SlideShare una empresa de Scribd logo
1 de 8
Descargar para leer sin conexión
Una suma algebraica es una operación matemática donde intervienen la suma y la resta, como por ejemplo
en 11-4+13-2-6+3; cada número de la suma separado por un signo más o un signo menos se denomina
término. Por ejemplo: 2+2=4
Los términos precedidos por el signo más (siguiendo con el ejemplo anterior: 11, 13, 3) se llaman términos
positivos y los términos precedidos por el signo menos (-4, -2, -6) se llaman términos negativos. Para resolver
una suma algebraica, se suman los términos positivos y se le resta la suma de los términos negativos. Si la resta
no puede realizarse, se invierten el minuendo y el sustraendo y a la diferencia se le antepone el signo. menos
Suma y resta de monomios: para sumar o restar monomios
deben ser semejantes. Se suman o restan los coeficientes
de cada monomio como resultado de sacar como factor
común la parte literal.
Por ejemplo:
6 x2 + 3 x2 = 9 x2
(-3 x4)-(-2 x4) = -3 x4 + 2 x4 = - x4
Suma y resta de polinomios: para sumar o
restar dos polinomios se suman o restan
entre sí los coeficientes de los monomios
semejantes:
El valor numérico de una expresión algebraica es el resultado final que se obtiene al
sustituir los valores de todas las incógnitas que aparecen en la expresión que nos
interesa evaluar y de realizar todas las operaciones indicadas respetando el orden
indicado por los signos de agrupación.
Por ejemplo, si el valor de X es
5, entonces, el valor de 2X es
10, esto es:
Ejemplo :
Calcular el valor numérico para:
x+15
cuando x=2.
Sustituimos en la expresión:
x+15=2+15=17
El valor numérico de la expresión es 17.
La multiplicación algebraica Es la operación que tiene como objetivo determinar una expresión algebraica llamada producto,
dadas otras expresiones algebraicas llamadas multiplicando y multiplicador, la igualdad obtenida es una identidad.
Multiplicación de monomios:
A continuación se muestra diferentes
casos para comprender de mejor
manera la multiplicación de
monomios.
Multiplicar 3a2 por 6a4. Se multiplican
los coeficientes (+3)(+6) = +18 y a
continuación se hace la multiplicación
de las letras (a2)(a4) = a2 + 4 = a6, por
lo tanto, el resultado será:
(3a2)(6a4) = 18a6
Multiplicación de monomios por
polinomios:
La multiplicación de monomios por polinomios
consiste en multiplicar el término del monomio por
cada uno de los términos que contiene el
polinomio.
Multiplicar 2a por (b + a2), en este caso lo que se
tiene es (2a)(b + a2), se tiene una multiplicación
de 2a por el primer término del polinomio que es
“b” y otra multiplicación de 2a por el segundo
término que es “a2", por lo tanto se tendría:
(2a)(b + a2) = (2a)(b) + (2a)(a2)
= 2ab + 2a3
Multiplicación de polinomios por
polinomios:
Se recomienda acomodar en forma de
columnas, se multiplican los términos del
multiplicando por cada uno de los términos
del multiplicador, teniendo en
consideración “la ley de los signos”, y el
acomodo de los términos semejantes.
Multiplicar (a + 3) por (3 – a):
(a + 3)
x (3 - a)
--------------------
– a2 – 3a
+ 3a + 9
---------------------
– a2 + 0 + 9
División de monomios:
La división de un monomio entre
monomio es muy simple, la parte
numérica se efectúa mediante una
división común (visto en aritmética)
y la parte de la letras se aplica la
