Hemos actualizado nuestra política de privacidad. Haga clic aquí para revisar los detalles. Pulse aquí para revisar los detalles
Active su período de prueba de 30 días gratis para desbloquear las lecturas ilimitadas.
Active su período de prueba de 30 días gratis para seguir leyendo.
Descargar para leer sin conexión
Las aplicaciones de Inteligencia Artificial como Machine Learning y Deep Learning se han convertido en parte importante en nuestras vidas. Los productos que compramos, si somos o no aptos para un préstamo bancario, las películas o series que Netflix nos recomienda, coches autoconducidos, reconocimiento de objetos, etc; toda esa información es dirigida hacia nosotros por estos algoritmos.
En la actualidad, estos campos de estudio son los más apasionantes y retadores en computación debido a su alto nivel de complejidad y gran demanda en el mercado. En esta presentación vamos a conocer y aprender a diferenciar estos conceptos, ya que son herramientas inevitables para el mejoramiento de la vida humana.
A continuación, te presentamos algunos de los temas específicos que se expondrán:
- Contexto de ML y DL en Inteligencia Artificial.
- Machine Learning.
- Supervised Learning.
- Unsupervised Learning.
- Deep Learning.
- Artificial Neural Network.
- Convolutional Neural Networks.
- Aplicaciones en ML y DL.
Las aplicaciones de Inteligencia Artificial como Machine Learning y Deep Learning se han convertido en parte importante en nuestras vidas. Los productos que compramos, si somos o no aptos para un préstamo bancario, las películas o series que Netflix nos recomienda, coches autoconducidos, reconocimiento de objetos, etc; toda esa información es dirigida hacia nosotros por estos algoritmos.
En la actualidad, estos campos de estudio son los más apasionantes y retadores en computación debido a su alto nivel de complejidad y gran demanda en el mercado. En esta presentación vamos a conocer y aprender a diferenciar estos conceptos, ya que son herramientas inevitables para el mejoramiento de la vida humana.
A continuación, te presentamos algunos de los temas específicos que se expondrán:
- Contexto de ML y DL en Inteligencia Artificial.
- Machine Learning.
- Supervised Learning.
- Unsupervised Learning.
- Deep Learning.
- Artificial Neural Network.
- Convolutional Neural Networks.
- Aplicaciones en ML y DL.
Parece que ya has recortado esta diapositiva en .
¡Acabas de recortar tu primera diapositiva!
Los recortes son una forma práctica de recopilar diapositivas importantes para volver a ellas más tarde. Ahora puedes personalizar el nombre de un tablero de recortes para guardar tus recortes.La familia SlideShare crece. Disfruta de acceso a millones de libros electrónicos, audiolibros, revistas y mucho más de Scribd.
Cancela en cualquier momento.Lecturas ilimitadas
Aprenda más rápido y de forma más inteligente con los mejores expertos
Descargas ilimitadas
Descárguelo para aprender sin necesidad de estar conectado y desde cualquier lugar
¡Además, tiene acceso gratis a Scribd!
Acceso instantáneo a millones de libros electrónicos, audiolibros, revistas, podcasts y mucho más.
Lea y escuche sin conexión desde cualquier dispositivo.
Acceso gratis a servicios prémium como TuneIn, Mubi y muchos más.
Hemos actualizado su política de privacidad para cumplir con las cambiantes normativas de privacidad internacionales y para ofrecerle información sobre las limitadas formas en las que utilizamos sus datos.
Puede leer los detalles a continuación. Al aceptar, usted acepta la política de privacidad actualizada.
¡Gracias!