Chapter2_9_hygrothermal stresses and strains.pptx

Ashok Banagar
Ashok BanagarAsst. Prof. at PESITM en SMVITM
Chapter 2 MacromechanicalAnalysis of a Lamina
Hygrothermal Stresses and Strains
Dr.Autar Kaw
Department of Mechanical Engineering
University of South Florida,Tampa, FL 33620
Courtesy of the Textbook
Mechanics of Composite Materials by Kaw
 For a unidirectional lamina
 Thermally induced strains:
 Moisture induced strains:




























































0
+
0
+
S
0
0
0
S
S
0
S
S
= C
2
C
1
T
2
T
1
12
2
1
66
22
12
12
11
12
2
1



































0
T
=
0
2
1
T
2
T
1





























0
C
=
0
2
1
C
2
C
1




(2.174)
(2.175)
(2.176)
 For a unidirectional lamina




























































0
0
0
0
0
0
2
1
2
1
12
2
1
66
22
12
12
11
12
2
1
ε
ε
+
ε
ε
+
τ
σ
σ
S
S
S
S
S
=
γ
ε
ε
C
C
T
T




































γ
ε
-
ε
-
ε
ε
-
ε
-
ε
Q
Q
Q
Q
Q
=
τ
σ
σ
C
T
C
T
12
2
2
2
1
1
1
66
22
12
12
11
12
2
1
0
0
0
0
(2.174)
(2.177)
 For an angular lamina
 Thermally induced strains:
 Moisture induced strains:
































































γ
ε
ε
+
γ
ε
ε
+
τ
σ
σ
S
S
S
S
S
S
S
S
S
=
γ
ε
ε
C
xy
C
y
C
x
T
xy
T
y
T
x
xy
y
x
xy
y
x
66
26
16
26
22
12
16
12
11

































xy
y
x
T
xy
T
y
T
x
T
=

































xy
y
x
C
xy
C
y
C
x
C
=
(2.178)
(2.179)
(2.180)
 For an angular lamina
























0
2
2
1
1
α
α
]
= [T
/
α
α
α
-
xy
y
x
















s
c
sc
sc
sc
c
s
sc
s
c
=
T
2
2
2
2
2
2
1
2
2
]
[












s
-
c
sc
sc
-
2sc
-
c
s
2sc
s
c
=
[T]
2
2
2
2
2
2
)
(
=
c 
Cos
)
(
=
s 
Sin
(2.181)
(2.95) (2.96)
(2.97a,b)
 For an angular lamina
























0
]
[T
=
/2
2
1
1
-
xy
y
x





















s
c
sc
sc
2sc
c
s
2sc
s
c
=
]
[T
2
2
2
2
2
2
1












s
-
c
sc
sc
-
2sc
-
c
s
2sc
s
c
=
[T]
2
2
2
2
2
2
)
(
=
c 
Cos
)
(
=
s 
Sin
(2.95) (2.96)
(2.97a,b)
(2.182)
Find the following for a 600
angle lamina of Glass/Epoxy
a) coefficients of thermal expansion,
b) coefficients of moisture expansion,
c) strains under a temperature change of -1000
C and a moisture absorption of 0.02 kg/kg.
Use properties of unidirectional Glass/Epoxy lamina from Table 2.1.
a) From Table 2.1,
C,
/
m/m
10
8.6
= 0
-6
1 

C.
/
m/m
10
22.1
= 0
-6
2 

Using Equation (2.181), gives
,
0
10
22.1
10
8.6
0.5000
-
0.4330
-
0.4330
0.8660
0.2500
0.7500
0.8660
-
0.7500
0.2500
=
/2
6
-
-6
xy
y
x







































