SlideShare una empresa de Scribd logo
1 de 5
Descargar para leer sin conexión
July/August 2010
                                 http://www.itnonline.net/node/37169


4-D SBRT Boosts Accuracy
Radiation oncologists target tumors using robotics, intrafraction-image guidance, gating and 4-D
imaging
By: Cristen Bolan

The most difficult challenge in external beam radiation therapy is the ability of doctors to
accurately deliver high doses of radiation to a moving tumor without damaging the surrounding
healthy tissue.

With organs such as the prostate gland and lung, the patient’s breathing moves the position of the
tumor while the radiation beam is on. During treatment, the prostate may drift up to 1 cm for
more than two minutes. The surrounding tissue is unavoidably radiated. This can result in
negative side effects, including urinary and bowel frequency and fatigue.

Stereotactic body radiation therapy (SBRT) is a radiotherapy technique for treating moving
targets. To achieve the most precision with SBRT, the linear accelerator relies on technologies
that guide the multileaf collimator.

The question now is, what is the best solution to use: robotics, intrafraction-image guidance,
gating or 4-D imaging?

SBRT’s Precision Advantage

In SBRT, a specially designed coordinate system is used for the exact localization of the tumors
in the body in order to treat it with limited but highly precise treatment fields. SBRT involves the
delivery of a single high-dose radiation treatment or a few fractionated radiation treatments,
usually up to five treatments. A highly potent biological dose of radiation is delivered to the
tumor, improving the cure rates for the tumor in a manner previously not achievable by standard
conventional radiation therapy.

The three-year survival rate for patients receiving SBRT was 55.8 percent, compared to the 20 to
35 percent two-year to three-year overall survival rate for studies reporting results from
conventional radiation therapy for similar patient groups, a recent study found.

Lead investigator, Robert Timmerman, M.D., professor of radiation oncology, Southwestern
Medical Center, Dallas, conducted a study using the Elekta Axesse SBRT linear accelerator to
treat nearly 60 patients with inoperable early-stage lung cancer. The 2004-2006 Radiation
Therapy Oncology Group (RTOG 0236) study was a phase 2 North American trial of patients
with nonsmall cell lung tumors where pre-existing medical conditions precluded surgical
treatment.

According to Timmerman, the main finding in this study was the high rate of primary tumor
control, which is 97.6 percent at three years.

“SBRT as delivered in this trial provided more than double the rate of primary tumor control than
previous reports describing conventional radiation therapy. Primary tumor control is essential for
curing lung cancer,” he said.

Timmerman and his team used Elekta SBRT solutions. The system is designed to integrate
advanced technologies to enable a radiation therapy treatment technique that delivers highly
sculpted dose distributions with exceptional precision.

Real-Time Tracking

According to the American Cancer Society, prostate cancer is the leading cancer in men in the
United States, with 192,000 new cases diagnosed each year. Prostate is commonly treated with
radiation therapy.

When delivering high doses of radiation to a target, it is critical the dose is delivered accurately to
minimize radiation exposure to healthy tissue. Different parts of the body exhibit motion patterns
that are unique and distinct, so it’s important to be able to compensate for these shifts when
delivering high doses of radiation.

The Accuray CyberKnife, which is approved for use throughout the body, accounts for this by
using robotics and intrafraction-image guidance that is capable of adaptive delivery.

“The CyberKnife delivers SBRT-type treatments with accuracy of 1.5 mm or better for tumors
that move with respiration and less than 0.8 mm for targets such as the prostate,” reported Omar
Dawood, M.D., MPH, vice president of clinical development, Accuray.

When a patient is on the table receiving treatment, the system is designed to automatically
retarget beam directions based on the motion patterns of each patient. This eliminates the need to
manually reposition the patient during each treatment session.

“The CyberKnife System can take X-ray images every 15 seconds during treatment delivery. This
imaging frequency is user-defined, but it also adapts automatically during treatment, based on the
tumor motion,” Dawood said. “The system will track bony structure for intracranial tumors or
tumors close to the spine. It can also track based on tissue contrast for certain lung tumors.
Surrogates, such as gold markers, are needed only when the tumor cannot be located using bony
structures or tissue contrast.”

The use of 4-D for CyberKnife is different from other systems, Dawood said. “CyberKnife users
may use 4-D CT (computed tomography), but it would only be in the planning stage to better
delineate a target,” he explained. “Lung tumors, for example, move with respiration. The position
of the tumor between images is predicted based on its historical behavior. The tumor location
known from the X-ray images is correlated with chest wall movement measured in real time with
an optical tracking system. This breathing model is built just before the treatment and constantly
updated during the treatment every time an X-ray image is taken.”

This technology allows the patient to breath normally during the treatment while the robot
actively compensates for breathing motion.

