SlideShare una empresa de Scribd logo

Problemas de programacion lineal

C
C

PROBLEMAS DE PROLONGACION LINEAL

Problemas de programacion lineal

1 de 26
Descargar para leer sin conexión
DE JHONNY CCAPA
     ALMIRON
CARLOS W. SUTTON
Problemas resueltos de programación lineal


                            1
Unos grandes almacenes encargan a un fabricante pantalones
y chaquetas deportivas. El fabricante dispone para la
confección de 750 m de tejido de algodón y 1000 m de tejido
de poliéster. Cada pantalón precisa 1 m de algodón y 2 m de
poliéster. Para cada chaqueta se necesitan 1.5 m de algodón y 1
m de poliéster. El precio del pantalón se fija en 50 € y el de la
chaqueta en 40 €. ¿Qué número de pantalones y chaquetas
debe suministrar el fabricante a los almacenes para que éstos
consigan una venta máxima?
1 Elección de las
incógnitas.
x = número de pantalones

y = número de chaquetas



2 Función objetivo

f(x,y)= 50x + 40y
3Restricciones
Para escribir las restricciones
vamos a ayudarnos de una tabla:




              pantalones    chaquetas   Disponible




  algodón               1        1,5      750




  poliéster         2              1      1000
4 Hallar el conjunto de
soluciones factibles
Tenemos que representar gráficamente las
restricciones.
Al ser x ≥ 0 e y ≥ 0, trabajaremos en el
primer cuadrante.
Representamos las rectas, a partir de sus
puntos de corte con los ejes.
Problemas de programacion lineal

Recomendados

Ejercicios de Programacion Lineal, LINDO, teoria de decisiones
Ejercicios de Programacion Lineal, LINDO, teoria de decisionesEjercicios de Programacion Lineal, LINDO, teoria de decisiones
Ejercicios de Programacion Lineal, LINDO, teoria de decisionesHéctor Antonio Barba Nanfuñay
 
C) problemas de programacion lineal resueltos
C) problemas de programacion lineal resueltosC) problemas de programacion lineal resueltos
C) problemas de programacion lineal resueltosSilver Mendoza A.
 
Resolucion problemas vi
Resolucion problemas viResolucion problemas vi
Resolucion problemas vilineal
 
Resolucion problemas 5
Resolucion problemas 5Resolucion problemas 5
Resolucion problemas 5lineal
 
Ejercicios resueltos io 1 parte 1
Ejercicios resueltos io 1   parte 1Ejercicios resueltos io 1   parte 1
Ejercicios resueltos io 1 parte 1fzeus
 
Investigación de Operaciones 1/2
Investigación de Operaciones 1/2Investigación de Operaciones 1/2
Investigación de Operaciones 1/2CEMEX
 

Más contenido relacionado

La actualidad más candente

5.0 programación lineal
5.0 programación lineal5.0 programación lineal
5.0 programación linealjaldanam
 
Ejercicios árbol-de-decisión
Ejercicios árbol-de-decisión Ejercicios árbol-de-decisión
Ejercicios árbol-de-decisión ISRA VILEMA
 
Resolución de problemas (oa)
Resolución de problemas (oa)Resolución de problemas (oa)
Resolución de problemas (oa)lineal
 
Ejercicios resueltos io 1 parte 2
Ejercicios resueltos io 1   parte 2Ejercicios resueltos io 1   parte 2
Ejercicios resueltos io 1 parte 2fzeus
 
Ejercicios resueltos programacion lineal
Ejercicios resueltos programacion linealEjercicios resueltos programacion lineal
Ejercicios resueltos programacion linealJohana Rios Solano
 
Programación lineal
Programación linealProgramación lineal
Programación linealNelson Quinde
 
Ejercicios análisis de sensibilidad
Ejercicios análisis de sensibilidadEjercicios análisis de sensibilidad
Ejercicios análisis de sensibilidadSistemadeEstudiosMed
 
Metodo simplex 4 ejerrcicios
Metodo simplex 4 ejerrciciosMetodo simplex 4 ejerrcicios
Metodo simplex 4 ejerrciciosLorena Llerena
 
Ejercicios estadísticos de de control de calidad
Ejercicios estadísticos de  de control de calidadEjercicios estadísticos de  de control de calidad
Ejercicios estadísticos de de control de calidadGisela Fernandez
 
