019
Deep learning tutorial 9/2019Deep learning tutorial 9/2019
Deep learning tutorial 9/2019
 
Deep Learning Tutorial
Deep Learning TutorialDeep Learning Tutorial
Deep Learning Tutorial
 
License Plate Recognition
License Plate RecognitionLicense Plate Recognition
License Plate Recognition
 
Introduction to FPGA, VHDL
Introduction to FPGA, VHDL  Introduction to FPGA, VHDL
Introduction to FPGA, VHDL
 
Introduction to Matlab
Introduction to MatlabIntroduction to Matlab
Introduction to Matlab
 
Digital image processing using matlab
Digital image processing using matlab Digital image processing using matlab
Digital image processing using matlab
 

Recently uploaded

DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
MayuraD1
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
Kamal Acharya
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptx
chumtiyababu
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
jaanualu31
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 

Recently uploaded (20)

FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEGEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal load
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to Computers
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptx
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planes
 

Matlab plotting

  • 1. Program 1: clear all;close all;clc;clf; t=0:0.01*pi:4*pi; x=sin(t); y=x; z=x; n=length(y); for i=1:n if (x(i)<0) y(i)=0; z(i)=-1*z(i); end end u=figure(1); set(u,'color','w') subplot 221 plot(t,x) title('input:sinusoidal wave') subplot 222 plot(t,y) title('half wave rectifier') subplot 223 plot(t,z) title('full wave rectifier') subplot 224 plot(t,z,'--') hold on line([pi/2 3*(pi/2)-0.5],[1 -1*sin(3*(pi/2)- 0.5)]); line([3*pi/2 5*(pi/2)-0.5],[1 1*sin(5*(pi/2)- 0.5)]); line([5*pi/2 7*(pi/2)-0.5],[1 -1*sin(7*(pi/2)- 0.5)]); title('smoothed rectifier signal')
  • 2. Program 2: clc;close all;clear all; t=0:0.1*pi:2*pi; n=length(t); r=0.5*ones(1,n); r1=ones(1,n); [x y]=pol2cart(t,r); [x1 y1]=pol2cart(t,r1); x2=x1+1; e=figure(1) set(e,'color','w'); subplot 221 plot(x,y) title('radius=0.5m') axis([-3 3 -3 3]); subplot 222 plot(x1,y1) title('radius=1m') 0 5 10 15 -1 -0.5 0 0.5 1 input:sinusoidal wave 0 5 10 15 0 0.5 1 half wave rectifier 0 5 10 15 0 0.5 1 full wave rectifier 0 5 10 15 0 0.5 1 smoothed rectifier signal
  • 3. axis([-3 3 -3 3]); subplot 223 plot(x2,y1) title('radius=1m,shifted') axis([-3 3 -3 3]); for i=1:2:4 for j=1:2:4 x2=x+i; y2=y+j; subplot 224 plot(x2,y2) text(1.7,2,'core') title('pcf') hold on; end end -2 0 2 -2 0 2 radius=0.5m -2 0 2 -2 0 2 radius=1m -2 0 2 -2 0 2 radius=1m,shifted 0 1 2 3 4 0 1 2 3 4 core pcf corecorecore