4-D Localization

Localization technology is used for precise                             Each of three implantable beacon
                                                                        transponders in the Calypso System
tracking of tumor targets. The Calypso                                  transmits a unique nonionizing
Medical’s GPS for the Body system uses                                  radiofrequency signal to the array,
miniaturized implanted devices, beacon                                  generating position and motion
                                                                        information about the target.
electromagnetic transponders, to
continuously track the location of tumors for
improved accuracy and management of
radiation therapy delivery. The technology is
designed for body-wide cancers commonly
treated with radiation therapy.

The implanted beacon transponders and the Calypso system provide the clinician continuous,
real-time monitoring of the prostate and alert the clinician when the target is outside of acceptable
boundaries due to organ motion, thereby enabling corrections during treatment delivery. The
technology can adjust the patient position if the tumor moves out of the target zone.

Since the radiation beam is more focused on the tumor target, the Calypso 4-D System —
approved for use in the prostate — allows clinicians to contour the radiation dose to the prostate
and minimize unwanted dose to adjacent healthy tissues.

“Calypso allows us to track the position of the prostate during prolonged, high-dose SBRT
treatments and provides the flexibility to stop the treatment if the prostate moves outside the
intended field of radiation,” said Constantine Mantz, M.D., at 21st Century Oncology in Cape
Coral, Fla.

What is unique about 4-D on Calypso, Mantz said, is that it tracks the position of the prostate
continuously.

Mantz led a study conducted at Stanford University1 to measure side effects using the Calypso-
guided dynamic multileaf collimator (DMLC) target tracking with intensity modulated arc
therapy (IMAT). Dose distributions to moving targets with DMLC tracking were superior to
those without tracking.

“We discovered that rectal, urinary and sexual side effects were significantly diminished with the
Calypso system. That is a measure of improved accuracy,” Mantz said.

A work in progress, Dynamic Edge Gating Technology is Calypso’s new solution to improving
dose delivery. The system will employ Calypso’s real-time target position information to enable
and disable the treatment beam in response to motion of the prostate. The beam can be
automatically held when the target position goes outside the motion thresholds and automatically
re-enabled when the target is within the motion thresholds.
Targeting Lung Tumors

Lung tumors have long been among the most challenging radiation therapy targets because the
patient’s breathing causes tumors to move.

While external skin surface markers or implanted markers are used to estimate lung tumor
position during the breathing cycle, the physician can only apply the beam during certain points
in the patient’s respiration. These strategies require complex, time-consuming planning and
delivery and prolong treatment with an inefficient stop-start beam delivery.

Elekta has introduced technology for SBRT for treating lung tumors. The solution is designed to
enable doctors to use 4-D image guidance to confirm the tumor’s location during the breathing
cycle. This new technology treats the lesion with a continuous radiation beam, increasing therapy
accuracy while using less imaging radiation during treatment delivery.

Elekta’s XVI Symmetry provides tools to manage shifts in the relative positions of the tumor and
organs-at-risk during the respiratory cycle. XVI Intuity is applied to ensure the position of the
tumor is being tracked, and it accounts for the position of nearby healthy critical structures.

XVI Symmetry and XVI Intuity are feature sets of version 4.5 of Elekta’s X-ray Volume Imaging
(XVI) package of software solutions for Image Guided Radiation Therapy (IGRT). XVI 4.5
recently received 510(k) clearance and CE marking to enable sales and distribution in the United
States and Europe.

The solutions account for baseline shifts and help physicians deliver treatment using reduced
margins around the tumor.

XVI Intuity is designed to extend image guidance by enabling critical structure avoidance, which
allows doctors to understand the positional relationship between the target and organs-at-risk.
This ensures anatomical changes and corrections to set-up errors have not inadvertently put
critical structures into the radiation beam’s path.

Combined Motion Management

Managing tumor motion can be achieved by combining several technologies and techniques. For
example, a comprehensive solution may include patient positioning, tumor tracking and gating
the treatment beam.

The motion management capabilities on Varian Medical Systems’ Trilogy platform uses gated
radiotherapy called RapidArc and interfaces with the Calypso System. This allows clinicians to
monitor tumors in real time, gate or turn on and off the beam if the tumor moves outside of a
predefined area, and make targeting adjustments when necessary.

Gated RapidArc radiotherapy makes it possible to monitor patient breathing and compensate for
tumor motion while quickly delivering a dose during a continuous rotation around the patient.
This development

enables the use of RapidArc to target lung tumors with greater precision by gating the beam in
response to tumor motion.
To speed up delivery of the radiation, Varian recently added the TrueBeam platform to the Clinac
iX and Trilogy accelerators. TrueBeam dynamically synchronizes imaging, patient positioning,
motion management and treatment delivery.