Ejercicios resueltos 1, metodo grafico y simplex
Ejercicios resueltos 1, metodo grafico y simplexEjercicios resueltos 1, metodo grafico y simplex
Ejercicios resueltos 1, metodo grafico y simplexCarlos Samuel Garcia
 
MINIMIZAR METODO SIMPLEX
MINIMIZAR METODO SIMPLEXMINIMIZAR METODO SIMPLEX
MINIMIZAR METODO SIMPLEXcabriales
 
72116073 fundamentos-de-ingenieria-economica
72116073 fundamentos-de-ingenieria-economica72116073 fundamentos-de-ingenieria-economica
72116073 fundamentos-de-ingenieria-economicacgviviana
 
Ejemplos de cadenas de markov
Ejemplos de cadenas de markovEjemplos de cadenas de markov
Ejemplos de cadenas de markovFabian Velazquez
 
Teoría de decisión
Teoría de decisiónTeoría de decisión
Teoría de decisiónGabriel Pujol
 

La actualidad más candente (20)

5.0 programación lineal
5.0 programación lineal5.0 programación lineal
5.0 programación lineal
 
Ejercicios árbol-de-decisión
Ejercicios árbol-de-decisión Ejercicios árbol-de-decisión
Ejercicios árbol-de-decisión
 
05 programacion lineal a
05 programacion lineal a05 programacion lineal a
05 programacion lineal a
 
Problemas rsueltos pl
Problemas rsueltos plProblemas rsueltos pl
Problemas rsueltos pl
 
Resolución de problemas (oa)
Resolución de problemas (oa)Resolución de problemas (oa)
Resolución de problemas (oa)
 
Ejercicios resueltos io 1 parte 2
Ejercicios resueltos io 1   parte 2Ejercicios resueltos io 1   parte 2
Ejercicios resueltos io 1 parte 2
 
Ejercicios resueltos programacion lineal
Ejercicios resueltos programacion linealEjercicios resueltos programacion lineal
Ejercicios resueltos programacion lineal
 
Programación lineal
Programación linealProgramación lineal
Programación lineal
 
Ejercicios análisis de sensibilidad
Ejercicios análisis de sensibilidadEjercicios análisis de sensibilidad
Ejercicios análisis de sensibilidad
 
Ejercio resuelto
Ejercio resueltoEjercio resuelto
Ejercio resuelto
 
Metodo simplex 4 ejerrcicios
Metodo simplex 4 ejerrciciosMetodo simplex 4 ejerrcicios
Metodo simplex 4 ejerrcicios
 
Ejercicios estadísticos de de control de calidad
Ejercicios estadísticos de  de control de calidadEjercicios estadísticos de  de control de calidad
Ejercicios estadísticos de de control de calidad
 
Ejercicios resueltos 1, metodo grafico y simplex
Ejercicios resueltos 1, metodo grafico y simplexEjercicios resueltos 1, metodo grafico y simplex
Ejercicios resueltos 1, metodo grafico y simplex
 
MINIMIZAR METODO SIMPLEX
MINIMIZAR METODO SIMPLEXMINIMIZAR METODO SIMPLEX
MINIMIZAR METODO SIMPLEX
 
72116073 fundamentos-de-ingenieria-economica
72116073 fundamentos-de-ingenieria-economica72116073 fundamentos-de-ingenieria-economica
72116073 fundamentos-de-ingenieria-economica
 
Ejemplos de cadenas de markov
Ejemplos de cadenas de markovEjemplos de cadenas de markov
Ejemplos de cadenas de markov
 
Teoría de decisión
Teoría de decisiónTeoría de decisión
Teoría de decisión
 
Programación lineal
Programación linealProgramación lineal
Programación lineal
 
Ejercicios varios mate ii
Ejercicios varios mate iiEjercicios varios mate ii
Ejercicios varios mate ii
 
Tarea 4 operativa luis
Tarea 4 operativa luisTarea 4 operativa luis
Tarea 4 operativa luis
 

Destacado

Dos Problema De Progrmacion Lineal
Dos Problema De Progrmacion LinealDos Problema De Progrmacion Lineal
Dos Problema De Progrmacion LinealJorge La Chira
 
