SlideShare una empresa de Scribd logo
1 de 9
PLANO NUMÉRICO O PLANO CARTESIANO
ANDERSON MARCHAN
29,587,737
SECCION,0203
Barquisimeto-Marzo 2023
PLANO NUMÉRICO O CARTESIANO
¿Qué es?
Se conoce como plano cartesiano, coordenadas cartesianas o sistema cartesiano, a dos rectas numéricas
perpendiculares, una horizontal y otra vertical, que se cortan en un punto llamado origen o punto cero.
La finalidad del plano cartesiano es describir la posición o ubicación de un punto en el plano, la cual está
representada por el sistema de coordenadas.
El plano cartesiano también sirve para analizar matemáticamente figuras geométricas como la parábola, la hipérbole,
la línea, la circunferencia y la elipse, las cuales forman parte de la geometría analítica.
El nombre del plano cartesiano se debe al filósofo y matemático francés René Descartes, quien fue el creador de la
geometría analítica y el primero en utilizar este sistema de coordenadas.
DISTANCIA ENTRE DOS PUNTOS
Las coordenadas se forman asociando un valor del eje de las equis a uno de las yes, respectivamente,
esto indica que un punto (P) se puede ubicar en el plano cartesiano tomando como base sus
coordenadas, lo cual se representa como:
P (x, y)
Para localizar puntos en el plano cartesiano se debe llevar a cabo el siguiente procedimiento:
1. Para localizar la abscisa o valor de x, se cuentan las unidades correspondientes hacia la derecha si
son positivas o hacia la izquierda si son negativas, a partir del punto de origen, en este caso el cero.
2. Desde donde se localiza el valor de x, se cuentan las unidades correspondientes (en el eje de las
ordenadas) hacia arriba si son positivas o hacia abajo, si son negativas y de esta forma se localiza
cualquier punto dadas ambas coordenadas.
PUNTO MEDIO O EQUIDISTANTE
Punto medio en matemática, es el punto que se encuentra a la misma distancia de otros dos puntos cualquiera o
extremos de un segmento.
Más generalmente punto equidistante en matemática, es el punto que se encuentra a la misma distancia de dos
elementos geométricos, ya sean puntos, segmentos, rectas, etc.
Si es un segmento, el punto medio es el que lo divide en dos partes iguales.
Punto medio de un segmento
El punto medio de un segmento representa al punto que se ubica exactamente en la mitad de los dos puntos
extremos del segmento. El punto medio puede ser encontrado al dividir a la suma de las coordenadas x por 2 y
dividir a la suma de las coordenadas y por 2.
ECUACIONES Y TRAZADOS DE CIRCUNFERENCIAS
Ecuaciones de la circunferencia
La circunferencia es el lugar geométrico de los puntos del plano
que equidistan de un punto fijo llamado centro (recordar que
estamos hablando del Plano Cartesiano y es respecto a éste que
trabajamos)
Determinación de una circunferencia
Una circunferencia queda determinada
cuando conocemos:
a) Tres puntos de la misma, equidistantes del
centro.
b) El centro y el radio.
c) El centro y un punto en ella.
d) El centro y una recta tangente a la circunferencia.
•
También podemos decir que la circunferencia es la línea
formada por todos los puntos que están a la misma
distancia de otro punto, llamado centro .
Esta propiedad es la clave para hallar la expresión
analítica de una circunferencia (la ecuación de la
circunferencia ).
Entonces, entrando en el terreno de la Geometría Analítica ,
(dentro del Plano Cartesiano ) diremos que —para cualquier
punto, P (x, y) , de una circunferencia cuyo centro es el
punto C (a, b) y con radio r ─, la ecuación ordinaria es