regla de los exponentes.
División de polinomios:
Para la división de polinomio
entre polinomio se debe
considerar ordenar cada
término del divisor y el
dividendo con respecto a una
letra, considerando el
exponente de mayor a menor.
División de polinomio entre
monomio:
Todo se representa en forma de
fracción y se realiza una
separación para dividir cada uno
de los términos del polinomio por
el monomio.
Importante: Tener cuidado con
los signos, por lo tanto, es de gran
importancia comprender la ley
de los signos.
En matemáticas, un producto corresponde al resultado que se obtiene al realizar
una multiplicación.
Sabemos que algo es notable cuando nos llama la atención o destaca entre un
grupo de cosas.
Entonces, los productos notables son simplemente multiplicaciones especiales
entre expresiones algebraicas, que por sus características destacan de las demás
multiplicaciones. Las características que hacen que un producto sea notable, es
que se cumplen ciertas reglas, tal que el resultado puede ser obtenido mediante
una simple inspección, sin la necesidad de verificar o realizar la multiplicación
paso a paso.
Los productos notables están íntimamente relacionados con fórmulas de
factorización, por lo que su aprendizaje facilita y sistematiza la solución de
diversas multiplicaciones, permitiendo simplificar expresiones algebraicas
complejas.
Tipos de productos notables:
Existe varios tipos de productos notables o
identidades notables, cada uno con su
característica particular, sus diferente forma
de resolver y con distintas reglas que cumplir,
entre estos podemos mencionar los siguientes:
• Binomio al cuadrado.
• Binomio al cubo.
• Binomios conjugados.
• Binomios con un termino común.
• Trinomio al cuadrado
• Trinomio al cubo
Cada producto notable corresponde a una fórmula de factorización. Por
ejemplo, la factorización de una diferencia de cuadrados perfectos es un
producto de dos binomios conjugados, y recíprocamente.
El resultado de multiplicar un binomio a+b por un término c se
obtiene aplicando la propiedad distributiva:
c (a + b) = c a + c b ,
Para esta operación existe una interpretación geométrica, ilustrada
en la figura adjunta. El área del rectángulo es
c (a + b) , (el producto de la base por la altura), que también
puede obtenerse como la suma de las dos áreas coloreadas: ca y
cb.
Ejemplo:
3x (4x + 6y) = 12x^2 + 18xy ,
Binomio al cuadrado o cuadrado de un binomio
Factor común
Para elevar un binomio al cuadrado (es decir,
multiplicarlo por sí mismo), se suman los cuadrados
de cada término con el doble del producto de
ellos. Así:
Un trinomio de la expresión siguiente:
se conoce como trinomio cuadrado perfecto
Cuando el segundo término es negativo, la ecuación que
se obtiene es:
En ambos casos el signo del tercer término es siempre
positivo
http://descargas.pntic.mec.es/cedec/mat3/contenidos/u3/M3_U3_contenidos/21_transformacin_de_exp
resiones_algebraicas.html
https://www.matematicas18.com/es/tutoriales/algebra/division-de-monomios-y-polinomios/
https://www.matematicas18.com/es/tutoriales/algebra/multiplicacion-de-monomios-y-polinomios/
https://sites.google.com/site/expresionesalgebraicasalex/contenido/productos-notables-1
https://sites.google.com/site/lauracecyte26/unidad/productos-notables-y-factorizacion
https://biblioguias.uma.es/citasybibliografia/ejemplosAPA