Programacion Lineal
Programacion LinealProgramacion Lineal
Programacion LinealMaryJaneth
 
solucionario Investigación de operaciones Hamdy a. Taha
 solucionario Investigación de operaciones Hamdy a. Taha solucionario Investigación de operaciones Hamdy a. Taha
solucionario Investigación de operaciones Hamdy a. Tahaangel05az
 
Sistemas de inecuaciones
Sistemas de inecuacionesSistemas de inecuaciones
Sistemas de inecuacionesConcha Ortiz
 
Ejercicios y problemas sobre maximización y minimización por el método gráfico.
Ejercicios y problemas sobre maximización y minimización por el método gráfico.Ejercicios y problemas sobre maximización y minimización por el método gráfico.
Ejercicios y problemas sobre maximización y minimización por el método gráfico.yadipaosarchi
 
Problemas & Soluciones De Ejercicios De Programacion Lineal
Problemas & Soluciones De Ejercicios De Programacion LinealProblemas & Soluciones De Ejercicios De Programacion Lineal
Problemas & Soluciones De Ejercicios De Programacion LinealInstituto Tecnologico De Pachuca
 
Afn a afd.ppsx
Afn a afd.ppsxAfn a afd.ppsx
Afn a afd.ppsxUNL
 
Conceptos programacion lineal
Conceptos programacion linealConceptos programacion lineal
Conceptos programacion linealUNL
 
Clase 12. modelamiento matematico problemas de mezcla en pl
Clase 12. modelamiento matematico problemas de mezcla en plClase 12. modelamiento matematico problemas de mezcla en pl
Clase 12. modelamiento matematico problemas de mezcla en plLucas Mosquera
 

Destacado (20)

problemas de programacion lineal resueltos
problemas de programacion lineal resueltosproblemas de programacion lineal resueltos
problemas de programacion lineal resueltos
 
Casos de programacion lineal
Casos de programacion linealCasos de programacion lineal
Casos de programacion lineal
 
Método
 Método Método
Método
 
Dos Problema De Progrmacion Lineal
Dos Problema De Progrmacion LinealDos Problema De Progrmacion Lineal
Dos Problema De Progrmacion Lineal
 
Programacion Lineal
Programacion LinealProgramacion Lineal
Programacion Lineal
 
solucionario Investigación de operaciones Hamdy a. Taha
 solucionario Investigación de operaciones Hamdy a. Taha solucionario Investigación de operaciones Hamdy a. Taha
solucionario Investigación de operaciones Hamdy a. Taha
 
PROBLEMAS DE PROGRAMACIÓN LINEAL
PROBLEMAS DE PROGRAMACIÓN LINEALPROBLEMAS DE PROGRAMACIÓN LINEAL
PROBLEMAS DE PROGRAMACIÓN LINEAL
 
Investigacion de operaciones taha opti3
Investigacion de operaciones   taha opti3Investigacion de operaciones   taha opti3
Investigacion de operaciones taha opti3
 
Sistemas de inecuaciones
Sistemas de inecuacionesSistemas de inecuaciones
Sistemas de inecuaciones
 
Ejercicios y problemas sobre maximización y minimización por el método gráfico.
Ejercicios y problemas sobre maximización y minimización por el método gráfico.Ejercicios y problemas sobre maximización y minimización por el método gráfico.
Ejercicios y problemas sobre maximización y minimización por el método gráfico.
 
Formulacion problemas pl
Formulacion problemas plFormulacion problemas pl
Formulacion problemas pl
 
Programacion lineal
Programacion linealProgramacion lineal
Programacion lineal
 
PC01 Metodos Cuantitativosx
PC01 Metodos CuantitativosxPC01 Metodos Cuantitativosx
PC01 Metodos Cuantitativosx
 
Mgrandeejemplos
MgrandeejemplosMgrandeejemplos
Mgrandeejemplos
 
Programación Lineal
Programación  LinealProgramación  Lineal
Programación Lineal
 
Problemas & Soluciones De Ejercicios De Programacion Lineal
Problemas & Soluciones De Ejercicios De Programacion LinealProblemas & Soluciones De Ejercicios De Programacion Lineal
Problemas & Soluciones De Ejercicios De Programacion Lineal
 