(x ─ a) 2 + (y ─ b) 2 = r 2
ECUACIÓN DE LA PARÁBOLA
Esta forma geométrica, la parábola, expresada como una ecuación , cuenta con una serie de elementos o parámetros que
son básicos para su descripción, y son:
Vértice (V) : Punto de la parábola que coincide con el eje focal (llamado también eje de simetría ).
Eje focal (o de simetría) (ef) : Línea recta que divide simétricamente a la parábola en dos brazos y pasa por el vértice.
Foco (F) : Punto fijo de referencia, que no pertenece a la parábola y que se ubica en el eje focal al interior de los brazos de la
misma y a una distancia p del vértice.
Directriz (d) : Línea recta perpendicular al eje focal que se ubica a una distancia p del vértice y fuera de los brazos de la parábola.
Distancia focal (p) : Parámetro que indica la magnitud de la distancia entre vértice y foco , así como entre vértice y
directriz (ambas distancias son iguales).
Cuerda : Segmento de recta que une dos puntos cualesquiera, pertenecientes a la parábola.
Cuerda focal : Cuerda que pasa por el foco.
Lado recto (LR) : Cuerda focal que es perpendicular al eje focal.
Para ilustrar las definiciones anteriores, veamos la siguiente gráfica de una parábola:
ECUACIONES ELIPSE
Elipses horizontales y verticales
Venimos estudiando la elipse horizontal que tiene el eje
mayor (2a) en el eje de abscisas y el menor (2b) en el de
ordenadas.
Cuando el eje mayor se encuentre en el de ordenaas y el
menor en el de las abscisas decimos que se trata de una
elipse vertical.
Una elipse es una curva plana, simple y cerrada con dos ejes
de simetría que resulta al cortar la superficie de un cono por
un plano oblicuo al eje de simetría con ángulo mayor que el
de la generatriz respecto del eje de revolución. Una elipse
que gira alrededor de su eje menor genera
un esferoide achatado, mientras que una elipse que gira
alrededor de su eje principal genera un esferoide alargado.
La elipse es también la imagen afín de una circunferencia
ECUACION HIPERBOLA
La hipérbola cuyo centro se halla en el origen de coordenadas es representable mediante una de las siguientes
ecuaciones denominadas de manera común como ecuación canónica o forma normal de la ecuación de una hipérbola:
ELEMENTOS DE UNA HIPERBOLA
1. Focos: Son los puntos fijos F y F'.
2. Eje principal o real: Es la recta que pasa por los focos.
3. Eje secundario o imaginario: Es la mediatriz del segmento FF'.
4. Centro: Es el punto de intersección de los ejes.
5. Vértices: Los puntos A y A' son los puntos de intersección de la hipérbola
con el eje focal.
Los puntos B y B' se obtienen como intersección del eje imaginario con la
circunferencia que tiene por centro uno de los vértices y de radio c.
6. Radios vectores: Son los segmentos que van desde un punto de la
hipérbola a los focos: PF y PF'.
7. Distancia focal: Es el segmento de longitud 2c.
8. Eje mayor: Es el segmento de longitud 2a.
9. Eje menor: Es el segmento de longitud 2b.
10. Ejes de simetría: Son las rectas que contienen al eje real o al eje
imaginario.
11. Asíntotas: Son las rectas de ecuaciones:
12. Relación entre los semiejes:
REPRESENTACIÓN GRAFICAS DE LAS SECCIONES CONICAS
Se denomina sección cónica (o simplemente cónica) a todas las curvas resultantes de las
diferentes intersecciones entre un cono y un plano; si dicho plano no pasa por el vértice, se
obtienen las cónicas propiamente dichas elipse, parábola, hipérbola y circunferencia.
Los tres ejemplos de de un plano con un
cono: parábola (1), elipse y circunferencia
(2) e hipérbola (3)