Más contenido relacionado

La actualidad más candente

multiplicacion y division de monomios y polinomios
multiplicacion y division de monomios y polinomiosmultiplicacion y division de monomios y polinomios
multiplicacion y division de monomios y polinomiosguesteb91f8
 
Fraccion generatriz 1º
Fraccion generatriz   1ºFraccion generatriz   1º
Fraccion generatriz 1ºbrisagaela29
 
Factorizacion
FactorizacionFactorizacion
FactorizacionErwin85
 
Caso 7 De Factoreo
Caso 7 De FactoreoCaso 7 De Factoreo
Caso 7 De FactoreoWilber
 
Que es la factorizacion
Que es la factorizacionQue es la factorizacion
Que es la factorizacionMajo Garces
 
Que es la factorizacion
Que es la factorizacionQue es la factorizacion
Que es la factorizacionAdriana Veloz
 
Factorización algebraica
Factorización algebraicaFactorización algebraica
Factorización algebraicaFloraMM
 
ALGUNOS CASOS DE FACTORIZACIÓN.
ALGUNOS CASOS DE FACTORIZACIÓN.ALGUNOS CASOS DE FACTORIZACIÓN.
ALGUNOS CASOS DE FACTORIZACIÓN.OLVINQUISPE
 
Presentación mat-001
Presentación mat-001Presentación mat-001
Presentación mat-001manco8
 
Numeros enteros
Numeros enterosNumeros enteros
Numeros enterosjcremiro
 
Operaciones basicas de la aritmetica
Operaciones basicas de la aritmeticaOperaciones basicas de la aritmetica
Operaciones basicas de la aritmeticaIsabel Acosta C.
 
EJEMPLOS DE CADA TIPO DE FACTORIZACIÓN.
EJEMPLOS DE CADA TIPO DE FACTORIZACIÓN.EJEMPLOS DE CADA TIPO DE FACTORIZACIÓN.
EJEMPLOS DE CADA TIPO DE FACTORIZACIÓN.SABRINA SUAREZ MEJIAS
 
Expresiones algebraicas
Expresiones algebraicasExpresiones algebraicas
Expresiones algebraicaskarlaperez195
 
Expresiones algebraicas presentación de matemáticas Dairon Santeliz
Expresiones algebraicas presentación de matemáticas Dairon SantelizExpresiones algebraicas presentación de matemáticas Dairon Santeliz
Expresiones algebraicas presentación de matemáticas Dairon SantelizDaironSanteliz
 

La actualidad más candente (20)

multiplicacion y division de monomios y polinomios
multiplicacion y division de monomios y polinomiosmultiplicacion y division de monomios y polinomios
multiplicacion y division de monomios y polinomios
 
Fraccion generatriz 1º
Fraccion generatriz   1ºFraccion generatriz   1º
Fraccion generatriz 1º
 
Factorizacion
FactorizacionFactorizacion
Factorizacion
 
1.2 factorizacion
1.2 factorizacion1.2 factorizacion
1.2 factorizacion
 
Caso 7 De Factoreo
Caso 7 De FactoreoCaso 7 De Factoreo
Caso 7 De Factoreo
 
Que es la factorizacion
Que es la factorizacionQue es la factorizacion
Que es la factorizacion
 
DIAPOSITIVAS 2012
DIAPOSITIVAS 2012DIAPOSITIVAS 2012
DIAPOSITIVAS 2012
 
Que es la factorizacion
Que es la factorizacionQue es la factorizacion
Que es la factorizacion
 
Fianciera i tema i
Fianciera i tema iFianciera i tema i
Fianciera i tema i
 
Factorización algebraica
Factorización algebraicaFactorización algebraica
Factorización algebraica
 
ALGUNOS CASOS DE FACTORIZACIÓN.
ALGUNOS CASOS DE FACTORIZACIÓN.ALGUNOS CASOS DE FACTORIZACIÓN.
ALGUNOS CASOS DE FACTORIZACIÓN.
 
Factorización
FactorizaciónFactorización
Factorización
 
Presentación mat-001
Presentación mat-001Presentación mat-001
Presentación mat-001
 
Numeros enteros
Numeros enterosNumeros enteros
Numeros enteros
 
Operaciones con polinomios
Operaciones con polinomiosOperaciones con polinomios
Operaciones con polinomios
 
Operaciones basicas de la aritmetica
Operaciones basicas de la aritmeticaOperaciones basicas de la aritmetica
Operaciones basicas de la aritmetica
 
EJEMPLOS DE CADA TIPO DE FACTORIZACIÓN.
EJEMPLOS DE CADA TIPO DE FACTORIZACIÓN.EJEMPLOS DE CADA TIPO DE FACTORIZACIÓN.
EJEMPLOS DE CADA TIPO DE FACTORIZACIÓN.
 