  • 4. Program 3: clear all;close all;clc; [x,y,z]=cylinder(5); [x1,y1,z1]=cylinder; figure(1) subplot 221 surf(x1,y1,z1) subplot 222 surf(x,y,z) subplot 223 axis square surf(x,y,z) hold on surf(x1,y1,z1) -1 0 1 -1 0 1 0 0.5 1 -5 0 5 -5 0 5 0 0.5 1 -5 0 5 -5 0 5 0 0.5 1
  • 5. Program 4: clear all;close all;clc; t=0:0.1*pi:2*pi; subplot 221 cylinder(cos(t)) subplot 222 cylinder(sin(t)) subplot 223 cylinder(exp(t)) subplot 224 cylinder(log(t)) colormap gray -1 0 1 -1 0 1 0 0.5 1 -1 0 1 -1 0 1 0 0.5 1 -1000 0 1000 -1000 0 1000 0 0.5 1 -2 0 2 -2 0 2 0 0.5 1
  • 6. Program 5: clear all;close all;clc; t=0:0.1*pi:2*pi; subplot 221 cylinder(cos(t)) subplot 222 cylinder(sin(t)) subplot 223 cylinder(exp(t)) subplot 224 cylinder(log(t)) colormap spring -1 0 1 -1 0 1 0 0.5 1 -1 0 1 -1 0 1 0 0.5 1 -1000 0 1000 -1000 0 1000 0 0.5 1 -2 0 2 -2 0 2 0 0.5 1
  • 7. Program 6: clear all;close all;clc; t=0:0.1*pi:2*pi; subplot 321 cylinder(2+sin(t)) subplot 322 cylinder(2+cos(t)) subplot 323 cylinder(t.^4) subplot 324 cylinder(t.^2) subplot 325 cylinder(exp(-t)+2) subplot 326 cylinder(t.^2) hold on cylinder(t) -5 0 5 -5 0 5 0 0.5 1 -5 0 5 -5 0 5 0 0.5 1 -2000 0 2000 -2000 0 2000 0 0.5 1 -50 0 50 -50 0 50 0 0.5 1 -5 0 5 -5 0 5 0 0.5 1 -50 0 50 -50 0 50 0 0.5 1
  • 8. Program 7: clear all;close all;clc; syms x; y=sin(x); subplot 211 ezplot(y) grid on subplot 212 ezplot(y,[0:4*pi]) -6 -4 -2 0 2 4 6 -1 -0.5 0 0.5 1 x sin(x) 0 2 4 6 8 10 12 -1 -0.5 0 0.5 1 x sin(x)
  • 9. Program 8: clear all;close all;clc; syms t; y=sin(t); figure(1) subplot 221 ezsurf(y,[-pi pi]) subplot 222 ezsurf(y) z=sin(t)*cos(3*t); subplot 223 ezpolar(z) subplot 224 ezpolar(z,[0 pi]); -2 0 2 -2 0 2 -1 0 1 t sin(t) y -5 0 5 -5 0 5 -1 0 1 t sin(t) y 0.5 1 30 210 60 240 90 270 120 300 150 330 180 0 r = cos(3 t) sin(t) 0.5 1 30 210 60 240 90 270 120 300 150 330 180 0 r = cos(3 t) sin(t)
  • 10. Program 9: clear all;close all;clc; syms t; y=t^3; subplot 221 ezplot(y) y1=diff(y); y2=diff(y,2); y3=diff(y,3); subplot 222 ezplot(y1) subplot 223 ezplot(y2) subplot 224 ezplot(y3) -5 0 5 -200 -100 0 100 200 t t3 -5 0 5 0 50 100 t 3 t2 -5 0 5 -40 -20 0 20 40 t 6 t -5 0 5 5 5.5 6 6.5 7 x 6
  • 11. Program 10: clear all;close all;clc; t=1:0.1:5; y=t.^2; dy1=diff(y)./diff(t); td1=t(2:length(t)); figure(1) subplot 121 plot(t,y) grid on title('using numerical') subplot 122 plot(td1,dy1) title('numerical diff') 1 2 3 4 5 0 5 10 15 20 25 using numerical 1 2 3 4 5 2 3 4 5 6 7 8 9 10 numerical diff
  • 12. Program 11: clear all;close all;clc; t=1:0.1:5; y=rand(1,length(t)); dy1=diff(y)./diff(t); td1=t(2:length(t)); subplot 211 plot(t,y) title('noise signal over 5 second') subplot 212 plot(td1,dy1) title('the rate of change of the noise w.r.t time') 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.5 1 noise signal over 5 second 1 1.5 2 2.5 3 3.5 4 4.5 5 -10 -5 0 5 10 the rate of change of the noise w.r.t time
