SlideShare una empresa de Scribd logo
1 de 13
Descargar para leer sin conexión
Content-based recommendation
 The requirement
 some information about the available items such as the genre ("content")
 some sort of user profile describing what the user likes (the preferences)
• “Similarity” is computed from item attributes, e.g.,
• Similarity of movies by actors, director, genre
• Similarity of text by words, topics
• Similarity of music by genre, year
 The task:
 learn user preferences
 locate/recommend items that are "similar" to the user preferences
"show me more
of the same
what I've liked"
• Most Content Based-recommendation techniques were applied to recommending
text documents.
• Like web pages or newsgroup messages for example.
• Content of items can also be represented as text documents.
• With textual descriptions of their basic characteristics.
• Structured: Each item is described by the same set of attributes
Title Genre Author Type Price Keywords
The Night of
the Gun
Memoir David Carr Paperback 29.90 Press and journalism, drug addiction,
personal memoirs, New York
The Lace
Reader
Fiction,
Mystery
Brunonia Barry Hardcover 49.90 American contemporary fiction, detective,
historical
Into the Fire Romance,
Suspense
Suzanne
Brockmann
Hardcover 45.90 American fiction, murder, neo-Nazism
 Item representation
Content representation and item similarities
• Approach
• Compute the similarity of an unseen item with
the user profile based on the keyword overlap
(e.g. using the Dice coefficient)
• Or use and combine multiple metrics
Title Genre Author Type Price Keywords
The Night of
the Gun
Memoir David Carr Paperback 29.90 Press and journalism, drug
addiction, personal memoirs,
New York
The Lace
Reader
Fiction,
Mystery
Brunonia Barry Hardcover 49.90 American contemporary fiction,
detective, historical
Into the Fire Romance,
Suspense
Suzanne
Brockmann
Hardcover 45.90 American fiction, murder, neo-
Nazism
 User profile
Title Genre Author Type Price Keywords
… Fiction Brunonia,
Barry, Ken
Follett
Paperback 25.65 Detective, murder,
New York
𝟐 × 𝒌𝒆𝒚𝒘𝒐𝒓𝒅𝒔 𝒃𝒊 ∩ 𝒌𝒆𝒚𝒘𝒐𝒓𝒅𝒔 𝒃𝒋
𝒌𝒆𝒚𝒘𝒐𝒓𝒅𝒔 𝒃𝒊 + 𝒌𝒆𝒚𝒘𝒐𝒓𝒅𝒔 𝒃𝒋
𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠 𝑏𝑗
describes Book 𝑏𝑗
with a set of
keywords
Term-Frequency - Inverse Document
Frequency (𝑻𝑭 − 𝑰𝑫𝑭)
• Simple keyword representation has its problems
• in particular when automatically extracted as
• not every word has similar importance
• longer documents have a higher chance to have an overlap with the user profile
• Standard measure: TF-IDF
• Encodes text documents in multi-dimensional Euclidian space
• weighted term vector
• TF: Measures, how often a term appears (density in a document)
• assuming that important terms appear more often
• normalization has to be done in order to take document length into account
• IDF: Aims to reduce the weight of terms that appear in all documents
• Given a keyword 𝑖 and a document 𝑗
• 𝑇𝐹 𝑖, 𝑗
• term frequency of keyword 𝑖 in document 𝑗
• 𝐼𝐷𝐹 𝑖
• inverse document frequency calculated as 𝑰𝑫𝑭 𝒊 = 𝒍𝒐𝒈
𝑵
𝒏 𝒊
• 𝑁 : number of all recommendable documents
• 𝑛 𝑖 : number of documents from 𝑁 in which keyword 𝑖 appears
• 𝑇𝐹 − 𝐼𝐷𝐹
• is calculated as: 𝑻𝑭-𝑰𝑫𝑭 𝒊, 𝒋 = 𝑻𝑭 𝒊, 𝒋 ∗ 𝑰𝑫𝑭 𝒊
Term-Frequency - Inverse Document
Frequency (𝑻𝑭 − 𝑰𝑫𝑭)
Cosine similarity
• Usual similarity metric to compare vectors: Cosine similarity (angle)
• Cosine similarity is calculated based on the angle between the vectors
• 𝑠𝑖𝑚 𝑎, 𝑏 =
𝑎∙𝑏
𝑎 ∗ 𝑏
• Adjusted cosine similarity
• take average user ratings into account ( 𝑟𝑢), transform the original ratings
• U: set of users who have rated both items a and b
• 𝑠𝑖𝑚 𝑎, 𝑏 = 𝑢∈𝑈 𝑟 𝑢,𝑎− 𝑟 𝑢 𝑟 𝑢,𝑏− 𝑟 𝑢
𝑢∈𝑈 𝑟 𝑢,𝑎− 𝑟 𝑢
2
𝑢∈𝑈 𝑟 𝑢,𝑏− 𝑟 𝑢
2
An example for computing cosine similarity of annotations
To calculate cosine similarity between two texts t1 and t2, they are
transformed
in vectors as shown in the Table
Probabilistic methods
Calculation of probabilities in simplistic approach
Item1 Item2 Item3 Item4 Item5
Alice 1 3 3 2 ?
User1 2 4 2 2 4
User2 1 3 3 5 1
User3 4 5 2 3 3
User4 1 1 5 2 1
X = (Item1 =1, Item2=3, Item3= … )
Item1 Item5
Alice 2 ?
User1 1 2
 Idea of Slope One predictors is simple and is based on a popularity
differential between items for users
 Example:
 p(Alice, Item5) =
 Basic scheme: Take the average of these differences of the co-ratings to
make the prediction
 In general: Find a function of the form f(x) = x + b
Slope One predictors
-
2 + ( 2 - 1 ) = 3
Relevant
Nonrelevant
• Most learning methods aim to find coefficients of a linear model
• A simplified classifier with only two dimensions can be represented by a line
 Other linear classifiers:
– Naive Bayes classifier, Rocchio method, Windrow-Hoff algorithm, Support vector machines
Linear classifiers
 The line has the form 𝒘 𝟏 𝒙 𝟏 + 𝒘 𝟐 𝒙 𝟐 = 𝒃
– 𝑥1 and 𝑥2 correspond to the vector
representation of a document (using e.g. TF-IDF
weights)
– 𝑤1, 𝑤2 and 𝑏 are parameters to be learned
– Classification of a document based on checking
𝑤1 𝑥1 + 𝑤2 𝑥2 > 𝑏
 In n-dimensional space the classification
function is 𝑤 𝑇 𝑥 = 𝑏
– Mean Absolute Error (MAE) computes the deviation
between predicted ratings and actual ratings
– Root Mean Square Error (RMSE) is similar to MAE,
but places more emphasis on larger deviation
Metrics Measure Error rate
Next …
• Hybrid recommendation systems
• More theories
• Boolean and Vector Space
Retrieval Models
• Clustering
• Data mining
• And so on