Expresiones algebraicas
Expresiones algebraicasExpresiones algebraicas
Expresiones algebraicas
 
Expresiones algebraicas presentación de matemáticas Dairon Santeliz
Expresiones algebraicas presentación de matemáticas Dairon SantelizExpresiones algebraicas presentación de matemáticas Dairon Santeliz
Expresiones algebraicas presentación de matemáticas Dairon Santeliz
 
Polinomios 1
Polinomios 1Polinomios 1
Polinomios 1
 

Similar a Primera presentación escrita Brayan vasquez. sección 0104

Expresiones algebraicas
Expresiones algebraicasExpresiones algebraicas
Expresiones algebraicasAngel Sánchez
 
EXPRESIONES ALGEBRAICAS, FACTORIZACION Y RADICACION.pptx
EXPRESIONES ALGEBRAICAS, FACTORIZACION  Y RADICACION.pptxEXPRESIONES ALGEBRAICAS, FACTORIZACION  Y RADICACION.pptx
EXPRESIONES ALGEBRAICAS, FACTORIZACION Y RADICACION.pptxMaicolEmmanuelCastil
 
EXPRESIONES ALGEBRAICAS, FACTORIZACION Y RADICACION.pptx
EXPRESIONES ALGEBRAICAS, FACTORIZACION  Y RADICACION.pptxEXPRESIONES ALGEBRAICAS, FACTORIZACION  Y RADICACION.pptx
EXPRESIONES ALGEBRAICAS, FACTORIZACION Y RADICACION.pptxMaicolEmmanuelCastil
 
Expresiones Algebraica 2.docx
Expresiones Algebraica 2.docxExpresiones Algebraica 2.docx
Expresiones Algebraica 2.docxdouglasguillen2
 
Expresiones Algebraica 2.docx
Expresiones Algebraica 2.docxExpresiones Algebraica 2.docx
Expresiones Algebraica 2.docxcaiafa29
 
Presentacion de algebra
Presentacion de algebraPresentacion de algebra
Presentacion de algebrayenifermedina4
 
Darwin Sequera Produccion Escrita
Darwin Sequera Produccion EscritaDarwin Sequera Produccion Escrita
Darwin Sequera Produccion EscritaDarwin Sequera
 
Produccion escrita unidad i beatriz garcia
Produccion escrita unidad i beatriz garciaProduccion escrita unidad i beatriz garcia
Produccion escrita unidad i beatriz garciaBeatrizGarcia237
 
Expresiones algebraicas
Expresiones algebraicas Expresiones algebraicas
Expresiones algebraicas sanmaryrojas
 
EXPRESIONES ALGEBRAICAS PNFDL0302.pdf
EXPRESIONES ALGEBRAICAS PNFDL0302.pdfEXPRESIONES ALGEBRAICAS PNFDL0302.pdf
EXPRESIONES ALGEBRAICAS PNFDL0302.pdfMaricarmenGonzalez36
 
expresiones algebraicas.pptx
expresiones algebraicas.pptxexpresiones algebraicas.pptx
expresiones algebraicas.pptxEstefanyRjss
 
Expresiones Algebraicas.pptx
Expresiones Algebraicas.pptxExpresiones Algebraicas.pptx
Expresiones Algebraicas.pptxMarjeirisRodrguez
 

Similar a Primera presentación escrita Brayan vasquez. sección 0104 (20)

Informe
InformeInforme
Informe
 
Expresiones algebraicas
Expresiones algebraicasExpresiones algebraicas
Expresiones algebraicas
 
Expresiones agebraicas
Expresiones agebraicasExpresiones agebraicas
Expresiones agebraicas
 