  • 13. :12Program clear all;close all;clc; x=0:0.1:10; y=0:0.1:10; [x1 y1]=meshgrid(x,y); for i=1:length(x) for j=1:length(y) if (y1(i,j)>=0 && y1(i,j)<2) z1(i,j)=0; elseif (y1(i,j)>=2 && y1(i,j)<4) z1(i,j)=2; elseif (y1(i,j)>=4 && y1(i,j)<6) z1(i,j)=4; elseif (y1(i,j)>=6 && y1(i,j)<8) z1(i,j)=6; else z1(i,j)=8; end end end surf(x1,y1,z1) 0 2 4 6 8 10 0 5 10 0 2 4 6 8
  • 14. :13Program clear all;close all;clc; phi=0:0.01*pi:2*pi; n=length(phi); r=ones(1,n); a=figure(1); set(a,'color','g') subplot 121 e=polar(phi,r); set(e,'linewidth',4) subplot 122 [x y]=pol2cart(phi,r); plot(x,y,'k') 0.5 1 30 210 60 240 90 270 120 300 150 330 180 0 -1 -0.5 0 0.5 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
  • 15. :14Program clear all;close all;clc; phi=0:0.01*pi:2*pi; n=length(phi); r=ones(1,n); a=figure(1); set(a,'color','g') subplot 121 e=polar(phi,r); set(e,'linewidth',4) subplot 122 [x y]=pol2cart(phi,r); plot(x,y,'k') hold on for i=1:length(x)/4; if (sqrt(x(i).^2+y(i).^2)<=1) line([ 0 x(i)],[0 y(i)]) end end 0.5 1 30 210 60 240 90 270 120 300 150 330 180 0 -1 -0.5 0 0.5 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
  • 16. :15Program clear all;close all;clc; a=[50 0;0 50]; b=repmat(a,[3 3]); e=figure(1) set(e,'color','m') image(b) colormap gray axis off
  • 17. Program 16: clear all;close all;clc; t=0:0.1*pi:4*pi; y=sin(t); n=length(t); noise=0.1*randn(1,n); ynoise=y+noise; r=figure(1); set(r,'color','g') subplot 221 plot(t,y,'r') title('signal') subplot 222 plot(t,noise,'k') title('noise') subplot 223 plot(t,ynoise,'color','b') title('ynoise') 0 5 10 15 -1 -0.5 0 0.5 1 signal 0 5 10 15 -0.4 -0.2 0 0.2 0.4 noise 0 5 10 15 -2 -1 0 1 2 ynoise
  • 18. :17Program clear all;close all;clc; t=0:0.1*pi:4*pi; n=length(t); y1=2*sin(0.5*t);%first input y2=2*cos(0.5*t);%second input y3=cos(5*t); %carrier ya=y1.*y3; yb=y2.*y3; subplot 221 plot(t,y1,'-.',t,y2,'-') subplot 222 plot(t,y3) title('carrier') subplot 223 plot(t,ya) title('carrier * sin') subplot 224 plot(t,yb) title('carrier *cos') 0 5 10 15 -2 -1 0 1 2 0 5 10 15 -1 -0.5 0 0.5 1 carrier 0 5 10 15 -2 -1 0 1 2 carrier * sin 0 5 10 15 -2 -1 0 1 2 carrier *cos
  • 19. Program 18: clear all;close all;clc; t=0:0.01*pi:4*pi; x=cos(4*pi*t)+cos(8*pi*t)+cos(12*pi*t); fx=fft(x,512); w=1/(0.01*pi*2)*linspace(0,1,256); subplot 421 plot(t,x) xlabel('time') ylabel('amplitude') subplot 422 plot(w,abs(fx(1:256))) xlabel('frequency HZ') ylabel('amplitude') axis([0 20 0 200]) filter=ones(1,256); filter(1,90:256)=0; subplot 423 plot(w,filter) xlabel('frequency HZ') ylabel('amplitude') axis([0 20 0 2]) subplot 424 result=abs(fx(1:256)).*filter; plot(w,result) xlabel('frequency HZ') ylabel('amplitude') axis([0 20 0 200]) subplot 413 plot(w,result) xlabel('frequency') ylabel('amplitude') axis([0 16 0 200]) iresult=ifft((fx),length(t)); subplot 414