Más contenido relacionado

La actualidad más candente

Recommendation engines
Recommendation enginesRecommendation engines
Recommendation enginesGeorgian Micsa
 
Collaborative Filtering 1: User-based CF
Collaborative Filtering 1: User-based CFCollaborative Filtering 1: User-based CF
Collaborative Filtering 1: User-based CFYusuke Yamamoto
 
Recommender system algorithm and architecture
Recommender system algorithm and architectureRecommender system algorithm and architecture
Recommender system algorithm and architectureLiang Xiang
 
Recommender system introduction
Recommender system   introductionRecommender system   introduction
Recommender system introductionLiang Xiang
 
Movie lens recommender systems
Movie lens recommender systemsMovie lens recommender systems
Movie lens recommender systemsKapil Garg
 
Recommender Systems
Recommender SystemsRecommender Systems
Recommender SystemsLior Rokach
 
Recommendation System
Recommendation SystemRecommendation System
Recommendation SystemAnamta Sayyed
 
Recommendation Systems
Recommendation SystemsRecommendation Systems
Recommendation SystemsRobin Reni
 
Movie Recommendation System.pptx
Movie Recommendation System.pptxMovie Recommendation System.pptx
Movie Recommendation System.pptxrandominfo
 
Recommendation System Explained
Recommendation System ExplainedRecommendation System Explained
Recommendation System ExplainedCrossing Minds
 
Calibrated Recommendations
Calibrated RecommendationsCalibrated Recommendations
Calibrated RecommendationsHarald Steck
 
Recommendation Systems Basics
Recommendation Systems BasicsRecommendation Systems Basics
Recommendation Systems BasicsJarin Tasnim Khan
 
Qcon SF 2013 - Machine Learning & Recommender Systems @ Netflix Scale
Qcon SF 2013 - Machine Learning & Recommender Systems @ Netflix ScaleQcon SF 2013 - Machine Learning & Recommender Systems @ Netflix Scale
Qcon SF 2013 - Machine Learning & Recommender Systems @ Netflix ScaleXavier Amatriain
 
Movie lens movie recommendation system
Movie lens movie recommendation systemMovie lens movie recommendation system
Movie lens movie recommendation systemGaurav Sawant
 
Recommendation system
Recommendation system Recommendation system
Recommendation system Vikrant Arya
 