Afn a afd.ppsx
Afn a afd.ppsxAfn a afd.ppsx
Afn a afd.ppsx
 
Conceptos programacion lineal
Conceptos programacion linealConceptos programacion lineal
Conceptos programacion lineal
 
Clase 12. modelamiento matematico problemas de mezcla en pl
Clase 12. modelamiento matematico problemas de mezcla en plClase 12. modelamiento matematico problemas de mezcla en pl
Clase 12. modelamiento matematico problemas de mezcla en pl
 
Programacion lineal
Programacion linealProgramacion lineal
Programacion lineal
 

Similar a Problemas de programacion lineal

Integrales racionales o fracción simple
Integrales racionales o fracción simpleIntegrales racionales o fracción simple
Integrales racionales o fracción simpleJeider Luque F
 
3.1 EJEMPLO PROGRAMACIÓN NO LINEAL.pptx
3.1 EJEMPLO PROGRAMACIÓN NO LINEAL.pptx3.1 EJEMPLO PROGRAMACIÓN NO LINEAL.pptx
3.1 EJEMPLO PROGRAMACIÓN NO LINEAL.pptxMONSERRATZIGA2
 
Programacion lineal
Programacion linealProgramacion lineal
Programacion linealAlex Hanco
 
Ejercicio resuelto de programacion lineal
Ejercicio resuelto de programacion linealEjercicio resuelto de programacion lineal
Ejercicio resuelto de programacion linealanairamruiz
 
Programacion Lineal
Programacion LinealProgramacion Lineal
Programacion Linealdomingcm2014
 
Programacion lineal
Programacion linealProgramacion lineal
Programacion linealramirezjr
 
Investigacion de operaciones problemas1
Investigacion de operaciones problemas1Investigacion de operaciones problemas1
Investigacion de operaciones problemas1Alonso Stark
 
Programacion lineal 2
Programacion lineal 2Programacion lineal 2
Programacion lineal 2Vilma Bravo
 
Sis., de producción sincronizada
Sis., de producción sincronizadaSis., de producción sincronizada
Sis., de producción sincronizadaTessy Rojas
 
Sis., de producción sincronizada
Sis., de producción sincronizadaSis., de producción sincronizada
Sis., de producción sincronizadaTessy Rojas
 
Ecuaciones Parabola, Recta , Hiperbola, Eclipse
Ecuaciones  Parabola, Recta , Hiperbola, EclipseEcuaciones  Parabola, Recta , Hiperbola, Eclipse
Ecuaciones Parabola, Recta , Hiperbola, EclipseGiancarlos Juan
 

Similar a Problemas de programacion lineal (20)

Integrales racionales o fracción simple
Integrales racionales o fracción simpleIntegrales racionales o fracción simple
Integrales racionales o fracción simple
 
3.1 EJEMPLO PROGRAMACIÓN NO LINEAL.pptx
3.1 EJEMPLO PROGRAMACIÓN NO LINEAL.pptx3.1 EJEMPLO PROGRAMACIÓN NO LINEAL.pptx
3.1 EJEMPLO PROGRAMACIÓN NO LINEAL.pptx
 
Programacion lineal
Programacion linealProgramacion lineal
Programacion lineal
 
Programacion lineal
Programacion linealProgramacion lineal
Programacion lineal
 
Trabajo final programación lineal
Trabajo final programación linealTrabajo final programación lineal
Trabajo final programación lineal
 
Programacion lineal 2014
Programacion lineal 2014Programacion lineal 2014
Programacion lineal 2014
 
Programacion lineal
Programacion linealProgramacion lineal
Programacion lineal
 
Ejercicio resuelto de programacion lineal
Ejercicio resuelto de programacion linealEjercicio resuelto de programacion lineal
Ejercicio resuelto de programacion lineal
 
Programacion lineal 2
Programacion lineal 2Programacion lineal 2
Programacion lineal 2
 
Programacion lineal
Programacion linealProgramacion lineal
Programacion lineal
 
Programacion Lineal
Programacion LinealProgramacion Lineal
Programacion Lineal
 
Programacion lineal
Programacion linealProgramacion lineal
Programacion lineal
 
Programacion lineal
Programacion linealProgramacion lineal
Programacion lineal
 
Investigacion de operaciones problemas1
Investigacion de operaciones problemas1Investigacion de operaciones problemas1
Investigacion de operaciones problemas1
 