Paola gomez0405
Paola gomez0405Paola gomez0405
Paola gomez0405
 
EXPRESIONES ALGEBRAICAS, FACTORIZACION Y RADICACION.pptx
EXPRESIONES ALGEBRAICAS, FACTORIZACION  Y RADICACION.pptxEXPRESIONES ALGEBRAICAS, FACTORIZACION  Y RADICACION.pptx
EXPRESIONES ALGEBRAICAS, FACTORIZACION Y RADICACION.pptx
 
EXPRESIONES ALGEBRAICAS, FACTORIZACION Y RADICACION.pptx
EXPRESIONES ALGEBRAICAS, FACTORIZACION  Y RADICACION.pptxEXPRESIONES ALGEBRAICAS, FACTORIZACION  Y RADICACION.pptx
EXPRESIONES ALGEBRAICAS, FACTORIZACION Y RADICACION.pptx
 
EVIDENCIAS
EVIDENCIASEVIDENCIAS
EVIDENCIAS
 
Expresiones algebraica
Expresiones algebraicaExpresiones algebraica
Expresiones algebraica
 
EXPRESIONES ALGEBRAICAS
EXPRESIONES ALGEBRAICASEXPRESIONES ALGEBRAICAS
EXPRESIONES ALGEBRAICAS
 
Expresiones Algebraica 2.docx
Expresiones Algebraica 2.docxExpresiones Algebraica 2.docx
Expresiones Algebraica 2.docx
 
Expresiones Algebraica 2.docx
Expresiones Algebraica 2.docxExpresiones Algebraica 2.docx
Expresiones Algebraica 2.docx
 
Presentacion de algebra
Presentacion de algebraPresentacion de algebra
Presentacion de algebra
 
Darwin Sequera Produccion Escrita
Darwin Sequera Produccion EscritaDarwin Sequera Produccion Escrita
Darwin Sequera Produccion Escrita
 
Produccion escrita unidad i beatriz garcia
Produccion escrita unidad i beatriz garciaProduccion escrita unidad i beatriz garcia
Produccion escrita unidad i beatriz garcia
 
Expresiones algebraicas
Expresiones algebraicas Expresiones algebraicas
Expresiones algebraicas
 
Trabajo de matematicas
Trabajo de matematicasTrabajo de matematicas
Trabajo de matematicas
 
EXPRESIONES ALGEBRAICAS PNFDL0302.pdf
EXPRESIONES ALGEBRAICAS PNFDL0302.pdfEXPRESIONES ALGEBRAICAS PNFDL0302.pdf
EXPRESIONES ALGEBRAICAS PNFDL0302.pdf
 
Unidad 2
Unidad 2Unidad 2
Unidad 2
 
expresiones algebraicas.pptx
expresiones algebraicas.pptxexpresiones algebraicas.pptx
expresiones algebraicas.pptx
 
Expresiones Algebraicas.pptx
Expresiones Algebraicas.pptxExpresiones Algebraicas.pptx
Expresiones Algebraicas.pptx
 

Último

4º SOY LECTOR PART2- MD EDUCATIVO.p df PARTE
4º SOY LECTOR PART2- MD  EDUCATIVO.p df PARTE4º SOY LECTOR PART2- MD  EDUCATIVO.p df PARTE
4º SOY LECTOR PART2- MD EDUCATIVO.p df PARTESaraNolasco4
 
Acuerdo 05_04_24 Lineamientos del CTE.pdf
Acuerdo 05_04_24 Lineamientos del CTE.pdfAcuerdo 05_04_24 Lineamientos del CTE.pdf
Acuerdo 05_04_24 Lineamientos del CTE.pdfmiriamguevara21
 
describimos como son afectados las regiones naturales del peru por la ola de ...
describimos como son afectados las regiones naturales del peru por la ola de ...describimos como son afectados las regiones naturales del peru por la ola de ...
describimos como son afectados las regiones naturales del peru por la ola de ...DavidBautistaFlores1
 
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024gharce
 
MODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docxMODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docxRAMON EUSTAQUIO CARO BAYONA
 