It can deliver treatments up to 50 percent faster with a dose delivery rate of up to 2,400 monitor
units per minute, which is double the maximum output of earlier, industry-leading Varian
systems. This offers greater patient comfort by shortening treatments and may improve precision
by leaving less time for tumor motion during dose delivery.

TrueBeam can be used for all forms of advanced external-beam radiotherapy, including image-
guided radiotherapy and radiosurgery (IGRT and IGRS), intensity-modulated radiotherapy
(IMRT), stereotactic body radiotherapy (SBRT) and RapidArc radiotherapy.

Adaptive Treatment

With image-guided modulated therapy (IGRT), what the physician can do with the images is
what matters most.

By integrating a CT scanner into TomoTherapy’s Hi·Art (adaptive radiation therapy) system, the
clinician can take CT images for each fraction. Using the CTrue solution, the images are acquired
helically, using a fan-beam with a conventional CT detector mounted on a ring gantry. This
allows the clinician to verify the location of the tumor. After the CT scan is taken, the radiation
therapist makes technical adjustments to accurately align the system to the precise position.

Adding to the treatment options is the TomoDirect solution. Developed as a complement to
helical TomoTherapy, both modes use the same binary multileaf collimator and CT-style gantry
technology, and share a consistent treatment planning and delivery process. The choice of which
modality to use for a given case will depend on the nature of the tumor volume and surrounding
organs at risk.

TomoDirect allows clinicians to choose several discrete angles as well as the optimal modulation
level required for delivery. It is expected to provide significant time savings in both the planning
and delivery phases for several clinical scenarios, including whole breast irradiation and palliative
treatments.

In addition to the added capabilities offered by TomoDirect, the Hi·Art system’s treatment modes
are being expanded to include 3-D conformal delivery, thereby providing a comprehensive range
of options for all clinical cases.

Reference:

1. Keall, et al. “Electromagnetic-Guided DMLC Tracking Enables Motion Management for
Intensity Modulated Arc Therapy.” Stanford University, Palo Alto, Calif.

Más contenido relacionado

La actualidad más candente

RAPIDARC- NEW ERA IN RADIOTHERAPY
RAPIDARC- NEW ERA IN RADIOTHERAPYRAPIDARC- NEW ERA IN RADIOTHERAPY
RAPIDARC- NEW ERA IN RADIOTHERAPYPuneet Seth
 
MR recommendations gec-estro
MR recommendations gec-estroMR recommendations gec-estro
MR recommendations gec-estroRadiaion Matters
 
New Techniques in Radiotherapy
New Techniques in RadiotherapyNew Techniques in Radiotherapy
New Techniques in RadiotherapySantam Chakraborty
 
Teletherapy treatment techniques
Teletherapy treatment techniquesTeletherapy treatment techniques
Teletherapy treatment techniquesSubhankar Kar
 
R osborn rad-onc-101.2013
R osborn rad-onc-101.2013R osborn rad-onc-101.2013
R osborn rad-onc-101.2013Rex Osborn
 
THE RATIONALE AND BENEFITS OF IGRT
THE RATIONALE AND BENEFITS OF IGRTTHE RATIONALE AND BENEFITS OF IGRT
THE RATIONALE AND BENEFITS OF IGRTMelissa McClement
 
Brachytherapy And Gyn Malignancy
Brachytherapy And Gyn MalignancyBrachytherapy And Gyn Malignancy
Brachytherapy And Gyn Malignancyfondas vakalis
 
A Day in the Life As : Radiation Therapy Technologist in IndiA
A Day in the Life As : Radiation Therapy Technologist in IndiAA Day in the Life As : Radiation Therapy Technologist in IndiA
A Day in the Life As : Radiation Therapy Technologist in IndiATeekendra Singh Faujdar
 
Intraoperative Radiotherapy (IORT)
Intraoperative Radiotherapy (IORT)Intraoperative Radiotherapy (IORT)
Intraoperative Radiotherapy (IORT)Victor Ekpo
 
Motion Management in Lung Cancer Radiotherapy
Motion Management in Lung Cancer RadiotherapyMotion Management in Lung Cancer Radiotherapy
Motion Management in Lung Cancer RadiotherapyJyotirup Goswami
 
Radiation oncology
Radiation oncologyRadiation oncology
Radiation oncologyRad Tech
 
Recent Advances in Radiotherapy Techniques
Recent Advances in Radiotherapy TechniquesRecent Advances in Radiotherapy Techniques
Recent Advances in Radiotherapy TechniquesSubrata Roy
 
MON 2011 - Slide 6 - S. Faithfull - New developments in radiotherapy: Overvie...
MON 2011 - Slide 6 - S. Faithfull - New developments in radiotherapy: Overvie...MON 2011 - Slide 6 - S. Faithfull - New developments in radiotherapy: Overvie...
MON 2011 - Slide 6 - S. Faithfull - New developments in radiotherapy: Overvie...European School of Oncology
 
intrabeam intraoperative radiotherapy
intrabeam intraoperative radiotherapyintrabeam intraoperative radiotherapy
intrabeam intraoperative radiotherapychirubhai16
 