Programacion lineal 2
Programacion lineal 2Programacion lineal 2
Programacion lineal 2
 
Programacion lineal
Programacion linealProgramacion lineal
Programacion lineal
 
Sis., de producción sincronizada
Sis., de producción sincronizadaSis., de producción sincronizada
Sis., de producción sincronizada
 
Programacion lineal
Programacion linealProgramacion lineal
Programacion lineal
 
Sis., de producción sincronizada
Sis., de producción sincronizadaSis., de producción sincronizada
Sis., de producción sincronizada
 
Ecuaciones Parabola, Recta , Hiperbola, Eclipse
Ecuaciones  Parabola, Recta , Hiperbola, EclipseEcuaciones  Parabola, Recta , Hiperbola, Eclipse
Ecuaciones Parabola, Recta , Hiperbola, Eclipse
 

Último

Lasso_Anthony_Practica_1.pdf.INFOPEDAGOGIAPRACTICA
Lasso_Anthony_Practica_1.pdf.INFOPEDAGOGIAPRACTICALasso_Anthony_Practica_1.pdf.INFOPEDAGOGIAPRACTICA
Lasso_Anthony_Practica_1.pdf.INFOPEDAGOGIAPRACTICAalexlasso65
 
Neurociencia para Educadores DB2 Ccesa007.pdf
Neurociencia para Educadores DB2  Ccesa007.pdfNeurociencia para Educadores DB2  Ccesa007.pdf
Neurociencia para Educadores DB2 Ccesa007.pdfDemetrio Ccesa Rayme
 
Presentación programa educativo Radio Edu
Presentación programa educativo Radio EduPresentación programa educativo Radio Edu
Presentación programa educativo Radio Edumariajosecasadobueno
 
Infografía de la U.E. Instituto Diocesano Barquisimeto.pdf
Infografía de la U.E. Instituto Diocesano Barquisimeto.pdfInfografía de la U.E. Instituto Diocesano Barquisimeto.pdf
Infografía de la U.E. Instituto Diocesano Barquisimeto.pdfMoisés Rodríguez
 
INFOGRAFIA WILL, GOING TO WILMARYS HERNANDEZ
INFOGRAFIA WILL, GOING TO WILMARYS HERNANDEZINFOGRAFIA WILL, GOING TO WILMARYS HERNANDEZ
INFOGRAFIA WILL, GOING TO WILMARYS HERNANDEZpachewilma
 
Auquilla_Paola_y_Casco_Angela_Tarea_2.pdf
Auquilla_Paola_y_Casco_Angela_Tarea_2.pdfAuquilla_Paola_y_Casco_Angela_Tarea_2.pdf
Auquilla_Paola_y_Casco_Angela_Tarea_2.pdfAngelaCasco1
 
Presentación -del curso de Precalculo - 2024-I.ppt
Presentación -del curso de Precalculo - 2024-I.pptPresentación -del curso de Precalculo - 2024-I.ppt
Presentación -del curso de Precalculo - 2024-I.pptMarioSanchezGonzalez1
 
clase 1 EBDV AÑO 2024. SOMOS LA LUZ DEL MUNDO.
clase 1 EBDV AÑO 2024. SOMOS LA LUZ DEL MUNDO.clase 1 EBDV AÑO 2024. SOMOS LA LUZ DEL MUNDO.
clase 1 EBDV AÑO 2024. SOMOS LA LUZ DEL MUNDO.RoxanaHuaman11
 
Recomendaciones cajero automáticooo.pptx
Recomendaciones cajero automáticooo.pptxRecomendaciones cajero automáticooo.pptx
Recomendaciones cajero automáticooo.pptxlauramedinalonso
 
Panorama del antiguo testamento. Examen.docx
Panorama del antiguo testamento. Examen.docxPanorama del antiguo testamento. Examen.docx
Panorama del antiguo testamento. Examen.docxJoseAmaya49
 
Casco_Angela_Práctica_Infopedagogía4.pdf
Casco_Angela_Práctica_Infopedagogía4.pdfCasco_Angela_Práctica_Infopedagogía4.pdf
Casco_Angela_Práctica_Infopedagogía4.pdfAngelaCasco1
 