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2Eliseo Delgado
 
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO YESSENIA 933623393 NUEV...
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO  YESSENIA 933623393 NUEV...IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO  YESSENIA 933623393 NUEV...
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO YESSENIA 933623393 NUEV...YobanaZevallosSantil1
 
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docxEJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docxFabianValenciaJabo
 
El PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/F
El PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/FEl PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/F
El PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/FJulio Lozano
 
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJO
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJODIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJO
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJOLeninCariMogrovejo
 
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE 9-4-24 (1).docx
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE     9-4-24 (1).docx4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE     9-4-24 (1).docx
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE 9-4-24 (1).docxMagalyDacostaPea
 
ENSEÑAR ACUIDAR EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.
ENSEÑAR ACUIDAR  EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.ENSEÑAR ACUIDAR  EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.
ENSEÑAR ACUIDAR EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.karlazoegarciagarcia
 
Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...
Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...
Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...Carol Andrea Eraso Guerrero
 
BITÁCORA DE ESTUDIO DE PROBLEMÁTICA. TUTORÍA V. PDF 2 UNIDAD.pdf
BITÁCORA DE ESTUDIO DE PROBLEMÁTICA. TUTORÍA V. PDF 2 UNIDAD.pdfBITÁCORA DE ESTUDIO DE PROBLEMÁTICA. TUTORÍA V. PDF 2 UNIDAD.pdf
BITÁCORA DE ESTUDIO DE PROBLEMÁTICA. TUTORÍA V. PDF 2 UNIDAD.pdfsolidalilaalvaradoro
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Angélica Soledad Vega Ramírez
 
Secuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docxSecuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docxNataliaGonzalez619348
 
HISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICAHISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICAJesus Gonzalez Losada
 
Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024Rosabel UA
 
4° UNIDAD 2 SALUD,ALIMENTACIÓN Y DÍA DE LA MADRE 933623393 PROF YESSENIA CN.docx
4° UNIDAD 2 SALUD,ALIMENTACIÓN Y DÍA DE LA MADRE 933623393 PROF YESSENIA CN.docx4° UNIDAD 2 SALUD,ALIMENTACIÓN Y DÍA DE LA MADRE 933623393 PROF YESSENIA CN.docx
4° UNIDAD 2 SALUD,ALIMENTACIÓN Y DÍA DE LA MADRE 933623393 PROF YESSENIA CN.docxMagalyDacostaPea
 

Último (20)

4º SOY LECTOR PART2- MD EDUCATIVO.p df PARTE
4º SOY LECTOR PART2- MD  EDUCATIVO.p df PARTE4º SOY LECTOR PART2- MD  EDUCATIVO.p df PARTE
4º SOY LECTOR PART2- MD EDUCATIVO.p df PARTE
 
Acuerdo 05_04_24 Lineamientos del CTE.pdf
Acuerdo 05_04_24 Lineamientos del CTE.pdfAcuerdo 05_04_24 Lineamientos del CTE.pdf
Acuerdo 05_04_24 Lineamientos del CTE.pdf
 
describimos como son afectados las regiones naturales del peru por la ola de ...
describimos como son afectados las regiones naturales del peru por la ola de ...describimos como son afectados las regiones naturales del peru por la ola de ...
describimos como son afectados las regiones naturales del peru por la ola de ...
 
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
 
MODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docxMODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docx
 
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2
 
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO YESSENIA 933623393 NUEV...
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO  YESSENIA 933623393 NUEV...IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO  YESSENIA 933623393 NUEV...
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO YESSENIA 933623393 NUEV...
 