Radiation protectionandqualityassessmentinxri fin
Radiation protectionandqualityassessmentinxri finRadiation protectionandqualityassessmentinxri fin
Radiation protectionandqualityassessmentinxri finMUBOSScz
 

La actualidad más candente (19)

RAPIDARC- NEW ERA IN RADIOTHERAPY
RAPIDARC- NEW ERA IN RADIOTHERAPYRAPIDARC- NEW ERA IN RADIOTHERAPY
RAPIDARC- NEW ERA IN RADIOTHERAPY
 
MR recommendations gec-estro
MR recommendations gec-estroMR recommendations gec-estro
MR recommendations gec-estro
 
New Techniques in Radiotherapy
New Techniques in RadiotherapyNew Techniques in Radiotherapy
New Techniques in Radiotherapy
 
IGRT in lung cancer
IGRT in lung cancerIGRT in lung cancer
IGRT in lung cancer
 
Teletherapy treatment techniques
Teletherapy treatment techniquesTeletherapy treatment techniques
Teletherapy treatment techniques
 
R osborn rad-onc-101.2013
R osborn rad-onc-101.2013R osborn rad-onc-101.2013
R osborn rad-onc-101.2013
 
THE RATIONALE AND BENEFITS OF IGRT
THE RATIONALE AND BENEFITS OF IGRTTHE RATIONALE AND BENEFITS OF IGRT
THE RATIONALE AND BENEFITS OF IGRT
 
Brachytherapy And Gyn Malignancy
Brachytherapy And Gyn MalignancyBrachytherapy And Gyn Malignancy
Brachytherapy And Gyn Malignancy
 
A Day in the Life As : Radiation Therapy Technologist in IndiA
A Day in the Life As : Radiation Therapy Technologist in IndiAA Day in the Life As : Radiation Therapy Technologist in IndiA
A Day in the Life As : Radiation Therapy Technologist in IndiA
 
Intraoperative Radiotherapy (IORT)
Intraoperative Radiotherapy (IORT)Intraoperative Radiotherapy (IORT)
Intraoperative Radiotherapy (IORT)
 
Radiation planning steps
Radiation planning stepsRadiation planning steps
Radiation planning steps
 
Motion Management in Lung Cancer Radiotherapy
Motion Management in Lung Cancer RadiotherapyMotion Management in Lung Cancer Radiotherapy
Motion Management in Lung Cancer Radiotherapy
 
Radiation oncology
Radiation oncologyRadiation oncology
Radiation oncology
 
Recent Advances in Radiotherapy Techniques
Recent Advances in Radiotherapy TechniquesRecent Advances in Radiotherapy Techniques
Recent Advances in Radiotherapy Techniques
 
Image Guided Radiotherapy
Image Guided RadiotherapyImage Guided Radiotherapy
Image Guided Radiotherapy
 
Microwave Imaging Of The Breast With Incorporated Structural Information Final
Microwave Imaging Of The Breast With Incorporated Structural Information FinalMicrowave Imaging Of The Breast With Incorporated Structural Information Final
Microwave Imaging Of The Breast With Incorporated Structural Information Final
 
MON 2011 - Slide 6 - S. Faithfull - New developments in radiotherapy: Overvie...
MON 2011 - Slide 6 - S. Faithfull - New developments in radiotherapy: Overvie...MON 2011 - Slide 6 - S. Faithfull - New developments in radiotherapy: Overvie...
MON 2011 - Slide 6 - S. Faithfull - New developments in radiotherapy: Overvie...
 
intrabeam intraoperative radiotherapy
intrabeam intraoperative radiotherapyintrabeam intraoperative radiotherapy
intrabeam intraoperative radiotherapy
 
Radiation protectionandqualityassessmentinxri fin
Radiation protectionandqualityassessmentinxri finRadiation protectionandqualityassessmentinxri fin
Radiation protectionandqualityassessmentinxri fin
 

Similar a Calypso Medical's Prostate Cancer Treatment: Imaging Technology News

Cyberknife An expertise state of art Technology to execute Stereotactic Robot...
Cyberknife An expertise state of art Technology to execute Stereotactic Robot...Cyberknife An expertise state of art Technology to execute Stereotactic Robot...
Cyberknife An expertise state of art Technology to execute Stereotactic Robot...Subrata Roy
 
AN ANALYSIS OF THE BENEFITS AND ADVANTAGES TO SRT
AN ANALYSIS OF THE BENEFITS AND ADVANTAGES TO SRTAN ANALYSIS OF THE BENEFITS AND ADVANTAGES TO SRT
AN ANALYSIS OF THE BENEFITS AND ADVANTAGES TO SRTMelissa McClement
 