C.
/
m/m
10
11.69
-
10
11.98
10
18.73
= 0
6
-
6
-
-6
xy
y
x






























.
0
]
[T
=
/2
2
1
1
-
xy
y
x





























(2.181)
b) From Table 2.1
m/m/kg/kg,
0
=
1

m/m/kg/kg.
0.6
=
2

Using Equation (2.182) gives
































0
0.6
0.0
0.5000
-
0.4330
-
0.4330
0.8660
0.2500
0.7500
0.8660
-
0.7500
0.2500
=
/2
xy
y
x



m/m/kg/kg
0.5196
-
0.1500
0.4500
=
xy
y
x

















































0
]
[T
=
/2
2
1
1
-
xy
y
x





(2.182)
c) Now using Equations (2.179) and (2.180) to calculate the strains as.
(0.02)
0.5196
-
0.1500
0.4500
+
(-100)
10
11.69
-
10
11.98
10
18.73
=
6
-
6
-
-6
xy
y
x








































m/m
10
0.9223
-
10
0.1802
10
0.7127
=
2
2
2



























































































C
xy
C
y
C
x
T
xy
T
y
T
x
xy
y
x
66
26
16
26
22
12
16
12
11
xy
y
x
+
+
S
S
S
S
S
S
S
S
S
= (2.178)
Chapter2_9_hygrothermal stresses and strains.pptx
1 de 11

Recomendados

composites last.pptx por
composites last.pptxcomposites last.pptx
composites last.pptxMUBASHIRGULZAR8
2 vistas11 diapositivas
The Thick-Walled cylinder por
The Thick-Walled cylinder The Thick-Walled cylinder
The Thick-Walled cylinder Ghassan Alhamdany
1.7K vistas17 diapositivas
Nonlinear Weather Forecasting-ORSIS.pdf por
Nonlinear Weather Forecasting-ORSIS.pdfNonlinear Weather Forecasting-ORSIS.pdf
Nonlinear Weather Forecasting-ORSIS.pdfGal Zahavi
9 vistas31 diapositivas
Admission in india 2014 por
Admission in india 2014Admission in india 2014
Admission in india 2014Edhole.com
635 vistas63 diapositivas
Me307 machine elements formula sheet Erdi Karaçal Mechanical Engineer Univers... por
Me307 machine elements formula sheet Erdi Karaçal Mechanical Engineer Univers...Me307 machine elements formula sheet Erdi Karaçal Mechanical Engineer Univers...
Me307 machine elements formula sheet Erdi Karaçal Mechanical Engineer Univers...Erdi Karaçal
17.4K vistas15 diapositivas
Video lectures for b.tech por
Video lectures for b.techVideo lectures for b.tech
Video lectures for b.techEdhole.com
408 vistas63 diapositivas

Más contenido relacionado

Similar a Chapter2_9_hygrothermal stresses and strains.pptx

H04525159 por
H04525159H04525159
H04525159IOSR-JEN
339 vistas9 diapositivas
Thermodynamic Chapter 3 First Law Of Thermodynamics por
Thermodynamic Chapter 3 First Law Of ThermodynamicsThermodynamic Chapter 3 First Law Of Thermodynamics
Thermodynamic Chapter 3 First Law Of ThermodynamicsMuhammad Surahman
113.8K vistas59 diapositivas
Partial differential equations por
Partial differential equationsPartial differential equations
Partial differential equationsDr.Jagadish Tawade
549 vistas31 diapositivas
(6 7)-1-d-ss-conduction-part2 por
(6 7)-1-d-ss-conduction-part2(6 7)-1-d-ss-conduction-part2
(6 7)-1-d-ss-conduction-part2Vinod Kumar Turki
2.4K vistas25 diapositivas
Effect of Michell’s Function in Stress Analysis Due to Axisymmetric Heat Supp... por
Effect of Michell’s Function in Stress Analysis Due to Axisymmetric Heat Supp...Effect of Michell’s Function in Stress Analysis Due to Axisymmetric Heat Supp...
Effect of Michell’s Function in Stress Analysis Due to Axisymmetric Heat Supp...IJERA Editor
57 vistas6 diapositivas
J0736367 por
J0736367J0736367
J0736367IOSR Journals
455 vistas5 diapositivas

Similar a Chapter2_9_hygrothermal stresses and strains.pptx(20)