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docxEJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
 
El PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/F
El PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/FEl PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/F
El PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/F
 
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJO
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJODIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJO
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJO
 
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE 9-4-24 (1).docx
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE     9-4-24 (1).docx4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE     9-4-24 (1).docx
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE 9-4-24 (1).docx
 
PPTX: La luz brilla en la oscuridad.pptx
PPTX: La luz brilla en la oscuridad.pptxPPTX: La luz brilla en la oscuridad.pptx
PPTX: La luz brilla en la oscuridad.pptx
 
ENSEÑAR ACUIDAR EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.
ENSEÑAR ACUIDAR  EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.ENSEÑAR ACUIDAR  EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.
ENSEÑAR ACUIDAR EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.
 
Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...
Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...
Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...
 
BITÁCORA DE ESTUDIO DE PROBLEMÁTICA. TUTORÍA V. PDF 2 UNIDAD.pdf
BITÁCORA DE ESTUDIO DE PROBLEMÁTICA. TUTORÍA V. PDF 2 UNIDAD.pdfBITÁCORA DE ESTUDIO DE PROBLEMÁTICA. TUTORÍA V. PDF 2 UNIDAD.pdf
BITÁCORA DE ESTUDIO DE PROBLEMÁTICA. TUTORÍA V. PDF 2 UNIDAD.pdf
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...
 
Secuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docxSecuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docx
 
HISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICAHISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICA
 
Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024
 
4° UNIDAD 2 SALUD,ALIMENTACIÓN Y DÍA DE LA MADRE 933623393 PROF YESSENIA CN.docx
4° UNIDAD 2 SALUD,ALIMENTACIÓN Y DÍA DE LA MADRE 933623393 PROF YESSENIA CN.docx4° UNIDAD 2 SALUD,ALIMENTACIÓN Y DÍA DE LA MADRE 933623393 PROF YESSENIA CN.docx
4° UNIDAD 2 SALUD,ALIMENTACIÓN Y DÍA DE LA MADRE 933623393 PROF YESSENIA CN.docx
 