Efficiency of Fiducial Tracking of Carcinoma Prostate With Cyberknife System ...
Efficiency of Fiducial Tracking of Carcinoma Prostate With Cyberknife System ...Efficiency of Fiducial Tracking of Carcinoma Prostate With Cyberknife System ...
Efficiency of Fiducial Tracking of Carcinoma Prostate With Cyberknife System ...Subrata Roy
 
Radiation Oncology in 21st Century - Changing the Paradigms
Radiation Oncology in 21st Century - Changing the ParadigmsRadiation Oncology in 21st Century - Changing the Paradigms
Radiation Oncology in 21st Century - Changing the ParadigmsApollo Hospitals
 
The main methods of radiotherapy
The main methods of radiotherapyThe main methods of radiotherapy
The main methods of radiotherapyAjaindu Shrivastava
 
Evolving Role of Radiation Therapists & Concernment of Risk Management in Mod...
Evolving Role of Radiation Therapists & Concernment of Risk Management in Mod...Evolving Role of Radiation Therapists & Concernment of Risk Management in Mod...
Evolving Role of Radiation Therapists & Concernment of Risk Management in Mod...Subrata Roy
 
Advances of Radiation Oncology in CancManagement: Vision for Role of Theranos...
Advances of Radiation Oncology in CancManagement: Vision for Role of Theranos...Advances of Radiation Oncology in CancManagement: Vision for Role of Theranos...
Advances of Radiation Oncology in CancManagement: Vision for Role of Theranos...CrimsonpublishersCancer
 
Recent advances in radiation oncology final (1)
Recent advances in radiation oncology  final (1)Recent advances in radiation oncology  final (1)
Recent advances in radiation oncology final (1)prasanthkandra
 
Motion in Hadron therapy (radiotherapy)
Motion in Hadron therapy (radiotherapy)Motion in Hadron therapy (radiotherapy)
Motion in Hadron therapy (radiotherapy)siavashzare2
 
CALLOS-JOHN-MD690-RESEARCHPROJECT
CALLOS-JOHN-MD690-RESEARCHPROJECTCALLOS-JOHN-MD690-RESEARCHPROJECT
CALLOS-JOHN-MD690-RESEARCHPROJECTJohn Callos
 
Brachytherapy-A Brief Review with focus on Carcinoma Cervix
Brachytherapy-A Brief Review with focus on Carcinoma CervixBrachytherapy-A Brief Review with focus on Carcinoma Cervix
Brachytherapy-A Brief Review with focus on Carcinoma Cervixiosrjce
 
The vmat vs other recent radiotherapy techniques
The vmat vs other recent radiotherapy techniquesThe vmat vs other recent radiotherapy techniques
The vmat vs other recent radiotherapy techniquesM'dee Phechudi
 
Radical Prostate Radiotherapy
Radical Prostate RadiotherapyRadical Prostate Radiotherapy
Radical Prostate RadiotherapyCatherine Holborn
 
Comparison of-incidental-radiation-dose-to-axilla-and-internal-mammary-nodala...
Comparison of-incidental-radiation-dose-to-axilla-and-internal-mammary-nodala...Comparison of-incidental-radiation-dose-to-axilla-and-internal-mammary-nodala...
Comparison of-incidental-radiation-dose-to-axilla-and-internal-mammary-nodala...science journals
 

Similar a Calypso Medical's Prostate Cancer Treatment: Imaging Technology News (20)

Cyberknife An expertise state of art Technology to execute Stereotactic Robot...
Cyberknife An expertise state of art Technology to execute Stereotactic Robot...Cyberknife An expertise state of art Technology to execute Stereotactic Robot...
Cyberknife An expertise state of art Technology to execute Stereotactic Robot...
 
AN ANALYSIS OF THE BENEFITS AND ADVANTAGES TO SRT
AN ANALYSIS OF THE BENEFITS AND ADVANTAGES TO SRTAN ANALYSIS OF THE BENEFITS AND ADVANTAGES TO SRT
AN ANALYSIS OF THE BENEFITS AND ADVANTAGES TO SRT
 
Efficiency of Fiducial Tracking of Carcinoma Prostate With Cyberknife System ...
Efficiency of Fiducial Tracking of Carcinoma Prostate With Cyberknife System ...Efficiency of Fiducial Tracking of Carcinoma Prostate With Cyberknife System ...
Efficiency of Fiducial Tracking of Carcinoma Prostate With Cyberknife System ...
 