H04525159 por IOSR-JEN
H04525159H04525159
H04525159
IOSR-JEN339 vistas
Thermodynamic Chapter 3 First Law Of Thermodynamics por Muhammad Surahman
Thermodynamic Chapter 3 First Law Of ThermodynamicsThermodynamic Chapter 3 First Law Of Thermodynamics
Thermodynamic Chapter 3 First Law Of Thermodynamics
Muhammad Surahman113.8K vistas
Effect of Michell’s Function in Stress Analysis Due to Axisymmetric Heat Supp... por IJERA Editor
Effect of Michell’s Function in Stress Analysis Due to Axisymmetric Heat Supp...Effect of Michell’s Function in Stress Analysis Due to Axisymmetric Heat Supp...
Effect of Michell’s Function in Stress Analysis Due to Axisymmetric Heat Supp...
IJERA Editor57 vistas
Mhd and heat transfer in a thin film over an unsteady stretching surface with por IAEME Publication
Mhd and heat transfer in a thin film over an unsteady stretching surface withMhd and heat transfer in a thin film over an unsteady stretching surface with
Mhd and heat transfer in a thin film over an unsteady stretching surface with
IAEME Publication393 vistas
free Video lecture in india por Edhole.com
free Video lecture in indiafree Video lecture in india
free Video lecture in india
Edhole.com831 vistas
Free video lecture in india por Css Founder
Free video lecture in indiaFree video lecture in india
Free video lecture in india
Css Founder581 vistas
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep por Erdi Karaçal
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of GaziantepFormul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
Erdi Karaçal3K vistas
Modeling and-simulating-of-gas-turbine-cooled-blades por Cemal Ardil
Modeling and-simulating-of-gas-turbine-cooled-bladesModeling and-simulating-of-gas-turbine-cooled-blades
Modeling and-simulating-of-gas-turbine-cooled-blades
Cemal Ardil316 vistas
Etht grp 10 ,140080125005 006-007-008 por Yash Dobariya
Etht grp 10 ,140080125005 006-007-008Etht grp 10 ,140080125005 006-007-008
Etht grp 10 ,140080125005 006-007-008
Yash Dobariya 446 vistas
Mechanics of structures module4 por SHAMJITH KM
Mechanics of structures  module4Mechanics of structures  module4
Mechanics of structures module4
SHAMJITH KM1.3K vistas
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT... por mathsjournal
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
mathsjournal15 vistas
Modeling of Redistribution of Infused Dopant in a Multilayer Structure Dopant... por mathsjournal
Modeling of Redistribution of Infused Dopant in a Multilayer Structure Dopant...Modeling of Redistribution of Infused Dopant in a Multilayer Structure Dopant...
Modeling of Redistribution of Infused Dopant in a Multilayer Structure Dopant...
mathsjournal5 vistas
Effects on Study MHD Free Convection Flow Past a Vertical Porous Plate with H... por IJMTST Journal
Effects on Study MHD Free Convection Flow Past a Vertical Porous Plate with H...Effects on Study MHD Free Convection Flow Past a Vertical Porous Plate with H...
Effects on Study MHD Free Convection Flow Past a Vertical Porous Plate with H...
IJMTST Journal47 vistas
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 04 Solutions por semihypocrite
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 04 SolutionsCH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 04 Solutions
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 04 Solutions
semihypocrite541 vistas

Último

MK__Cert.pdf por
MK__Cert.pdfMK__Cert.pdf
MK__Cert.pdfHassan Khan
15 vistas1 diapositiva
Renewal Projects in Seismic Construction por
Renewal Projects in Seismic ConstructionRenewal Projects in Seismic Construction
Renewal Projects in Seismic ConstructionEngineering & Seismic Construction
5 vistas8 diapositivas
MongoDB.pdf por
MongoDB.pdfMongoDB.pdf
MongoDB.pdfArthyR3
45 vistas6 diapositivas
fakenews_DBDA_Mar23.pptx por
fakenews_DBDA_Mar23.pptxfakenews_DBDA_Mar23.pptx
fakenews_DBDA_Mar23.pptxdeepmitra8
16 vistas34 diapositivas
_MAKRIADI-FOTEINI_diploma thesis.pptx por
_MAKRIADI-FOTEINI_diploma thesis.pptx_MAKRIADI-FOTEINI_diploma thesis.pptx
_MAKRIADI-FOTEINI_diploma thesis.pptxfotinimakriadi
8 vistas32 diapositivas
Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc... por
Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc...Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc...
Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc...csegroupvn
5 vistas210 diapositivas