Más contenido relacionado

Similar a Plano numérico o plano cartesiano.pptx

Similar a Plano numérico o plano cartesiano.pptx (20)

Plano numerico
Plano numericoPlano numerico
Plano numerico
 
PLANO NUMERICO KARLA GARCIA.pptx
PLANO NUMERICO KARLA GARCIA.pptxPLANO NUMERICO KARLA GARCIA.pptx
PLANO NUMERICO KARLA GARCIA.pptx
 
plano numerico.pptx
plano numerico.pptxplano numerico.pptx
plano numerico.pptx
 
plano numerico -alfredo.pptx
plano numerico -alfredo.pptxplano numerico -alfredo.pptx
plano numerico -alfredo.pptx
 
Plano Númerico.pptx
Plano Númerico.pptxPlano Númerico.pptx
Plano Númerico.pptx
 
Plano Numérico
Plano NuméricoPlano Numérico
Plano Numérico
 
PLANO NUMÉRICO.ppt
PLANO NUMÉRICO.pptPLANO NUMÉRICO.ppt
PLANO NUMÉRICO.ppt
 
plano numerico - jhonny.pptx
plano numerico - jhonny.pptxplano numerico - jhonny.pptx
plano numerico - jhonny.pptx
 
plano numerico terminado.docx
plano numerico terminado.docxplano numerico terminado.docx
plano numerico terminado.docx
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
Plano numérico
 Plano numérico Plano numérico
Plano numérico
 
Matematica foro.docx
Matematica foro.docxMatematica foro.docx
Matematica foro.docx
 
PLANO CARTESIANO MATEMÁTICAS
PLANO CARTESIANO MATEMÁTICASPLANO CARTESIANO MATEMÁTICAS
PLANO CARTESIANO MATEMÁTICAS
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
Plano numerico. rosanyely
Plano numerico. rosanyelyPlano numerico. rosanyely
Plano numerico. rosanyely
 
PLANO NUMERICO, DISTANCIA,PUNTO MEDIO, ECUACIONES, CIRCUNFERENCIA, PARABOLAS...
PLANO NUMERICO,  DISTANCIA,PUNTO MEDIO, ECUACIONES, CIRCUNFERENCIA, PARABOLAS...PLANO NUMERICO,  DISTANCIA,PUNTO MEDIO, ECUACIONES, CIRCUNFERENCIA, PARABOLAS...
PLANO NUMERICO, DISTANCIA,PUNTO MEDIO, ECUACIONES, CIRCUNFERENCIA, PARABOLAS...
 
plano cartesiano.docx
plano cartesiano.docxplano cartesiano.docx
plano cartesiano.docx
 
Plano Numérico
Plano NuméricoPlano Numérico
Plano Numérico
 
Plano Numerico.pptx
Plano Numerico.pptxPlano Numerico.pptx
Plano Numerico.pptx
 

Último

Último (20)

📝 Semana 09 - Tema 01: Tarea - Redacción del texto argumentativo
📝 Semana 09 - Tema 01: Tarea - Redacción del texto argumentativo📝 Semana 09 - Tema 01: Tarea - Redacción del texto argumentativo
📝 Semana 09 - Tema 01: Tarea - Redacción del texto argumentativo
 
cuadernillo_cuentos_de_los_valores_elprofe20 (1).docx
cuadernillo_cuentos_de_los_valores_elprofe20 (1).docxcuadernillo_cuentos_de_los_valores_elprofe20 (1).docx
cuadernillo_cuentos_de_los_valores_elprofe20 (1).docx
 
Power Point: Luz desde el santuario.pptx
Power Point: Luz desde el santuario.pptxPower Point: Luz desde el santuario.pptx
Power Point: Luz desde el santuario.pptx
 
LA PRIMERA GUERRA MUNDIAL PARA NIÑOS.pdf
LA PRIMERA GUERRA  MUNDIAL PARA NIÑOS.pdfLA PRIMERA GUERRA  MUNDIAL PARA NIÑOS.pdf
LA PRIMERA GUERRA MUNDIAL PARA NIÑOS.pdf
 
a propósito del estado su relevancia y definiciones
a propósito del estado su relevancia y definicionesa propósito del estado su relevancia y definiciones
a propósito del estado su relevancia y definiciones
 
proyecto semana de los Jardines, actividades a realizar para resaltar esta fecha
proyecto semana de los Jardines, actividades a realizar para resaltar esta fechaproyecto semana de los Jardines, actividades a realizar para resaltar esta fecha
proyecto semana de los Jardines, actividades a realizar para resaltar esta fecha
 