Matrix Factorization Techniques For Recommender Systems
Matrix Factorization Techniques For Recommender SystemsMatrix Factorization Techniques For Recommender Systems
Matrix Factorization Techniques For Recommender SystemsLei Guo
 
Recent advances in deep recommender systems
Recent advances in deep recommender systemsRecent advances in deep recommender systems
Recent advances in deep recommender systemsNAVER Engineering
 
Recommender systems
Recommender systemsRecommender systems
Recommender systemsTamer Rezk
 

La actualidad más candente (20)

Recommendation engines
Recommendation enginesRecommendation engines
Recommendation engines
 
Collaborative Filtering 1: User-based CF
Collaborative Filtering 1: User-based CFCollaborative Filtering 1: User-based CF
Collaborative Filtering 1: User-based CF
 
Recommender system algorithm and architecture
Recommender system algorithm and architectureRecommender system algorithm and architecture
Recommender system algorithm and architecture
 
Recommender system introduction
Recommender system   introductionRecommender system   introduction
Recommender system introduction
 
Movie lens recommender systems
Movie lens recommender systemsMovie lens recommender systems
Movie lens recommender systems
 
Recommender Systems
Recommender SystemsRecommender Systems
Recommender Systems
 
Recommendation System
Recommendation SystemRecommendation System
Recommendation System
 
Recommendation Systems
Recommendation SystemsRecommendation Systems
Recommendation Systems
 
Movie Recommendation System.pptx
Movie Recommendation System.pptxMovie Recommendation System.pptx
Movie Recommendation System.pptx
 
Recommendation System Explained
Recommendation System ExplainedRecommendation System Explained
Recommendation System Explained
 
Calibrated Recommendations
Calibrated RecommendationsCalibrated Recommendations
Calibrated Recommendations
 
Recommendation Systems Basics
Recommendation Systems BasicsRecommendation Systems Basics
Recommendation Systems Basics
 
Recommender Systems
Recommender SystemsRecommender Systems
Recommender Systems
 
Qcon SF 2013 - Machine Learning & Recommender Systems @ Netflix Scale
Qcon SF 2013 - Machine Learning & Recommender Systems @ Netflix ScaleQcon SF 2013 - Machine Learning & Recommender Systems @ Netflix Scale
Qcon SF 2013 - Machine Learning & Recommender Systems @ Netflix Scale
 
Movie lens movie recommendation system
Movie lens movie recommendation systemMovie lens movie recommendation system
Movie lens movie recommendation system
 
Recommendation system
Recommendation system Recommendation system
Recommendation system
 
Recommender Systems
Recommender SystemsRecommender Systems
Recommender Systems
 
Matrix Factorization Techniques For Recommender Systems
Matrix Factorization Techniques For Recommender SystemsMatrix Factorization Techniques For Recommender Systems
Matrix Factorization Techniques For Recommender Systems
 
Recent advances in deep recommender systems
Recent advances in deep recommender systemsRecent advances in deep recommender systems
Recent advances in deep recommender systems
 
Recommender systems
Recommender systemsRecommender systems
Recommender systems
 

Destacado

How To Implement a CMS
How To Implement a CMSHow To Implement a CMS
How To Implement a CMSJonathan Smith
 
How to build a Recommender System
How to build a Recommender SystemHow to build a Recommender System
How to build a Recommender SystemVõ Duy Tuấn
 
How to Build Recommender System with Content based Filtering
How to Build Recommender System with Content based FilteringHow to Build Recommender System with Content based Filtering
How to Build Recommender System with Content based FilteringVõ Duy Tuấn
 
Rekomendujemy - Szybkie wprowadzenie do systemów rekomendacji oraz trochę wie...
Rekomendujemy - Szybkie wprowadzenie do systemów rekomendacji oraz trochę wie...Rekomendujemy - Szybkie wprowadzenie do systemów rekomendacji oraz trochę wie...
Rekomendujemy - Szybkie wprowadzenie do systemów rekomendacji oraz trochę wie...Bartlomiej Twardowski
 
Systemy rekomendacji
Systemy rekomendacjiSystemy rekomendacji
Systemy rekomendacjiAdam Kawa
 
Collaborative filtering for recommendation systems in Python, Nicolas Hug
Collaborative filtering for recommendation systems in Python, Nicolas HugCollaborative filtering for recommendation systems in Python, Nicolas Hug
Collaborative filtering for recommendation systems in Python, Nicolas HugPôle Systematic Paris-Region
 

Destacado (6)

How To Implement a CMS
How To Implement a CMSHow To Implement a CMS
How To Implement a CMS
 
How to build a Recommender System
How to build a Recommender SystemHow to build a Recommender System
How to build a Recommender System
 
How to Build Recommender System with Content based Filtering
How to Build Recommender System with Content based FilteringHow to Build Recommender System with Content based Filtering
How to Build Recommender System with Content based Filtering
 
Rekomendujemy - Szybkie wprowadzenie do systemów rekomendacji oraz trochę wie...
Rekomendujemy - Szybkie wprowadzenie do systemów rekomendacji oraz trochę wie...Rekomendujemy - Szybkie wprowadzenie do systemów rekomendacji oraz trochę wie...
Rekomendujemy - Szybkie wprowadzenie do systemów rekomendacji oraz trochę wie...
 