  • 20. plot(t,iresult) xlabel('time') ylabel('amplitude') axis([0 14 -2 2]) Program 19: z=[10 4 6 9 3]; subplot 221 pie(z) subplot 222 pie(z,[0 0 0 1 0]); subplot 223 pie(z,[1 1 1 1 1]) subplot 224 pie3(z,[0 0 0 1 0]); 0 2 4 6 8 10 12 14 -2 0 2 4 time amplitude 0 5 10 15 20 0 100 200 frequency HZ amplitude 0 5 10 15 20 0 1 2 frequency HZ amplitude 0 5 10 15 20 0 100 200 frequency HZ amplitude 0 2 4 6 8 10 12 14 16 0 100 200 frequency amplitude 0 2 4 6 8 10 12 14 -2 0 2 time amplitude
  • 21. Program 20: clear all ;close all; clc x=-3:3; y=x.^2; bar(x,y) 31% 13% 19% 28% 9% 31% 13% 19% 28% 9% 31% 13% 19% 28% 9% 28% 19% 13% 9% 31%
  • 22. Program 21: clear all ;close all; clc y=round(rand(2,3)*10); subplot 221 bar(y) subplot 222 barh(y) subplot 223 bar(y,'stacked') subplot 224 bar(y,1) -3 -2 -1 0 1 2 3 0 1 2 3 4 5 6 7 8 9
  • 23. Program 22: clear all;close all;clc t=0:0.1*pi:2*pi; x=sin(t); subplot 221 plot(t,x,'*r') subplot 222 stem(t,x) subplot 223 stairs(t,x) subplot 224 fill(t,x,'g') 1 2 0 2 4 6 8 10 0 5 10 1 2 1 2 0 5 10 15 20 25 1 2 0 2 4 6 8 10
  • 24. Program 23: clear all ;close all;clc; syms x t w a f1=heaviside(x); f2=heaviside(x-2); f3=heaviside(x+2); f4=heaviside(x+2)-heaviside(x-2); subplot 221 ezplot(f1,[-5 5]) subplot 222 ezplot(f2,[-5 5]) subplot 223 ezplot(f3,[-5 5]) subplot 224 ezplot(f4,[-5 5]) 0 2 4 6 8 -1 -0.5 0 0.5 1 0 2 4 6 8 -1 -0.5 0 0.5 1 0 2 4 6 8 -1 -0.5 0 0.5 1 0 2 4 6 8 -1 -0.5 0 0.5 1
  • 25. Program 24: clear all ;close all;clc;clf t=0:0.01*pi:4*pi; vint=cos(2*pi*4*t); fvint=fft(vint,512); w=1/(0.01*pi*2)*linspace(0,1,256); subplot 211 plot(t,vint) xlabel('time') ylabel('amplitude') subplot 212 plot(w,abs(fvint(1:256))) xlabel('frequency') ylabel('magnitude') -5 0 5 0 0.5 1 x heaviside(x) -5 0 5 0 0.5 1 x heaviside(x - 2) -5 0 5 0 0.5 1 x heaviside(x + 2) -5 0 5 0 0.5 1 x heaviside(x + 2) - heaviside(x - 2)
  • 26. Program 25: clear all ;close all;clc;clf t=0:0.01*pi:4*pi; x=cos(t); y=sin(t); plot(t,x,'-r',t,y,'.g') legend('cos','sin') title('sinusoidal signals') xlabel('time') ylabel('amplitude') 0 2 4 6 8 10 12 14 -1 -0.5 0 0.5 1 time amplitude 0 2 4 6 8 10 12 14 16 0 50 100 150 200 frequency magnitude
  • 27. 0 2 4 6 8 10 12 14 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 time amplitude sinusoidal signals cos sin
  • 28. Program 26: z=magic(3); subplot 221 bar(z) subplot 222 bar(z,'stacked') subplot 223 bar(z,'grouped') subplot 224 barh(z,'stacked') 1 2 3 0 2 4 6 8 10 1 2 3 0 5 10 15 1 2 3 0 2 4 6 8 10 0 5 10 15 1 2 3
