Adaptive Geographical Search in Networks

Andrea Wiggins
Andrea WigginsPostdoctoral Fellow en DataONE, University of New Mexico & Cornell University
Adaptive Geographical Search in Networks Andrea Wiggins EECS 549, Winter 2007
The Problem ,[object Object],[object Object],[object Object],[object Object]
The Example ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
The Results 12.4 2.2 6.2 28.6 22.9 28.0 Standard Deviation 9.7 0.9 5.1 49.4 27.2 36.6 Mean Revisits r  = 4 Revisits r  = 2 Revisits r  = 1 Steps r  = 4 Steps  r  = 2 Steps  r  = 1 10 trials
The Proposal ,[object Object],[object Object],[object Object]
The Simulation ,[object Object],[object Object],[object Object],[object Object]
The Environments ,[object Object],[object Object],[object Object],[object Object]
The Agents ,[object Object],[object Object],[object Object],[object Object],[object Object]
The Interactions ,[object Object],[object Object],[object Object]
The Rules ,[object Object],[object Object],[object Object]
The Outcomes ,[object Object],[object Object],[object Object],[object Object]
Thank you! ,[object Object]
1 de 12

Más contenido relacionado

La actualidad más candente(19)

Cluster analysisCluster analysis
Cluster analysis
Pushkar Mishra362 vistas
Document clustering and classification Document clustering and classification
Document clustering and classification
Mahmoud Alfarra4K vistas
Nearest neighborsNearest neighbors
Nearest neighbors
zekeLabs Technologies451 vistas
Document clustering for forensic analysisDocument clustering for forensic analysis
Document clustering for forensic analysis
srinivasa teja4.2K vistas
Document Classification and ClusteringDocument Classification and Clustering
Document Classification and Clustering
Ankur Shrivastava1.2K vistas
Data Mining: clustering and analysisData Mining: clustering and analysis
Data Mining: clustering and analysis
DataminingTools Inc23.2K vistas
Cluster analysisCluster analysis
Cluster analysis
Kamalakshi Deshmukh-Samag900 vistas
Selection K in K-means ClusteringSelection K in K-means Clustering
Selection K in K-means Clustering
Junghoon Kim1.2K vistas
DataminingDatamining
Datamining
Haripritha42 vistas
KNN - Classification Model (Step by Step)KNN - Classification Model (Step by Step)
KNN - Classification Model (Step by Step)
Manish nath choudhary903 vistas
Machine learning clusteringMachine learning clustering
Machine learning clustering
Nadeem Oozeer432 vistas
Textmining Retrieval And ClusteringTextmining Retrieval And Clustering
Textmining Retrieval And Clustering
guest0edcaf532 vistas

Más de Andrea Wiggins(20)

Online Communities in Citizen ScienceOnline Communities in Citizen Science
Online Communities in Citizen Science
Andrea Wiggins2.1K vistas
Citizen Science PhenotypesCitizen Science Phenotypes
Citizen Science Phenotypes
Andrea Wiggins916 vistas
Open Source & Citizen ScienceOpen Source & Citizen Science
Open Source & Citizen Science
Andrea Wiggins505 vistas
Crowdsourcing ScienceCrowdsourcing Science
Crowdsourcing Science
Andrea Wiggins844 vistas

Último(20)

METHOD AND SYSTEM FOR PREDICTING OPTIMAL LOAD FOR WHICH THE YIELD IS MAXIMUM ...METHOD AND SYSTEM FOR PREDICTING OPTIMAL LOAD FOR WHICH THE YIELD IS MAXIMUM ...
METHOD AND SYSTEM FOR PREDICTING OPTIMAL LOAD FOR WHICH THE YIELD IS MAXIMUM ...
Prity Khastgir IPR Strategic India Patent Attorney Amplify Innovation23 vistas
ThroughputThroughput
Throughput
Moisés Armani Ramírez28 vistas
AMD: 4th Generation EPYC CXL DemoAMD: 4th Generation EPYC CXL Demo
AMD: 4th Generation EPYC CXL Demo
CXL Forum117 vistas
The Research Portal of Catalonia: Growing more (information) & more (services)The Research Portal of Catalonia: Growing more (information) & more (services)
The Research Portal of Catalonia: Growing more (information) & more (services)
CSUC - Consorci de Serveis Universitaris de Catalunya51 vistas
Liqid: Composable CXL PreviewLiqid: Composable CXL Preview
Liqid: Composable CXL Preview
CXL Forum118 vistas

Adaptive Geographical Search in Networks

  • 1. Adaptive Geographical Search in Networks Andrea Wiggins EECS 549, Winter 2007
  • 2.
  • 3.
  • 4. The Results 12.4 2.2 6.2 28.6 22.9 28.0 Standard Deviation 9.7 0.9 5.1 49.4 27.2 36.6 Mean Revisits r = 4 Revisits r = 2 Revisits r = 1 Steps r = 4 Steps r = 2 Steps r = 1 10 trials
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.