Radiation Oncology in 21st Century - Changing the Paradigms
Radiation Oncology in 21st Century - Changing the ParadigmsRadiation Oncology in 21st Century - Changing the Paradigms
Radiation Oncology in 21st Century - Changing the Paradigms
 
The main methods of radiotherapy
The main methods of radiotherapyThe main methods of radiotherapy
The main methods of radiotherapy
 
AI & Recent Advances in Radiation Oncology 2024
AI & Recent Advances in Radiation Oncology 2024AI & Recent Advances in Radiation Oncology 2024
AI & Recent Advances in Radiation Oncology 2024
 
Evolving Role of Radiation Therapists & Concernment of Risk Management in Mod...
Evolving Role of Radiation Therapists & Concernment of Risk Management in Mod...Evolving Role of Radiation Therapists & Concernment of Risk Management in Mod...
Evolving Role of Radiation Therapists & Concernment of Risk Management in Mod...
 
Application Brief - Breast Cancer Research
Application Brief - Breast Cancer ResearchApplication Brief - Breast Cancer Research
Application Brief - Breast Cancer Research
 
Advances of Radiation Oncology in CancManagement: Vision for Role of Theranos...
Advances of Radiation Oncology in CancManagement: Vision for Role of Theranos...Advances of Radiation Oncology in CancManagement: Vision for Role of Theranos...
Advances of Radiation Oncology in CancManagement: Vision for Role of Theranos...
 
Recent advances in radiation oncology final (1)
Recent advances in radiation oncology  final (1)Recent advances in radiation oncology  final (1)
Recent advances in radiation oncology final (1)
 
2009.12.29, Draft of New Chapter
2009.12.29, Draft of New Chapter2009.12.29, Draft of New Chapter
2009.12.29, Draft of New Chapter
 
Motion in Hadron therapy (radiotherapy)
Motion in Hadron therapy (radiotherapy)Motion in Hadron therapy (radiotherapy)
Motion in Hadron therapy (radiotherapy)
 
CALLOS-JOHN-MD690-RESEARCHPROJECT
CALLOS-JOHN-MD690-RESEARCHPROJECTCALLOS-JOHN-MD690-RESEARCHPROJECT
CALLOS-JOHN-MD690-RESEARCHPROJECT
 
Application Brief - Breast Cancer Research
Application Brief - Breast Cancer ResearchApplication Brief - Breast Cancer Research
Application Brief - Breast Cancer Research
 
Brachytherapy-A Brief Review with focus on Carcinoma Cervix
Brachytherapy-A Brief Review with focus on Carcinoma CervixBrachytherapy-A Brief Review with focus on Carcinoma Cervix
Brachytherapy-A Brief Review with focus on Carcinoma Cervix
 
The vmat vs other recent radiotherapy techniques
The vmat vs other recent radiotherapy techniquesThe vmat vs other recent radiotherapy techniques
The vmat vs other recent radiotherapy techniques
 
Radical Prostate Radiotherapy
Radical Prostate RadiotherapyRadical Prostate Radiotherapy
Radical Prostate Radiotherapy
 
Apbi
ApbiApbi
Apbi
 
Fusion prostatic biopsy
Fusion prostatic biopsyFusion prostatic biopsy
Fusion prostatic biopsy
 
Comparison of-incidental-radiation-dose-to-axilla-and-internal-mammary-nodala...
Comparison of-incidental-radiation-dose-to-axilla-and-internal-mammary-nodala...Comparison of-incidental-radiation-dose-to-axilla-and-internal-mammary-nodala...
Comparison of-incidental-radiation-dose-to-axilla-and-internal-mammary-nodala...
 

