1.
Vector Operations
DEFINITION Let u = (1, y1) and v = (x2. y2) be two vectors in the plane. The sum of the
vectors u and v is the vectoor
and is denoted by u +v. Thus vectors are added by adding their components.
EXAMPLE9 Let u =
(1,2) and v =
=(3, -4). Then
u+V = (1+3, 2+ (-4)) = (4, -2).
We can interpret vector addition geometrically as follows. In Figure 4.14,
the vector from (x1, y1) to (X + X2, y + y2) is also v. Thus the vector with
tail O and head (x1 +X2, yi + y2) is u+v.
Figure4.14
Vector addition
i+2 (XtX2y+y2)
u +v
(X2, y2)
y2
O X2 1tX2
X
u + V
Figure 4.15 A
Vector addition
We can also describe u + v as the diagonal of the parallelogram detined
by u and v, as shown in Figure 4.15.
Finally, observe that vector addition is a special case of matrix addition.
2.
EXAMPLE10 Ifu and v are as in Example 9, then u +v is as shown in Figure 4.16.
Figure4.16
(1.2)
X
+
u
( 4 . - 2)
(3,-4)
of u by c is the vector (cx|, cy1). Thus the scalar multiple cu of u by c is
obtained by multiplying each component of u by c.
Ifc> 0, then cuis in the same direction as u, whereas if d < 0, then du
is in the opposite direction (Figure 4.17).
DEFINITION Ifu =
(x1. y1) and c is a scalar (a real number), then the scalar multiple cu
Figure4.17
Scalar multiplication
2u
-2u
EXAMPLE11 Ifc =
=
2, d =
=-3, and u =
(1, -2), then
cu =
2(1, -2) =
(2, -4) and du =
-3(1,-2) =
(-3,6).
which are shown in Figure 4. 18.
The vector (0, 0) is called the zero vector and is denoted by 0. If u is any
vector, it follows that (Exercise T.2)
(4)
u+0= u.
We can also show (Exercise T.3) that
(5)
ut-Du=0.
and we write (1)u as -u and eall it the negative of u. Moreover, we wr
u+-1 v as uv and call it the differenceof u and v. The vectoru-
shown in Figure 4.19(a).
Observe that while vector addition gives one diagonal of a
parallelogran
vector suburaction gives the other diagonal. See Figure 4.19(6).
V 1S
3.
Figure 4.18
(-3,6)
6
6 4
(1.-2)
(2-4)
Figure 4.19
u
V
(b) Vector sum and vector ditference.
(a) Difference between vectors.
Los recortes son una forma práctica de recopilar diapositivas importantes para volver a ellas más tarde. Ahora puedes personalizar el nombre de un tablero de recortes para guardar tus recortes.
Crear un tablero de recortes
Compartir esta SlideShare
¿Odia los anuncios?
Consiga SlideShare sin anuncios
Acceda a millones de presentaciones, documentos, libros electrónicos, audiolibros, revistas y mucho más. Todos ellos sin anuncios.
Oferta especial para lectores de SlideShare
Solo para ti: Prueba exclusiva de 60 días con acceso a la mayor biblioteca digital del mundo.
La familia SlideShare crece. Disfruta de acceso a millones de libros electrónicos, audiolibros, revistas y mucho más de Scribd.
Parece que tiene un bloqueador de anuncios ejecutándose. Poniendo SlideShare en la lista blanca de su bloqueador de anuncios, está apoyando a nuestra comunidad de creadores de contenidos.
¿Odia los anuncios?
Hemos actualizado nuestra política de privacidad.
Hemos actualizado su política de privacidad para cumplir con las cambiantes normativas de privacidad internacionales y para ofrecerle información sobre las limitadas formas en las que utilizamos sus datos.
Puede leer los detalles a continuación. Al aceptar, usted acepta la política de privacidad actualizada.