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
 
LA GEOMETRÍA Y LOS SISTEMAS ANGULARES, APRENDER LEYENDO LA BIBLIA
LA GEOMETRÍA Y LOS SISTEMAS ANGULARES, APRENDER LEYENDO LA BIBLIALA GEOMETRÍA Y LOS SISTEMAS ANGULARES, APRENDER LEYENDO LA BIBLIA
LA GEOMETRÍA Y LOS SISTEMAS ANGULARES, APRENDER LEYENDO LA BIBLIA
 
Resumen Acuerdo 05 04 24.pdf por el que se rigen los Consejos Técnicos Escolares
Resumen Acuerdo 05 04 24.pdf por el que se rigen los Consejos Técnicos EscolaresResumen Acuerdo 05 04 24.pdf por el que se rigen los Consejos Técnicos Escolares
Resumen Acuerdo 05 04 24.pdf por el que se rigen los Consejos Técnicos Escolares
 
METODOS DE EXTRACCIÓN E IDENTIFICACIÓN - 2024.pdf
METODOS DE EXTRACCIÓN E IDENTIFICACIÓN - 2024.pdfMETODOS DE EXTRACCIÓN E IDENTIFICACIÓN - 2024.pdf
METODOS DE EXTRACCIÓN E IDENTIFICACIÓN - 2024.pdf
 
A propósito de la globalización y la financiarización del mundo
A propósito de la globalización y la financiarización del mundoA propósito de la globalización y la financiarización del mundo
A propósito de la globalización y la financiarización del mundo
 
Power Point : Motivados por la esperanza
Power Point : Motivados por la esperanzaPower Point : Motivados por la esperanza
Power Point : Motivados por la esperanza
 
2.15. Calendario Civico Escolar 2024.docx
2.15. Calendario Civico Escolar 2024.docx2.15. Calendario Civico Escolar 2024.docx
2.15. Calendario Civico Escolar 2024.docx
 
PLAN DE GESTION DEL RIESGO 2023 - 2024.docx
PLAN DE GESTION DEL RIESGO  2023 - 2024.docxPLAN DE GESTION DEL RIESGO  2023 - 2024.docx
PLAN DE GESTION DEL RIESGO 2023 - 2024.docx
 
Evaluación de los Factores Internos de la Organización
Evaluación de los Factores Internos de la OrganizaciónEvaluación de los Factores Internos de la Organización
Evaluación de los Factores Internos de la Organización
 
Revista Faro Normalista 6, 18 de mayo 2024
Revista Faro Normalista 6, 18 de mayo 2024Revista Faro Normalista 6, 18 de mayo 2024
Revista Faro Normalista 6, 18 de mayo 2024
 
Tipologías de vínculos afectivos (grupo)
Tipologías de vínculos afectivos (grupo)Tipologías de vínculos afectivos (grupo)
Tipologías de vínculos afectivos (grupo)
 
CONCLUSIONES DESCRIPTIVAS TIC que ayudaran a tus registrosdocx
CONCLUSIONES DESCRIPTIVAS TIC que ayudaran a tus registrosdocxCONCLUSIONES DESCRIPTIVAS TIC que ayudaran a tus registrosdocx
CONCLUSIONES DESCRIPTIVAS TIC que ayudaran a tus registrosdocx
 
DESCRIPCIÓN-LOS-DILEMAS-DEL-CONOCIMIENTO.pptx
DESCRIPCIÓN-LOS-DILEMAS-DEL-CONOCIMIENTO.pptxDESCRIPCIÓN-LOS-DILEMAS-DEL-CONOCIMIENTO.pptx
DESCRIPCIÓN-LOS-DILEMAS-DEL-CONOCIMIENTO.pptx
 