Systemy rekomendacji
Systemy rekomendacjiSystemy rekomendacji
Systemy rekomendacji
 
Collaborative filtering for recommendation systems in Python, Nicolas Hug
Collaborative filtering for recommendation systems in Python, Nicolas HugCollaborative filtering for recommendation systems in Python, Nicolas Hug
Collaborative filtering for recommendation systems in Python, Nicolas Hug
 

Similar a Content based filtering

Book Recommendation Engine
Book Recommendation EngineBook Recommendation Engine
Book Recommendation EngineShravaniBheema
 
sa-mincut-aditya.ppt
sa-mincut-aditya.pptsa-mincut-aditya.ppt
sa-mincut-aditya.pptaashnareddy1
 
Publish or Perish: Towards a Ranking of Scientists using Bibliographic Data ...
Publish or Perish:  Towards a Ranking of Scientists using Bibliographic Data ...Publish or Perish:  Towards a Ranking of Scientists using Bibliographic Data ...
Publish or Perish: Towards a Ranking of Scientists using Bibliographic Data ...Lior Rokach
 
Digital Image Processing.pptx
Digital Image Processing.pptxDigital Image Processing.pptx
Digital Image Processing.pptxMukhtiarKhan5
 
Scalable Recommendation Algorithms with LSH
Scalable Recommendation Algorithms with LSHScalable Recommendation Algorithms with LSH
Scalable Recommendation Algorithms with LSHMaruf Aytekin
 
Simple semantics in topic detection and tracking
Simple semantics in topic detection and trackingSimple semantics in topic detection and tracking
Simple semantics in topic detection and trackingGeorge Ang
 
IRT Unit_ 2.pptx
IRT Unit_ 2.pptxIRT Unit_ 2.pptx
IRT Unit_ 2.pptxthenmozhip8
 
Presentation on Text Classification
Presentation on Text ClassificationPresentation on Text Classification
Presentation on Text ClassificationSai Srinivas Kotni
 
Textmining Retrieval And Clustering
Textmining Retrieval And ClusteringTextmining Retrieval And Clustering
Textmining Retrieval And ClusteringDataminingTools Inc
 
Textmining Retrieval And Clustering
Textmining Retrieval And ClusteringTextmining Retrieval And Clustering
Textmining Retrieval And Clusteringguest0edcaf
 
Textmining Retrieval And Clustering
Textmining Retrieval And ClusteringTextmining Retrieval And Clustering
Textmining Retrieval And ClusteringDatamining Tools
 
[系列活動] 人工智慧與機器學習在推薦系統上的應用
[系列活動] 人工智慧與機器學習在推薦系統上的應用[系列活動] 人工智慧與機器學習在推薦系統上的應用
[系列活動] 人工智慧與機器學習在推薦系統上的應用台灣資料科學年會
 
Models for Information Retrieval and Recommendation
Models for Information Retrieval and RecommendationModels for Information Retrieval and Recommendation
Models for Information Retrieval and RecommendationArjen de Vries
 
Textual Document Categorization using Bigram Maximum Likelihood and KNN
Textual Document Categorization using Bigram Maximum Likelihood and KNNTextual Document Categorization using Bigram Maximum Likelihood and KNN
Textual Document Categorization using Bigram Maximum Likelihood and KNNRounak Dhaneriya
 
Recommendation system
Recommendation systemRecommendation system
Recommendation systemDing Li
 

Similar a Content based filtering (20)

Book Recommendation Engine
Book Recommendation EngineBook Recommendation Engine
Book Recommendation Engine
 
sa-mincut-aditya.ppt
sa-mincut-aditya.pptsa-mincut-aditya.ppt
sa-mincut-aditya.ppt
 
sa.ppt
sa.pptsa.ppt
sa.ppt
 
sa-mincut-aditya.ppt
sa-mincut-aditya.pptsa-mincut-aditya.ppt
sa-mincut-aditya.ppt
 
Recommenders.ppt
Recommenders.pptRecommenders.ppt
Recommenders.ppt
 
Recommenders.ppt
Recommenders.pptRecommenders.ppt
Recommenders.ppt
 
Publish or Perish: Towards a Ranking of Scientists using Bibliographic Data ...
Publish or Perish:  Towards a Ranking of Scientists using Bibliographic Data ...Publish or Perish:  Towards a Ranking of Scientists using Bibliographic Data ...
Publish or Perish: Towards a Ranking of Scientists using Bibliographic Data ...
 