Alexander_Lasso_Marco_Garzo_Practica_N° 3.pdf
Alexander_Lasso_Marco_Garzo_Practica_N° 3.pdfAlexander_Lasso_Marco_Garzo_Practica_N° 3.pdf
Alexander_Lasso_Marco_Garzo_Practica_N° 3.pdfalexlasso65
 
Lasso_Anthony_Tarea_1.pdf sociedad de lal
Lasso_Anthony_Tarea_1.pdf sociedad de lalLasso_Anthony_Tarea_1.pdf sociedad de lal
Lasso_Anthony_Tarea_1.pdf sociedad de lalalexlasso65
 
Infografia (curiosidades sobre el instituto diocesano) estudiante Antonella G...
Infografia (curiosidades sobre el instituto diocesano) estudiante Antonella G...Infografia (curiosidades sobre el instituto diocesano) estudiante Antonella G...
Infografia (curiosidades sobre el instituto diocesano) estudiante Antonella G...antognzalz
 
Infografía Instituto Diocesano Jesus Ramírez.pptx
Infografía Instituto Diocesano Jesus Ramírez.pptxInfografía Instituto Diocesano Jesus Ramírez.pptx
Infografía Instituto Diocesano Jesus Ramírez.pptxjesusdrr26
 
Prueba objetiva - Parcial 1_Grupo 1 Infopedagogía
Prueba objetiva - Parcial 1_Grupo 1 InfopedagogíaPrueba objetiva - Parcial 1_Grupo 1 Infopedagogía
Prueba objetiva - Parcial 1_Grupo 1 Infopedagogíaferpatfut1109
 

Último (20)

Lasso_Anthony_Practica_1.pdf.INFOPEDAGOGIAPRACTICA
Lasso_Anthony_Practica_1.pdf.INFOPEDAGOGIAPRACTICALasso_Anthony_Practica_1.pdf.INFOPEDAGOGIAPRACTICA
Lasso_Anthony_Practica_1.pdf.INFOPEDAGOGIAPRACTICA
 
Neurociencia para Educadores DB2 Ccesa007.pdf
Neurociencia para Educadores DB2  Ccesa007.pdfNeurociencia para Educadores DB2  Ccesa007.pdf
Neurociencia para Educadores DB2 Ccesa007.pdf
 
Presentación programa educativo Radio Edu
Presentación programa educativo Radio EduPresentación programa educativo Radio Edu
Presentación programa educativo Radio Edu
 
Infografía de la U.E. Instituto Diocesano Barquisimeto.pdf
Infografía de la U.E. Instituto Diocesano Barquisimeto.pdfInfografía de la U.E. Instituto Diocesano Barquisimeto.pdf
Infografía de la U.E. Instituto Diocesano Barquisimeto.pdf
 
INFOGRAFIA WILL, GOING TO WILMARYS HERNANDEZ
INFOGRAFIA WILL, GOING TO WILMARYS HERNANDEZINFOGRAFIA WILL, GOING TO WILMARYS HERNANDEZ
INFOGRAFIA WILL, GOING TO WILMARYS HERNANDEZ
 
Auquilla_Paola_y_Casco_Angela_Tarea_2.pdf
Auquilla_Paola_y_Casco_Angela_Tarea_2.pdfAuquilla_Paola_y_Casco_Angela_Tarea_2.pdf
Auquilla_Paola_y_Casco_Angela_Tarea_2.pdf
 
GARZON_MARCO_TAREA_1 (1).pdf
GARZON_MARCO_TAREA_1 (1).pdfGARZON_MARCO_TAREA_1 (1).pdf
GARZON_MARCO_TAREA_1 (1).pdf
 
Presentación -del curso de Precalculo - 2024-I.ppt
Presentación -del curso de Precalculo - 2024-I.pptPresentación -del curso de Precalculo - 2024-I.ppt
Presentación -del curso de Precalculo - 2024-I.ppt
 
Grupo_8_Tarea_3 (1).pdf
Grupo_8_Tarea_3 (1).pdfGrupo_8_Tarea_3 (1).pdf
Grupo_8_Tarea_3 (1).pdf
 
LA ENERGIA.pptx
LA ENERGIA.pptxLA ENERGIA.pptx
LA ENERGIA.pptx
 
clase 1 EBDV AÑO 2024. SOMOS LA LUZ DEL MUNDO.
clase 1 EBDV AÑO 2024. SOMOS LA LUZ DEL MUNDO.clase 1 EBDV AÑO 2024. SOMOS LA LUZ DEL MUNDO.
clase 1 EBDV AÑO 2024. SOMOS LA LUZ DEL MUNDO.
 