Último(20)

MongoDB.pdf por ArthyR3
MongoDB.pdfMongoDB.pdf
MongoDB.pdf
ArthyR345 vistas
fakenews_DBDA_Mar23.pptx por deepmitra8
fakenews_DBDA_Mar23.pptxfakenews_DBDA_Mar23.pptx
fakenews_DBDA_Mar23.pptx
deepmitra816 vistas
_MAKRIADI-FOTEINI_diploma thesis.pptx por fotinimakriadi
_MAKRIADI-FOTEINI_diploma thesis.pptx_MAKRIADI-FOTEINI_diploma thesis.pptx
_MAKRIADI-FOTEINI_diploma thesis.pptx
fotinimakriadi8 vistas
Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc... por csegroupvn
Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc...Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc...
Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc...
csegroupvn5 vistas
REACTJS.pdf por ArthyR3
REACTJS.pdfREACTJS.pdf
REACTJS.pdf
ArthyR334 vistas
SUMIT SQL PROJECT SUPERSTORE 1.pptx por Sumit Jadhav
SUMIT SQL PROJECT SUPERSTORE 1.pptxSUMIT SQL PROJECT SUPERSTORE 1.pptx
SUMIT SQL PROJECT SUPERSTORE 1.pptx
Sumit Jadhav 18 vistas
Design of machine elements-UNIT 3.pptx por gopinathcreddy
Design of machine elements-UNIT 3.pptxDesign of machine elements-UNIT 3.pptx
Design of machine elements-UNIT 3.pptx
gopinathcreddy33 vistas
GDSC Mikroskil Members Onboarding 2023.pdf por gdscmikroskil
GDSC Mikroskil Members Onboarding 2023.pdfGDSC Mikroskil Members Onboarding 2023.pdf
GDSC Mikroskil Members Onboarding 2023.pdf
gdscmikroskil58 vistas
Web Dev Session 1.pptx por VedVekhande
Web Dev Session 1.pptxWeb Dev Session 1.pptx
Web Dev Session 1.pptx
VedVekhande11 vistas
Design_Discover_Develop_Campaign.pptx por ShivanshSeth6
Design_Discover_Develop_Campaign.pptxDesign_Discover_Develop_Campaign.pptx
Design_Discover_Develop_Campaign.pptx
ShivanshSeth637 vistas
Searching in Data Structure por raghavbirla63
Searching in Data StructureSearching in Data Structure
Searching in Data Structure
raghavbirla6314 vistas
Proposal Presentation.pptx por keytonallamon
Proposal Presentation.pptxProposal Presentation.pptx
Proposal Presentation.pptx
keytonallamon52 vistas
ASSIGNMENTS ON FUZZY LOGIC IN TRAFFIC FLOW.pdf por AlhamduKure
ASSIGNMENTS ON FUZZY LOGIC IN TRAFFIC FLOW.pdfASSIGNMENTS ON FUZZY LOGIC IN TRAFFIC FLOW.pdf
ASSIGNMENTS ON FUZZY LOGIC IN TRAFFIC FLOW.pdf
AlhamduKure6 vistas
Update 42 models(Diode/General ) in SPICE PARK(DEC2023) por Tsuyoshi Horigome
Update 42 models(Diode/General ) in SPICE PARK(DEC2023)Update 42 models(Diode/General ) in SPICE PARK(DEC2023)
Update 42 models(Diode/General ) in SPICE PARK(DEC2023)
Tsuyoshi Horigome38 vistas
2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptx por lwang78
2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptx2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptx
2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptx
lwang78109 vistas