Digital Image Processing.pptx
Digital Image Processing.pptxDigital Image Processing.pptx
Digital Image Processing.pptx
 
Scalable Recommendation Algorithms with LSH
Scalable Recommendation Algorithms with LSHScalable Recommendation Algorithms with LSH
Scalable Recommendation Algorithms with LSH
 
Simple semantics in topic detection and tracking
Simple semantics in topic detection and trackingSimple semantics in topic detection and tracking
Simple semantics in topic detection and tracking
 
Filtering content bbased crs
Filtering content bbased crsFiltering content bbased crs
Filtering content bbased crs
 
IRT Unit_ 2.pptx
IRT Unit_ 2.pptxIRT Unit_ 2.pptx
IRT Unit_ 2.pptx
 
Presentation on Text Classification
Presentation on Text ClassificationPresentation on Text Classification
Presentation on Text Classification
 
Textmining Retrieval And Clustering
Textmining Retrieval And ClusteringTextmining Retrieval And Clustering
Textmining Retrieval And Clustering
 
Textmining Retrieval And Clustering
Textmining Retrieval And ClusteringTextmining Retrieval And Clustering
Textmining Retrieval And Clustering
 
Textmining Retrieval And Clustering
Textmining Retrieval And ClusteringTextmining Retrieval And Clustering
Textmining Retrieval And Clustering
 
[系列活動] 人工智慧與機器學習在推薦系統上的應用
[系列活動] 人工智慧與機器學習在推薦系統上的應用[系列活動] 人工智慧與機器學習在推薦系統上的應用
[系列活動] 人工智慧與機器學習在推薦系統上的應用
 
Models for Information Retrieval and Recommendation
Models for Information Retrieval and RecommendationModels for Information Retrieval and Recommendation
Models for Information Retrieval and Recommendation
 
Textual Document Categorization using Bigram Maximum Likelihood and KNN
Textual Document Categorization using Bigram Maximum Likelihood and KNNTextual Document Categorization using Bigram Maximum Likelihood and KNN
Textual Document Categorization using Bigram Maximum Likelihood and KNN
 
Recommendation system
Recommendation systemRecommendation system
Recommendation system
 

Último

UiPath Platform: The Backend Engine Powering Your Automation - Session 1
UiPath Platform: The Backend Engine Powering Your Automation - Session 1UiPath Platform: The Backend Engine Powering Your Automation - Session 1
UiPath Platform: The Backend Engine Powering Your Automation - Session 1DianaGray10
 
Crea il tuo assistente AI con lo Stregatto (open source python framework)
Crea il tuo assistente AI con lo Stregatto (open source python framework)Crea il tuo assistente AI con lo Stregatto (open source python framework)
Crea il tuo assistente AI con lo Stregatto (open source python framework)Commit University
 
COMPUTER 10 Lesson 8 - Building a Website
COMPUTER 10 Lesson 8 - Building a WebsiteCOMPUTER 10 Lesson 8 - Building a Website
COMPUTER 10 Lesson 8 - Building a Websitedgelyza
 
UiPath Community: AI for UiPath Automation Developers
UiPath Community: AI for UiPath Automation DevelopersUiPath Community: AI for UiPath Automation Developers
UiPath Community: AI for UiPath Automation DevelopersUiPathCommunity
 
Computer 10: Lesson 10 - Online Crimes and Hazards
Computer 10: Lesson 10 - Online Crimes and HazardsComputer 10: Lesson 10 - Online Crimes and Hazards
Computer 10: Lesson 10 - Online Crimes and HazardsSeth Reyes
 
UiPath Studio Web workshop series - Day 6
UiPath Studio Web workshop series - Day 6UiPath Studio Web workshop series - Day 6
UiPath Studio Web workshop series - Day 6DianaGray10
 
UiPath Studio Web workshop series - Day 8
UiPath Studio Web workshop series - Day 8UiPath Studio Web workshop series - Day 8
UiPath Studio Web workshop series - Day 8DianaGray10
 
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCostKubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCostMatt Ray
 
Building AI-Driven Apps Using Semantic Kernel.pptx
Building AI-Driven Apps Using Semantic Kernel.pptxBuilding AI-Driven Apps Using Semantic Kernel.pptx
Building AI-Driven Apps Using Semantic Kernel.pptxUdaiappa Ramachandran
 