PATRONES DE REFERENCIA, CRITERIOS Y DIAGNOSTICO Angeles.pptx
PATRONES DE REFERENCIA, CRITERIOS Y DIAGNOSTICO Angeles.pptxPATRONES DE REFERENCIA, CRITERIOS Y DIAGNOSTICO Angeles.pptx
PATRONES DE REFERENCIA, CRITERIOS Y DIAGNOSTICO Angeles.pptx
 

Plano numérico o plano cartesiano.pptx

  • 1. PLANO NUMÉRICO O PLANO CARTESIANO ANDERSON MARCHAN 29,587,737 SECCION,0203 Barquisimeto-Marzo 2023
  • 2. PLANO NUMÉRICO O CARTESIANO ¿Qué es? Se conoce como plano cartesiano, coordenadas cartesianas o sistema cartesiano, a dos rectas numéricas perpendiculares, una horizontal y otra vertical, que se cortan en un punto llamado origen o punto cero. La finalidad del plano cartesiano es describir la posición o ubicación de un punto en el plano, la cual está representada por el sistema de coordenadas. El plano cartesiano también sirve para analizar matemáticamente figuras geométricas como la parábola, la hipérbole, la línea, la circunferencia y la elipse, las cuales forman parte de la geometría analítica. El nombre del plano cartesiano se debe al filósofo y matemático francés René Descartes, quien fue el creador de la geometría analítica y el primero en utilizar este sistema de coordenadas.
  • 3. DISTANCIA ENTRE DOS PUNTOS Las coordenadas se forman asociando un valor del eje de las equis a uno de las yes, respectivamente, esto indica que un punto (P) se puede ubicar en el plano cartesiano tomando como base sus coordenadas, lo cual se representa como: P (x, y) Para localizar puntos en el plano cartesiano se debe llevar a cabo el siguiente procedimiento: 1. Para localizar la abscisa o valor de x, se cuentan las unidades correspondientes hacia la derecha si son positivas o hacia la izquierda si son negativas, a partir del punto de origen, en este caso el cero. 2. Desde donde se localiza el valor de x, se cuentan las unidades correspondientes (en el eje de las ordenadas) hacia arriba si son positivas o hacia abajo, si son negativas y de esta forma se localiza cualquier punto dadas ambas coordenadas.
  • 4. PUNTO MEDIO O EQUIDISTANTE Punto medio en matemática, es el punto que se encuentra a la misma distancia de otros dos puntos cualquiera o extremos de un segmento. Más generalmente punto equidistante en matemática, es el punto que se encuentra a la misma distancia de dos elementos geométricos, ya sean puntos, segmentos, rectas, etc. Si es un segmento, el punto medio es el que lo divide en dos partes iguales. Punto medio de un segmento El punto medio de un segmento representa al punto que se ubica exactamente en la mitad de los dos puntos extremos del segmento. El punto medio puede ser encontrado al dividir a la suma de las coordenadas x por 2 y dividir a la suma de las coordenadas y por 2.
  • 5. ECUACIONES Y TRAZADOS DE CIRCUNFERENCIAS Ecuaciones de la circunferencia La circunferencia es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro (recordar que estamos hablando del Plano Cartesiano y es respecto a éste que trabajamos) Determinación de una circunferencia Una circunferencia queda determinada cuando conocemos: a) Tres puntos de la misma, equidistantes del centro. b) El centro y el radio. c) El centro y un punto en ella. d) El centro y una recta tangente a la circunferencia. • También podemos decir que la circunferencia es la línea formada por todos los puntos que están a la misma distancia de otro punto, llamado centro . Esta propiedad es la clave para hallar la expresión analítica de una circunferencia (la ecuación de la circunferencia ). Entonces, entrando en el terreno de la Geometría Analítica , (dentro del Plano Cartesiano ) diremos que —para cualquier punto, P (x, y) , de una circunferencia cuyo centro es el punto C (a, b) y con radio r ─, la ecuación ordinaria es (x ─ a) 2 + (y ─ b) 2 = r 2