Recomendaciones cajero automáticooo.pptx
Recomendaciones cajero automáticooo.pptxRecomendaciones cajero automáticooo.pptx
Recomendaciones cajero automáticooo.pptx
 
Panorama del antiguo testamento. Examen.docx
Panorama del antiguo testamento. Examen.docxPanorama del antiguo testamento. Examen.docx
Panorama del antiguo testamento. Examen.docx
 
Casco_Angela_Práctica_Infopedagogía4.pdf
Casco_Angela_Práctica_Infopedagogía4.pdfCasco_Angela_Práctica_Infopedagogía4.pdf
Casco_Angela_Práctica_Infopedagogía4.pdf
 
Alexander_Lasso_Marco_Garzo_Practica_N° 3.pdf
Alexander_Lasso_Marco_Garzo_Practica_N° 3.pdfAlexander_Lasso_Marco_Garzo_Practica_N° 3.pdf
Alexander_Lasso_Marco_Garzo_Practica_N° 3.pdf
 
consultas.pptx
consultas.pptxconsultas.pptx
consultas.pptx
 
Lasso_Anthony_Tarea_1.pdf sociedad de lal
Lasso_Anthony_Tarea_1.pdf sociedad de lalLasso_Anthony_Tarea_1.pdf sociedad de lal
Lasso_Anthony_Tarea_1.pdf sociedad de lal
 
Infografia (curiosidades sobre el instituto diocesano) estudiante Antonella G...
Infografia (curiosidades sobre el instituto diocesano) estudiante Antonella G...Infografia (curiosidades sobre el instituto diocesano) estudiante Antonella G...
Infografia (curiosidades sobre el instituto diocesano) estudiante Antonella G...
 
Infografía Instituto Diocesano Jesus Ramírez.pptx
Infografía Instituto Diocesano Jesus Ramírez.pptxInfografía Instituto Diocesano Jesus Ramírez.pptx
Infografía Instituto Diocesano Jesus Ramírez.pptx
 
Prueba objetiva - Parcial 1_Grupo 1 Infopedagogía
Prueba objetiva - Parcial 1_Grupo 1 InfopedagogíaPrueba objetiva - Parcial 1_Grupo 1 Infopedagogía
Prueba objetiva - Parcial 1_Grupo 1 Infopedagogía
 