Empowering Africa's Next Generation: The AI Leadership Blueprint
Empowering Africa's Next Generation: The AI Leadership BlueprintEmpowering Africa's Next Generation: The AI Leadership Blueprint
Empowering Africa's Next Generation: The AI Leadership BlueprintMahmoud Rabie
 
Cybersecurity Workshop #1.pptx
Cybersecurity Workshop #1.pptxCybersecurity Workshop #1.pptx
Cybersecurity Workshop #1.pptxGDSC PJATK
 
20230202 - Introduction to tis-py
20230202 - Introduction to tis-py20230202 - Introduction to tis-py
20230202 - Introduction to tis-pyJamie (Taka) Wang
 
9 Steps For Building Winning Founding Team
9 Steps For Building Winning Founding Team9 Steps For Building Winning Founding Team
9 Steps For Building Winning Founding TeamAdam Moalla
 
Anypoint Code Builder , Google Pub sub connector and MuleSoft RPA
Anypoint Code Builder , Google Pub sub connector and MuleSoft RPAAnypoint Code Builder , Google Pub sub connector and MuleSoft RPA
Anypoint Code Builder , Google Pub sub connector and MuleSoft RPAshyamraj55
 
AI Fame Rush Review – Virtual Influencer Creation In Just Minutes
AI Fame Rush Review – Virtual Influencer Creation In Just MinutesAI Fame Rush Review – Virtual Influencer Creation In Just Minutes
AI Fame Rush Review – Virtual Influencer Creation In Just MinutesMd Hossain Ali
 
IaC & GitOps in a Nutshell - a FridayInANuthshell Episode.pdf
IaC & GitOps in a Nutshell - a FridayInANuthshell Episode.pdfIaC & GitOps in a Nutshell - a FridayInANuthshell Episode.pdf
IaC & GitOps in a Nutshell - a FridayInANuthshell Episode.pdfDaniel Santiago Silva Capera
 
OpenShift Commons Paris - Choose Your Own Observability Adventure
OpenShift Commons Paris - Choose Your Own Observability AdventureOpenShift Commons Paris - Choose Your Own Observability Adventure
OpenShift Commons Paris - Choose Your Own Observability AdventureEric D. Schabell
 
Igniting Next Level Productivity with AI-Infused Data Integration Workflows
Igniting Next Level Productivity with AI-Infused Data Integration WorkflowsIgniting Next Level Productivity with AI-Infused Data Integration Workflows
Igniting Next Level Productivity with AI-Infused Data Integration WorkflowsSafe Software
 
UiPath Studio Web workshop series - Day 7
UiPath Studio Web workshop series - Day 7UiPath Studio Web workshop series - Day 7
UiPath Studio Web workshop series - Day 7DianaGray10
 

Último (20)

UiPath Platform: The Backend Engine Powering Your Automation - Session 1
UiPath Platform: The Backend Engine Powering Your Automation - Session 1UiPath Platform: The Backend Engine Powering Your Automation - Session 1
UiPath Platform: The Backend Engine Powering Your Automation - Session 1
 
Crea il tuo assistente AI con lo Stregatto (open source python framework)
Crea il tuo assistente AI con lo Stregatto (open source python framework)Crea il tuo assistente AI con lo Stregatto (open source python framework)
Crea il tuo assistente AI con lo Stregatto (open source python framework)
 
COMPUTER 10 Lesson 8 - Building a Website
COMPUTER 10 Lesson 8 - Building a WebsiteCOMPUTER 10 Lesson 8 - Building a Website
COMPUTER 10 Lesson 8 - Building a Website
 
UiPath Community: AI for UiPath Automation Developers
UiPath Community: AI for UiPath Automation DevelopersUiPath Community: AI for UiPath Automation Developers
UiPath Community: AI for UiPath Automation Developers
 
Computer 10: Lesson 10 - Online Crimes and Hazards
Computer 10: Lesson 10 - Online Crimes and HazardsComputer 10: Lesson 10 - Online Crimes and Hazards
Computer 10: Lesson 10 - Online Crimes and Hazards
 
201610817 - edge part1
201610817 - edge part1201610817 - edge part1
201610817 - edge part1
 
UiPath Studio Web workshop series - Day 6
UiPath Studio Web workshop series - Day 6UiPath Studio Web workshop series - Day 6
UiPath Studio Web workshop series - Day 6
 
UiPath Studio Web workshop series - Day 8
UiPath Studio Web workshop series - Day 8UiPath Studio Web workshop series - Day 8
UiPath Studio Web workshop series - Day 8
 
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCostKubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
 
Building AI-Driven Apps Using Semantic Kernel.pptx
Building AI-Driven Apps Using Semantic Kernel.pptxBuilding AI-Driven Apps Using Semantic Kernel.pptx
Building AI-Driven Apps Using Semantic Kernel.pptx
 