Primera presentación escrita Brayan vasquez. sección 0104

  • 1.
  • 2. Una suma algebraica es una operación matemática donde intervienen la suma y la resta, como por ejemplo en 11-4+13-2-6+3; cada número de la suma separado por un signo más o un signo menos se denomina término. Por ejemplo: 2+2=4 Los términos precedidos por el signo más (siguiendo con el ejemplo anterior: 11, 13, 3) se llaman términos positivos y los términos precedidos por el signo menos (-4, -2, -6) se llaman términos negativos. Para resolver una suma algebraica, se suman los términos positivos y se le resta la suma de los términos negativos. Si la resta no puede realizarse, se invierten el minuendo y el sustraendo y a la diferencia se le antepone el signo. menos Suma y resta de monomios: para sumar o restar monomios deben ser semejantes. Se suman o restan los coeficientes de cada monomio como resultado de sacar como factor común la parte literal. Por ejemplo: 6 x2 + 3 x2 = 9 x2 (-3 x4)-(-2 x4) = -3 x4 + 2 x4 = - x4 Suma y resta de polinomios: para sumar o restar dos polinomios se suman o restan entre sí los coeficientes de los monomios semejantes:
  • 3. El valor numérico de una expresión algebraica es el resultado final que se obtiene al sustituir los valores de todas las incógnitas que aparecen en la expresión que nos interesa evaluar y de realizar todas las operaciones indicadas respetando el orden indicado por los signos de agrupación. Por ejemplo, si el valor de X es 5, entonces, el valor de 2X es 10, esto es: Ejemplo : Calcular el valor numérico para: x+15 cuando x=2. Sustituimos en la expresión: x+15=2+15=17 El valor numérico de la expresión es 17.
  • 4. La multiplicación algebraica Es la operación que tiene como objetivo determinar una expresión algebraica llamada producto, dadas otras expresiones algebraicas llamadas multiplicando y multiplicador, la igualdad obtenida es una identidad. Multiplicación de monomios: A continuación se muestra diferentes casos para comprender de mejor manera la multiplicación de monomios. Multiplicar 3a2 por 6a4. Se multiplican los coeficientes (+3)(+6) = +18 y a continuación se hace la multiplicación de las letras (a2)(a4) = a2 + 4 = a6, por lo tanto, el resultado será: (3a2)(6a4) = 18a6 Multiplicación de monomios por polinomios: La multiplicación de monomios por polinomios consiste en multiplicar el término del monomio por cada uno de los términos que contiene el polinomio. Multiplicar 2a por (b + a2), en este caso lo que se tiene es (2a)(b + a2), se tiene una multiplicación de 2a por el primer término del polinomio que es “b” y otra multiplicación de 2a por el segundo término que es “a2", por lo tanto se tendría: (2a)(b + a2) = (2a)(b) + (2a)(a2) = 2ab + 2a3 Multiplicación de polinomios por polinomios: Se recomienda acomodar en forma de columnas, se multiplican los términos del multiplicando por cada uno de los términos del multiplicador, teniendo en consideración “la ley de los signos”, y el acomodo de los términos semejantes. Multiplicar (a + 3) por (3 – a): (a + 3) x (3 - a) -------------------- – a2 – 3a + 3a + 9 --------------------- – a2 + 0 + 9
  • 5. División de monomios: La división de un monomio entre monomio es muy simple, la parte numérica se efectúa mediante una división común (visto en aritmética) y la parte de la letras se aplica la regla de los exponentes. División de polinomios: Para la división de polinomio entre polinomio se debe considerar ordenar cada término del divisor y el dividendo con respecto a una letra, considerando el exponente de mayor a menor. División de polinomio entre monomio: Todo se representa en forma de fracción y se realiza una separación para dividir cada uno de los términos del polinomio por el monomio. Importante: Tener cuidado con los signos, por lo tanto, es de gran importancia comprender la ley de los signos.
  • 6. En matemáticas, un producto corresponde al resultado que se obtiene al realizar una multiplicación. Sabemos que algo es notable cuando nos llama la atención o destaca entre un grupo de cosas. Entonces, los productos notables son simplemente multiplicaciones especiales entre expresiones algebraicas, que por sus características destacan de las demás multiplicaciones. Las características que hacen que un producto sea notable, es que se cumplen ciertas reglas, tal que el resultado puede ser obtenido mediante una simple inspección, sin la necesidad de verificar o realizar la multiplicación paso a paso. Los productos notables están íntimamente relacionados con fórmulas de factorización, por lo que su aprendizaje facilita y sistematiza la solución de diversas multiplicaciones, permitiendo simplificar expresiones algebraicas complejas. Tipos de productos notables: Existe varios tipos de productos notables o identidades notables, cada uno con su característica particular, sus diferente forma de resolver y con distintas reglas que cumplir, entre estos podemos mencionar los siguientes: • Binomio al cuadrado. • Binomio al cubo. • Binomios conjugados. • Binomios con un termino común. • Trinomio al cuadrado • Trinomio al cubo
  • 7. Cada producto notable corresponde a una fórmula de factorización. Por ejemplo, la factorización de una diferencia de cuadrados perfectos es un producto de dos binomios conjugados, y recíprocamente. El resultado de multiplicar un binomio a+b por un término c se obtiene aplicando la propiedad distributiva: c (a + b) = c a + c b , Para esta operación existe una interpretación geométrica, ilustrada en la figura adjunta. El área del rectángulo es c (a + b) , (el producto de la base por la altura), que también puede obtenerse como la suma de las dos áreas coloreadas: ca y cb. Ejemplo: 3x (4x + 6y) = 12x^2 + 18xy , Binomio al cuadrado o cuadrado de un binomio Factor común Para elevar un binomio al cuadrado (es decir, multiplicarlo por sí mismo), se suman los cuadrados de cada término con el doble del producto de ellos. Así: Un trinomio de la expresión siguiente: se conoce como trinomio cuadrado perfecto Cuando el segundo término es negativo, la ecuación que se obtiene es: En ambos casos el signo del tercer término es siempre positivo