Calypso Medical's Prostate Cancer Treatment: Imaging Technology News

  • 1. July/August 2010 http://www.itnonline.net/node/37169 4-D SBRT Boosts Accuracy Radiation oncologists target tumors using robotics, intrafraction-image guidance, gating and 4-D imaging By: Cristen Bolan The most difficult challenge in external beam radiation therapy is the ability of doctors to accurately deliver high doses of radiation to a moving tumor without damaging the surrounding healthy tissue. With organs such as the prostate gland and lung, the patient’s breathing moves the position of the tumor while the radiation beam is on. During treatment, the prostate may drift up to 1 cm for more than two minutes. The surrounding tissue is unavoidably radiated. This can result in negative side effects, including urinary and bowel frequency and fatigue. Stereotactic body radiation therapy (SBRT) is a radiotherapy technique for treating moving targets. To achieve the most precision with SBRT, the linear accelerator relies on technologies that guide the multileaf collimator. The question now is, what is the best solution to use: robotics, intrafraction-image guidance, gating or 4-D imaging? SBRT’s Precision Advantage In SBRT, a specially designed coordinate system is used for the exact localization of the tumors in the body in order to treat it with limited but highly precise treatment fields. SBRT involves the delivery of a single high-dose radiation treatment or a few fractionated radiation treatments, usually up to five treatments. A highly potent biological dose of radiation is delivered to the tumor, improving the cure rates for the tumor in a manner previously not achievable by standard conventional radiation therapy. The three-year survival rate for patients receiving SBRT was 55.8 percent, compared to the 20 to 35 percent two-year to three-year overall survival rate for studies reporting results from conventional radiation therapy for similar patient groups, a recent study found. Lead investigator, Robert Timmerman, M.D., professor of radiation oncology, Southwestern Medical Center, Dallas, conducted a study using the Elekta Axesse SBRT linear accelerator to treat nearly 60 patients with inoperable early-stage lung cancer. The 2004-2006 Radiation
  • 2. Therapy Oncology Group (RTOG 0236) study was a phase 2 North American trial of patients with nonsmall cell lung tumors where pre-existing medical conditions precluded surgical treatment. According to Timmerman, the main finding in this study was the high rate of primary tumor control, which is 97.6 percent at three years. “SBRT as delivered in this trial provided more than double the rate of primary tumor control than previous reports describing conventional radiation therapy. Primary tumor control is essential for curing lung cancer,” he said. Timmerman and his team used Elekta SBRT solutions. The system is designed to integrate advanced technologies to enable a radiation therapy treatment technique that delivers highly sculpted dose distributions with exceptional precision. Real-Time Tracking According to the American Cancer Society, prostate cancer is the leading cancer in men in the United States, with 192,000 new cases diagnosed each year. Prostate is commonly treated with radiation therapy. When delivering high doses of radiation to a target, it is critical the dose is delivered accurately to minimize radiation exposure to healthy tissue. Different parts of the body exhibit motion patterns that are unique and distinct, so it’s important to be able to compensate for these shifts when delivering high doses of radiation. The Accuray CyberKnife, which is approved for use throughout the body, accounts for this by using robotics and intrafraction-image guidance that is capable of adaptive delivery. “The CyberKnife delivers SBRT-type treatments with accuracy of 1.5 mm or better for tumors that move with respiration and less than 0.8 mm for targets such as the prostate,” reported Omar Dawood, M.D., MPH, vice president of clinical development, Accuray. When a patient is on the table receiving treatment, the system is designed to automatically retarget beam directions based on the motion patterns of each patient. This eliminates the need to manually reposition the patient during each treatment session. “The CyberKnife System can take X-ray images every 15 seconds during treatment delivery. This imaging frequency is user-defined, but it also adapts automatically during treatment, based on the tumor motion,” Dawood said. “The system will track bony structure for intracranial tumors or tumors close to the spine. It can also track based on tissue contrast for certain lung tumors. Surrogates, such as gold markers, are needed only when the tumor cannot be located using bony structures or tissue contrast.” The use of 4-D for CyberKnife is different from other systems, Dawood said. “CyberKnife users may use 4-D CT (computed tomography), but it would only be in the planning stage to better delineate a target,” he explained. “Lung tumors, for example, move with respiration. The position of the tumor between images is predicted based on its historical behavior. The tumor location known from the X-ray images is correlated with chest wall movement measured in real time with
  • 3. an optical tracking system. This breathing model is built just before the treatment and constantly updated during the treatment every time an X-ray image is taken.” This technology allows the patient to breath normally during the treatment while the robot actively compensates for breathing motion. 4-D Localization Localization technology is used for precise Each of three implantable beacon transponders in the Calypso System tracking of tumor targets. The Calypso transmits a unique nonionizing Medical’s GPS for the Body system uses radiofrequency signal to the array, miniaturized implanted devices, beacon generating position and motion information about the target. electromagnetic transponders, to continuously track the location of tumors for improved accuracy and management of radiation therapy delivery. The technology is designed for body-wide cancers commonly treated with radiation therapy. The implanted beacon transponders and the Calypso system provide the clinician continuous, real-time monitoring of the prostate and alert the clinician when the target is outside of acceptable boundaries due to organ motion, thereby enabling corrections during treatment delivery. The technology can adjust the patient position if the tumor moves out of the target zone. Since the radiation beam is more focused on the tumor target, the Calypso 4-D System — approved for use in the prostate — allows clinicians to contour the radiation