Empowering Africa's Next Generation: The AI Leadership Blueprint
Empowering Africa's Next Generation: The AI Leadership BlueprintEmpowering Africa's Next Generation: The AI Leadership Blueprint
Empowering Africa's Next Generation: The AI Leadership Blueprint
 
Cybersecurity Workshop #1.pptx
Cybersecurity Workshop #1.pptxCybersecurity Workshop #1.pptx
Cybersecurity Workshop #1.pptx
 
20230202 - Introduction to tis-py
20230202 - Introduction to tis-py20230202 - Introduction to tis-py
20230202 - Introduction to tis-py
 
9 Steps For Building Winning Founding Team
9 Steps For Building Winning Founding Team9 Steps For Building Winning Founding Team
9 Steps For Building Winning Founding Team
 
Anypoint Code Builder , Google Pub sub connector and MuleSoft RPA
Anypoint Code Builder , Google Pub sub connector and MuleSoft RPAAnypoint Code Builder , Google Pub sub connector and MuleSoft RPA
Anypoint Code Builder , Google Pub sub connector and MuleSoft RPA
 
AI Fame Rush Review – Virtual Influencer Creation In Just Minutes
AI Fame Rush Review – Virtual Influencer Creation In Just MinutesAI Fame Rush Review – Virtual Influencer Creation In Just Minutes
AI Fame Rush Review – Virtual Influencer Creation In Just Minutes
 
IaC & GitOps in a Nutshell - a FridayInANuthshell Episode.pdf
IaC & GitOps in a Nutshell - a FridayInANuthshell Episode.pdfIaC & GitOps in a Nutshell - a FridayInANuthshell Episode.pdf
IaC & GitOps in a Nutshell - a FridayInANuthshell Episode.pdf
 
OpenShift Commons Paris - Choose Your Own Observability Adventure
OpenShift Commons Paris - Choose Your Own Observability AdventureOpenShift Commons Paris - Choose Your Own Observability Adventure
OpenShift Commons Paris - Choose Your Own Observability Adventure
 
Igniting Next Level Productivity with AI-Infused Data Integration Workflows
Igniting Next Level Productivity with AI-Infused Data Integration WorkflowsIgniting Next Level Productivity with AI-Infused Data Integration Workflows
Igniting Next Level Productivity with AI-Infused Data Integration Workflows
 
UiPath Studio Web workshop series - Day 7
UiPath Studio Web workshop series - Day 7UiPath Studio Web workshop series - Day 7
UiPath Studio Web workshop series - Day 7
 