  • 6. ECUACIÓN DE LA PARÁBOLA Esta forma geométrica, la parábola, expresada como una ecuación , cuenta con una serie de elementos o parámetros que son básicos para su descripción, y son: Vértice (V) : Punto de la parábola que coincide con el eje focal (llamado también eje de simetría ). Eje focal (o de simetría) (ef) : Línea recta que divide simétricamente a la parábola en dos brazos y pasa por el vértice. Foco (F) : Punto fijo de referencia, que no pertenece a la parábola y que se ubica en el eje focal al interior de los brazos de la misma y a una distancia p del vértice. Directriz (d) : Línea recta perpendicular al eje focal que se ubica a una distancia p del vértice y fuera de los brazos de la parábola. Distancia focal (p) : Parámetro que indica la magnitud de la distancia entre vértice y foco , así como entre vértice y directriz (ambas distancias son iguales). Cuerda : Segmento de recta que une dos puntos cualesquiera, pertenecientes a la parábola. Cuerda focal : Cuerda que pasa por el foco. Lado recto (LR) : Cuerda focal que es perpendicular al eje focal. Para ilustrar las definiciones anteriores, veamos la siguiente gráfica de una parábola:
  • 7. ECUACIONES ELIPSE Elipses horizontales y verticales Venimos estudiando la elipse horizontal que tiene el eje mayor (2a) en el eje de abscisas y el menor (2b) en el de ordenadas. Cuando el eje mayor se encuentre en el de ordenaas y el menor en el de las abscisas decimos que se trata de una elipse vertical. Una elipse es una curva plana, simple y cerrada con dos ejes de simetría que resulta al cortar la superficie de un cono por un plano oblicuo al eje de simetría con ángulo mayor que el de la generatriz respecto del eje de revolución. Una elipse que gira alrededor de su eje menor genera un esferoide achatado, mientras que una elipse que gira alrededor de su eje principal genera un esferoide alargado. La elipse es también la imagen afín de una circunferencia
  • 8. ECUACION HIPERBOLA La hipérbola cuyo centro se halla en el origen de coordenadas es representable mediante una de las siguientes ecuaciones denominadas de manera común como ecuación canónica o forma normal de la ecuación de una hipérbola: ELEMENTOS DE UNA HIPERBOLA 1. Focos: Son los puntos fijos F y F'. 2. Eje principal o real: Es la recta que pasa por los focos. 3. Eje secundario o imaginario: Es la mediatriz del segmento FF'. 4. Centro: Es el punto de intersección de los ejes. 5. Vértices: Los puntos A y A' son los puntos de intersección de la hipérbola con el eje focal. Los puntos B y B' se obtienen como intersección del eje imaginario con la circunferencia que tiene por centro uno de los vértices y de radio c. 6. Radios vectores: Son los segmentos que van desde un punto de la hipérbola a los focos: PF y PF'. 7. Distancia focal: Es el segmento de longitud 2c. 8. Eje mayor: Es el segmento de longitud 2a. 9. Eje menor: Es el segmento de longitud 2b. 10. Ejes de simetría: Son las rectas que contienen al eje real o al eje imaginario. 11. Asíntotas: Son las rectas de ecuaciones: 12. Relación entre los semiejes:
  • 9. REPRESENTACIÓN GRAFICAS DE LAS SECCIONES CONICAS Se denomina sección cónica (o simplemente cónica) a todas las curvas resultantes de las diferentes intersecciones entre un cono y un plano; si dicho plano no pasa por el vértice, se obtienen las cónicas propiamente dichas elipse, parábola, hipérbola y circunferencia. Los tres ejemplos de de un plano con un cono: parábola (1), elipse y circunferencia (2) e hipérbola (3)