Problemas de programacion lineal

  • 1. DE JHONNY CCAPA ALMIRON CARLOS W. SUTTON
  • 2. Problemas resueltos de programación lineal 1 Unos grandes almacenes encargan a un fabricante pantalones y chaquetas deportivas. El fabricante dispone para la confección de 750 m de tejido de algodón y 1000 m de tejido de poliéster. Cada pantalón precisa 1 m de algodón y 2 m de poliéster. Para cada chaqueta se necesitan 1.5 m de algodón y 1 m de poliéster. El precio del pantalón se fija en 50 € y el de la chaqueta en 40 €. ¿Qué número de pantalones y chaquetas debe suministrar el fabricante a los almacenes para que éstos consigan una venta máxima?
  • 3. 1 Elección de las incógnitas. x = número de pantalones y = número de chaquetas 2 Función objetivo f(x,y)= 50x + 40y
  • 4. 3Restricciones Para escribir las restricciones vamos a ayudarnos de una tabla: pantalones chaquetas Disponible algodón 1 1,5 750 poliéster 2 1 1000
  • 5. 4 Hallar el conjunto de soluciones factibles Tenemos que representar gráficamente las restricciones. Al ser x ≥ 0 e y ≥ 0, trabajaremos en el primer cuadrante. Representamos las rectas, a partir de sus puntos de corte con los ejes.
  • 8. 5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles. La solución óptima, si es única, se encuentra en un vértice del recinto. éstos son las soluciones a los sistemas: 2x + 3y = 1500; x = 0 (0, 500) 2x + y = 1000; y = 0 (500, 0) 2x + 3y =1500; 2x + y = 1000 (375, 250)
  • 10. 6 Calcular el valor de la función objetivo En la función objetivo sustituimos cada uno de los vértices. f(x, y) = 50x + 40y f(0, 500) = 50·0 + 40·500 = 20000 € f(500, 0) = 50·500 + 40·0 = 25000 € f(375, 250) = 50·375 + 40·250 = 28750 € Máximo La solución óptima es fabricar 375 pantalones y 250 chaquetas para obtener un beneficio de 28750 €.
  • 11. 2 Una compañía fabrica y venden dos modelos de lámpara L1 y L2. Para su fabricación se necesita un trabajo manual de 20 minutos para el modelo L1 y de 30 minutos para el L2; y un trabajo de máquina para L1 y de 10 minutos para L2. Se dispone para el trabajo manual de 100 horas al mes y para la máquina 80 horas al mes. Sabiendo que el beneficio por unidad es de 15 y 10 euros para L1 y L2, respectivamente, planificar la producción para obtener el máximo beneficio.
  • 12. 1Elección de las incógnitas. x = nº de lámparas L1 y = nº de lámparas L2 2Función objetivo f(x, y) = 15x + 10y
  • 13. 3 RESTRICCIONES L1 L2 Tiempo Manual 1/3 1/2 100 Máquina 1/3 1/6 80
  • 14. 4 Hallar el conjunto de soluciones factibles Tenemos que representar gráficamente las restricciones. Al ser x ≥ 0 e y ≥ 0, trabajaremos en el primer cuadrante. Representamos las rectas, a partir de sus puntos de corte con los ejes. Resolvemos gráficamente la inecuación: 1/3 x + 1/2 y ≤ 100; para ello tomamos un punto del plano, por ejemplo el (0,0). 1/3·0 + 1/2·0 ≤ 100 1/3·0 + 1/6·0 ≤ 80 La zona de intersección de las soluciones de las inecuaciones sería la solución al sistema de inecuaciones, que constituye el conjunto de las soluciones factibles.
  • 16. 5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles. La solución óptima si es única se encuentra en un vértice del recinto. éstos son las soluciones a los sistemas: 1/3x + 1/2y = 100; x = 0 (0, 200) 1/3x + 1/6y = 80; y = 0(240, 0) 1/3x + 1/2y = 100; 1/3x + 1/6y = 80(210, 60)
  • 18. 6 Calcular el valor de la función objetivo En la función objetivo sustituimos cada uno de los vértices. f(x, y) = 15x + 10y f(0, 200) = 15·0 + 10·200 = 2 000 € f(240, 0 ) = 15·240 + 10·0 = 3 600 € f(210, 60) = 15·210 + 10·60 = 3 750 € Máximo La solución óptima es fabricar 210 del modelo L1 y 60 del modelo L1 para obtener un beneficio de 3 750 € .
  • 19. 3 Una empresa de transportes tiene dos tipos de camiones, los del tipo A con un espacio refrigerado de 20 m3 y un espacio no refrigerado de 40 m3. Los del tipo B, con igual cubicaje total, al 50% de refrigerado y no refrigerado. La contratan para el transporte de 3 000 m3 de producto que necesita refrigeración y 4 000 m3 de otro que no la necesita. El coste por kilómetro de un camión del tipo A es de 30 € y el B de 40 €. ¿Cuántos camiones de cada tipo ha de utilizar para que el coste total sea mínimo?
  • 20. 1Elección de las incógnitas. x = camiones de tipo A y = camiones de tipo B 2Función objetivo f(x,y) = 30x + 40y
  • 21. 3 RESTRICCIONES A B Total Refrigerado 20 30 3 000 No refrigerado 40 30 4 000
  • 22. 20x + 30y ≥ 3 000 40x + 30y ≥ 4 000 x≥0 y≥0 4 Hallar el conjunto de soluciones factibles
  • 24. 5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles.
  • 26. 6 Calcular el valor de la función objetivo f(0, 400/3) = 30 · 0 + 40 · 400/3 = 5 333.332 f(150, 0) = 30 · 150 + 40 · 0 = 4 500 Como x e y han de ser números naturales redondeamos el valor de y. f(50, 67) = 30 · 50 + 40 ·67 = 4180 Mínimo El coste mínimo son 4 180 € para A = 50 yz B = 67.