Content based filtering

  • 1. Content-based recommendation  The requirement  some information about the available items such as the genre ("content")  some sort of user profile describing what the user likes (the preferences) • “Similarity” is computed from item attributes, e.g., • Similarity of movies by actors, director, genre • Similarity of text by words, topics • Similarity of music by genre, year  The task:  learn user preferences  locate/recommend items that are "similar" to the user preferences "show me more of the same what I've liked"
  • 2. • Most Content Based-recommendation techniques were applied to recommending text documents. • Like web pages or newsgroup messages for example. • Content of items can also be represented as text documents. • With textual descriptions of their basic characteristics. • Structured: Each item is described by the same set of attributes Title Genre Author Type Price Keywords The Night of the Gun Memoir David Carr Paperback 29.90 Press and journalism, drug addiction, personal memoirs, New York The Lace Reader Fiction, Mystery Brunonia Barry Hardcover 49.90 American contemporary fiction, detective, historical Into the Fire Romance, Suspense Suzanne Brockmann Hardcover 45.90 American fiction, murder, neo-Nazism
  • 3.  Item representation Content representation and item similarities • Approach • Compute the similarity of an unseen item with the user profile based on the keyword overlap (e.g. using the Dice coefficient) • Or use and combine multiple metrics Title Genre Author Type Price Keywords The Night of the Gun Memoir David Carr Paperback 29.90 Press and journalism, drug addiction, personal memoirs, New York The Lace Reader Fiction, Mystery Brunonia Barry Hardcover 49.90 American contemporary fiction, detective, historical Into the Fire Romance, Suspense Suzanne Brockmann Hardcover 45.90 American fiction, murder, neo- Nazism  User profile Title Genre Author Type Price Keywords … Fiction Brunonia, Barry, Ken Follett Paperback 25.65 Detective, murder, New York 𝟐 × 𝒌𝒆𝒚𝒘𝒐𝒓𝒅𝒔 𝒃𝒊 ∩ 𝒌𝒆𝒚𝒘𝒐𝒓𝒅𝒔 𝒃𝒋 𝒌𝒆𝒚𝒘𝒐𝒓𝒅𝒔 𝒃𝒊 + 𝒌𝒆𝒚𝒘𝒐𝒓𝒅𝒔 𝒃𝒋 𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠 𝑏𝑗 describes Book 𝑏𝑗 with a set of keywords
  • 4. Term-Frequency - Inverse Document Frequency (𝑻𝑭 − 𝑰𝑫𝑭) • Simple keyword representation has its problems • in particular when automatically extracted as • not every word has similar importance • longer documents have a higher chance to have an overlap with the user profile • Standard measure: TF-IDF • Encodes text documents in multi-dimensional Euclidian space • weighted term vector • TF: Measures, how often a term appears (density in a document) • assuming that important terms appear more often • normalization has to be done in order to take document length into account • IDF: Aims to reduce the weight of terms that appear in all documents
  • 5. • Given a keyword 𝑖 and a document 𝑗 • 𝑇𝐹 𝑖, 𝑗 • term frequency of keyword 𝑖 in document 𝑗 • 𝐼𝐷𝐹 𝑖 • inverse document frequency calculated as 𝑰𝑫𝑭 𝒊 = 𝒍𝒐𝒈 𝑵 𝒏 𝒊 • 𝑁 : number of all recommendable documents • 𝑛 𝑖 : number of documents from 𝑁 in which keyword 𝑖 appears • 𝑇𝐹 − 𝐼𝐷𝐹 • is calculated as: 𝑻𝑭-𝑰𝑫𝑭 𝒊, 𝒋 = 𝑻𝑭 𝒊, 𝒋 ∗ 𝑰𝑫𝑭 𝒊 Term-Frequency - Inverse Document Frequency (𝑻𝑭 − 𝑰𝑫𝑭)
  • 6. Cosine similarity • Usual similarity metric to compare vectors: Cosine similarity (angle) • Cosine similarity is calculated based on the angle between the vectors • 𝑠𝑖𝑚 𝑎, 𝑏 = 𝑎∙𝑏 𝑎 ∗ 𝑏 • Adjusted cosine similarity • take average user ratings into account ( 𝑟𝑢), transform the original ratings • U: set of users who have rated both items a and b • 𝑠𝑖𝑚 𝑎, 𝑏 = 𝑢∈𝑈 𝑟 𝑢,𝑎− 𝑟 𝑢 𝑟 𝑢,𝑏− 𝑟 𝑢 𝑢∈𝑈 𝑟 𝑢,𝑎− 𝑟 𝑢 2 𝑢∈𝑈 𝑟 𝑢,𝑏− 𝑟 𝑢 2
  • 7. An example for computing cosine similarity of annotations To calculate cosine similarity between two texts t1 and t2, they are transformed in vectors as shown in the Table
  • 9. Calculation of probabilities in simplistic approach Item1 Item2 Item3 Item4 Item5 Alice 1 3 3 2 ? User1 2 4 2 2 4 User2 1 3 3 5 1 User3 4 5 2 3 3 User4 1 1 5 2 1 X = (Item1 =1, Item2=3, Item3= … )
  • 10. Item1 Item5 Alice 2 ? User1 1 2  Idea of Slope One predictors is simple and is based on a popularity differential between items for users  Example:  p(Alice, Item5) =  Basic scheme: Take the average of these differences of the co-ratings to make the prediction  In general: Find a function of the form f(x) = x + b Slope One predictors - 2 + ( 2 - 1 ) = 3
  • 11. Relevant Nonrelevant • Most learning methods aim to find coefficients of a linear model • A simplified classifier with only two dimensions can be represented by a line  Other linear classifiers: – Naive Bayes classifier, Rocchio method, Windrow-Hoff algorithm, Support vector machines Linear classifiers  The line has the form 𝒘 𝟏 𝒙 𝟏 + 𝒘 𝟐 𝒙 𝟐 = 𝒃 – 𝑥1 and 𝑥2 correspond to the vector representation of a document (using e.g. TF-IDF weights) – 𝑤1, 𝑤2 and 𝑏 are parameters to be learned – Classification of a document based on checking 𝑤1 𝑥1 + 𝑤2 𝑥2 > 𝑏  In n-dimensional space the classification function is 𝑤 𝑇 𝑥 = 𝑏
  • 12. – Mean Absolute Error (MAE) computes the deviation between predicted ratings and actual ratings – Root Mean Square Error (RMSE) is similar to MAE, but places more emphasis on larger deviation Metrics Measure Error rate
  • 13. Next … • Hybrid recommendation systems • More theories • Boolean and Vector Space Retrieval Models • Clustering • Data mining • And so on