Chapter2_9_hygrothermal stresses and strains.pptx

  • 1. Chapter 2 MacromechanicalAnalysis of a Lamina Hygrothermal Stresses and Strains Dr.Autar Kaw Department of Mechanical Engineering University of South Florida,Tampa, FL 33620 Courtesy of the Textbook Mechanics of Composite Materials by Kaw
  • 2.  For a unidirectional lamina  Thermally induced strains:  Moisture induced strains:                                                             0 + 0 + S 0 0 0 S S 0 S S = C 2 C 1 T 2 T 1 12 2 1 66 22 12 12 11 12 2 1                                    0 T = 0 2 1 T 2 T 1                              0 C = 0 2 1 C 2 C 1     (2.174) (2.175) (2.176)
  • 3.  For a unidirectional lamina                                                             0 0 0 0 0 0 2 1 2 1 12 2 1 66 22 12 12 11 12 2 1 ε ε + ε ε + τ σ σ S S S S S = γ ε ε C C T T                                     γ ε - ε - ε ε - ε - ε Q Q Q Q Q = τ σ σ C T C T 12 2 2 2 1 1 1 66 22 12 12 11 12 2 1 0 0 0 0 (2.174) (2.177)
  • 4.  For an angular lamina  Thermally induced strains:  Moisture induced strains:                                                                 γ ε ε + γ ε ε + τ σ σ S S S S S S S S S = γ ε ε C xy C y C x T xy T y T x xy y x xy y x 66 26 16 26 22 12 16 12 11                                  xy y x T xy T y T x T =                                  xy y x C xy C y C x C = (2.178) (2.179) (2.180)
  • 5.  For an angular lamina                         0 2 2 1 1 α α ] = [T / α α α - xy y x                 s c sc sc sc c s sc s c = T 2 2 2 2 2 2 1 2 2 ] [             s - c sc sc - 2sc - c s 2sc s c = [T] 2 2 2 2 2 2 ) ( = c  Cos ) ( = s  Sin (2.181) (2.95) (2.96) (2.97a,b)
  • 6.  For an angular lamina                         0 ] [T = /2 2 1 1 - xy y x                      s c sc sc 2sc c s 2sc s c = ] [T 2 2 2 2 2 2 1             s - c sc sc - 2sc - c s 2sc s c = [T] 2 2 2 2 2 2 ) ( = c  Cos ) ( = s  Sin (2.95) (2.96) (2.97a,b) (2.182)
  • 7. Find the following for a 600 angle lamina of Glass/Epoxy a) coefficients of thermal expansion, b) coefficients of moisture expansion, c) strains under a temperature change of -1000 C and a moisture absorption of 0.02 kg/kg. Use properties of unidirectional Glass/Epoxy lamina from Table 2.1.
  • 8. a) From Table 2.1, C, / m/m 10 8.6 = 0 -6 1   C. / m/m 10 22.1 = 0 -6 2   Using Equation (2.181), gives , 0 10 22.1 10 8.6 0.5000 - 0.4330 - 0.4330 0.8660 0.2500 0.7500 0.8660 - 0.7500 0.2500 = /2 6 - -6 xy y x                                        C. / m/m 10 11.69 - 10 11.98 10 18.73 = 0 6 - 6 - -6 xy y x                               . 0 ] [T = /2 2 1 1 - xy y x                              (2.181)
  • 9. b) From Table 2.1 m/m/kg/kg, 0 = 1  m/m/kg/kg. 0.6 = 2  Using Equation (2.182) gives                                 0 0.6 0.0 0.5000 - 0.4330 - 0.4330 0.8660 0.2500 0.7500 0.8660 - 0.7500 0.2500 = /2 xy y x    m/m/kg/kg 0.5196 - 0.1500 0.4500 = xy y x                                                  0 ] [T = /2 2 1 1 - xy y x      (2.182)
  • 10. c) Now using Equations (2.179) and (2.180) to calculate the strains as. (0.02) 0.5196 - 0.1500 0.4500 + (-100) 10 11.69 - 10 11.98 10 18.73 = 6 - 6 - -6 xy y x                                         m/m 10 0.9223 - 10 0.1802 10 0.7127 = 2 2 2                                                                                            C xy C y C x T xy T y T x xy y x 66 26 16 26 22 12 16 12 11 xy y x + + S S S S S S S S S = (2.178)