dose to the prostate and minimize unwanted dose to adjacent healthy tissues. “Calypso allows us to track the position of the prostate during prolonged, high-dose SBRT treatments and provides the flexibility to stop the treatment if the prostate moves outside the intended field of radiation,” said Constantine Mantz, M.D., at 21st Century Oncology in Cape Coral, Fla. What is unique about 4-D on Calypso, Mantz said, is that it tracks the position of the prostate continuously. Mantz led a study conducted at Stanford University1 to measure side effects using the Calypso- guided dynamic multileaf collimator (DMLC) target tracking with intensity modulated arc therapy (IMAT). Dose distributions to moving targets with DMLC tracking were superior to those without tracking. “We discovered that rectal, urinary and sexual side effects were significantly diminished with the Calypso system. That is a measure of improved accuracy,” Mantz said. A work in progress, Dynamic Edge Gating Technology is Calypso’s new solution to improving dose delivery. The system will employ Calypso’s real-time target position information to enable and disable the treatment beam in response to motion of the prostate. The beam can be automatically held when the target position goes outside the motion thresholds and automatically re-enabled when the target is within the motion thresholds.
  • 4. Targeting Lung Tumors Lung tumors have long been among the most challenging radiation therapy targets because the patient’s breathing causes tumors to move. While external skin surface markers or implanted markers are used to estimate lung tumor position during the breathing cycle, the physician can only apply the beam during certain points in the patient’s respiration. These strategies require complex, time-consuming planning and delivery and prolong treatment with an inefficient stop-start beam delivery. Elekta has introduced technology for SBRT for treating lung tumors. The solution is designed to enable doctors to use 4-D image guidance to confirm the tumor’s location during the breathing cycle. This new technology treats the lesion with a continuous radiation beam, increasing therapy accuracy while using less imaging radiation during treatment delivery. Elekta’s XVI Symmetry provides tools to manage shifts in the relative positions of the tumor and organs-at-risk during the respiratory cycle. XVI Intuity is applied to ensure the position of the tumor is being tracked, and it accounts for the position of nearby healthy critical structures. XVI Symmetry and XVI Intuity are feature sets of version 4.5 of Elekta’s X-ray Volume Imaging (XVI) package of software solutions for Image Guided Radiation Therapy (IGRT). XVI 4.5 recently received 510(k) clearance and CE marking to enable sales and distribution in the United States and Europe. The solutions account for baseline shifts and help physicians deliver treatment using reduced margins around the tumor. XVI Intuity is designed to extend image guidance by enabling critical structure avoidance, which allows doctors to understand the positional relationship between the target and organs-at-risk. This ensures anatomical changes and corrections to set-up errors have not inadvertently put critical structures into the radiation beam’s path. Combined Motion Management Managing tumor motion can be achieved by combining several technologies and techniques. For example, a comprehensive solution may include patient positioning, tumor tracking and gating the treatment beam. The motion management capabilities on Varian Medical Systems’ Trilogy platform uses gated radiotherapy called RapidArc and interfaces with the Calypso System. This allows clinicians to monitor tumors in real time, gate or turn on and off the beam if the tumor moves outside of a predefined area, and make targeting adjustments when necessary. Gated RapidArc radiotherapy makes it possible to monitor patient breathing and compensate for tumor motion while quickly delivering a dose during a continuous rotation around the patient. This development enables the use of RapidArc to target lung tumors with greater precision by gating the beam in response to tumor motion.
  • 5. To speed up delivery of the radiation, Varian recently added the TrueBeam platform to the Clinac iX and Trilogy accelerators. TrueBeam dynamically synchronizes imaging, patient positioning, motion management and treatment delivery. It can deliver treatments up to 50 percent faster with a dose delivery rate of up to 2,400 monitor units per minute, which is double the maximum output of earlier, industry-leading Varian systems. This offers greater patient comfort by shortening treatments and may improve precision by leaving less time for tumor motion during dose delivery. TrueBeam can be used for all forms of advanced external-beam radiotherapy, including image- guided radiotherapy and radiosurgery (IGRT and IGRS), intensity-modulated radiotherapy (IMRT), stereotactic body radiotherapy (SBRT) and RapidArc radiotherapy. Adaptive Treatment With image-guided modulated therapy (IGRT), what the physician can do with the images is what matters most. By integrating a CT scanner into TomoTherapy’s Hi·Art (adaptive radiation therapy) system, the clinician can take CT images for each fraction. Using the CTrue solution, the images are acquired helically, using a fan-beam with a conventional CT detector mounted on a ring gantry. This allows the clinician to verify the location of the tumor. After the CT scan is taken, the radiation therapist makes technical adjustments to accurately align the system to the precise position. Adding to the treatment options is the TomoDirect solution. Developed as a complement to helical TomoTherapy, both modes use the same binary multileaf collimator and CT-style gantry technology, and share a consistent treatment planning and delivery process. The choice of which modality to use for a given case will depend on the nature of the tumor volume and surrounding organs at risk. TomoDirect allows clinicians to choose several discrete angles as well as the optimal modulation level required for delivery. It is expected to provide significant time savings in both the planning and delivery phases for several clinical scenarios, including whole breast irradiation and palliative treatments. In addition to the added capabilities offered by TomoDirect, the Hi·Art system’s treatment modes are being expanded to include 3-D conformal delivery, thereby providing a comprehensive range of options for all clinical cases. Reference: 1. Keall, et al. “Electromagnetic-Guided DMLC Tracking Enables Motion Management for Intensity Modulated Arc Therapy.” Stanford University, Palo Alto, Calif.