  • 29. Program 27: z=magic(2); subplot 221 bar(z) subplot 222 bar(z,'c') subplot 223 bar(z,'histic') subplot 224 barh(z,'histic') 1 2 0 1 2 3 4 1 2 0 1 2 3 4 1 2 0 1 2 3 4 0 1 2 3 4 1 2
  • 30. Program 28: z=round(10.*rand(1,10)); figure(4) subplot 211 hist(z,5) subplot 212 hist(z,7) 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 0 2 4 6 8 10 12 0 1 2 3 4
  • 31. Program 29: t=0:0.01*pi:2*pi; y=sin(2*t).*cos(2*t); figure(8) subplot 221 polar(t,y,'--g') subplot 222 polar(t,y,'bs') subplot 223 polar(t,y,'dr') subplot 224 f=polar(t,y); set(f,'color','m') set(f,'linewidth',2) 0.25 0.5 30 210 60 240 90 270 120 300 150 330 180 0 0.25 0.5 30 210 60 240 90 270 120 300 150 330 180 0 0.25 0.5 30 210 60 240 90 270 120 300 150 330 180 0 0.25 0.5 30 210 60 240 90 270 120 300 150 330 180 0
  • 32. Program 30: x=[1:10]; y=2.*rand(1,10); figure(1) set(figure(1),'color','yellow'); subplot 221 scatter(x,y) subplot 222 scatter(x,y,'r') subplot 223 scatter(x,y,3,'g') subplot 224 stem(x,y) 0 5 10 0 0.5 1 1.5 2 0 5 10 0 0.5 1 1.5 2 0 5 10 0 0.5 1 1.5 2 0 5 10 0 0.5 1 1.5 2
  • 33. Program 31: clear all;close all;clc [x,y,z]=sphere(100); x1=x(:); y1=y(:); z1=z(:); figure(1) set(figure(1),'color','y') scatter3(x1,y1,z1) -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
  • 34. Program 32: clear all;close all;clc [x,y,z]=sphere(100); x1=x(:); y1=y(:); z1=z(:); figure(1) set(figure(1),'color','y') subplot 211 scatter3(x1,y1,z1,2,'k') subplot 212 scatter3(x1,y1,z1,10,'g') -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 0 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 0 1
  • 35. Program 32: x=0:10; y=0:10; [xm ym]=meshgrid(x,y); z=xm.^2/2+ym.^2/4; figure(1) subplot 221 mesh(z) subplot 222 contour(x,y,z) subplot 223 surf(x,y,z) subplot 224 surfc(x,y,z) 0 10 20 0 10 20 0 50 100 0 5 10 0 2 4 6 8 10 0 5 10 0 5 10 0 50 100 0 5 10 0 5 10 0 50 100
  • 36. Program 33: %system of linear equation %cramer method a=[1 2 3;2 3 4;4 2 5]; b=[4;5;1]; d1=a; d1(:,1)=b; x(1)=det(d1)/det(a) d2=a; d2(:,2)=b; x(2)=det(d2)/det(a) d3=a; d3(:,3)=b; x(3)=det(d3)/det(a) command window: x = -1.4000 1.8000 0.6000 Program 34: %system of linear equation %Gass elimination a=[1 2 3;2 3 4;4 2 5]; b=[4;5;1]; x=inv(a)*b x = -1.4000 1.8000 0.6000
  • 38. Program 36: >> y=logspace(1,5); >> size(y) ans = 1 50 >> plot(y) >> z=logspace(1,5,5); >> area(z) 1 1.5 2 2.5 3 3.5 4 4.5 5 0 1 2 3 4 5 6 7 8 9 10 x 10 4 0 5 10 15 20 25 30 35 40 45 50 0 1 2 3 4 5 6 7 8 9 10 x 10 4
  • 39. Program 37: x=ones(10,10); x(3,3)=10; x(3,7)=10; x(6,5)=10; x(8,4:6)=10; image(x) colormap copper(2) %colormap spring(2) %colormap hsv %colormap summer 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10