SlideShare a Scribd company logo
1 of 27
Turbojet Design
Carlos J Gutiérrez Román
54543

Ramón Natal Ramos
70286

ME4935 Aircraft Propulsion
October 31, 2013
Problem Definition
Design a turbojet engine under the following conditions:
 Altitude of 37000 ft.
 The pressure ratio across the compressor πc.
 The Mach number M0=2.0.
 Maximum enthalpy ratio τλ=7.0
 Fuel type is hydrocarbon with QR = 42800 kJ/kg
For a range of compressor pressure ratios, namely 2<πc<40, calculate:
a) The pressure and temperatures at each principal state in kPa and K.
b) Air mass flow rate.
c) The velocity at the nozzle exit.
d) Power of the turbo-components.
e) Fuel flow rate necessary to power the engine.
f) Performance parameters (SFC, TSFC, thermal efficiency, propulsive
efficiency).
Defined problem gives us a start point for assumptions & correct analysis.
ME4935 FA-13
ME 5930 – FA12

2
Technology Assessment

 http://en.wikipedia.org/wiki/Turbojet
Simple explanations on how a turbojet works.

 http://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node85.html
Very specific explanations of the thermodynamic cycle of a turbojet.
 http://www.stanford.edu/~cantwell/AA283_Course_Material/AA283_Course_Notes/Ch
_04_Turbojet_Cycle.pdf
Complete description and formulas for turbojet design, from thermodynamics to
compressor geometry.

It’s always a good idea to understand the current trends to better guide the design.
ME4935 FA-13
ME 5930 – FA12

3
Applicable Engineering Principles

 Thermodynamics Analysis.
The gas generator is composed of a compressor, a turbine, a pair of nozzles and a
burner. All are analyzed thermodynamically to find the total pressures and temperatures.
With these data pressure and temperatures ratios, air fuel ratio and power of the turbine
and compressor are calculated.

 Fluid dynamics
The compressor geometry depends on the angles the fluid must take when approaching
the blades. A fluid dynamics analysis was made to obtain the mean radius of the
compressor blades. With this data nozzles areas and mass flow are calculated.

Previously learned topics are the key elements to analyze the given problem.
ME4935 FA-13
ME 5930 – FA12

4
Engineering Requirements

 The engine must be able to operate at an altitude of 37000 ft.
 The pressure ratio across the compressor πc must produce the
maximum thrust for each pound of fuel.
 The engine must be able to operate at a Mach number of M0=2.0.
 Maximum enthalpy ratio possible for this engine is τλ= 7.0
 Fuel type it will use is hydrocarbon with QR = 42800 kJ/kg.
 It can not violate any fluid mechanics or thermodynamics laws.
 Turbine inlet temperature must not exceed 2000K.

Constraints creates the boundaries for the design requirements.
ME4935 FA-13
ME 5930 – FA12

5
Analysis and Synthesis

ME4935 FA-13
ME 5930 – FA12

6
Proposed Concepts
 For the given conditions we will design a turbojet engines that delivers
the maximum thrust possible.
 Instead of using three different compressor pressure ratios we write a
Matlab script program that varies the compressor ratio for the following
range of values: 2<πc<40
 Our program utilizes the compressor temperature ratio to calculate the
mean radius of the compressor and the corresponding inlet area.
 Since the temperature ratio depends of the pressure ratio, the program
returns the optimal mean radius for a given πc.
 For all the different values of πc our program also optimizes the
corresponding inlet and nozzle areas, inlet mass flow and fuel ratio.
 Plotting the most relevant data, we can decide which compressor
pressure ratio returns the best performance from the turbojet engine.
Technology and logical assumptions ease the design process from the start
ME4935 FA-13
ME 5930 – FA12

7
Engineering Analysis
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

clear all
clc
%TurboJet Engine Analysis
Pidmax = 1;
T0 = 273.15-56.5;
M0 = 2;
R = 285;
kc = 1.4;
kh = 1.33;
V0 = sqrt(kc*R*T0)*M0;
TaoA = 7;
QR = 42800000;
Cpc = 1004;
Cph = 1156;
nm = 0.99;
h = (37000*0.3048);
P0 = 101325*(1-0.0000225577*(h))^5.25588;
Pt0 = P0*(1+((kc-1)/2)*M0^2)^((kc/(kc-1)));
Tt0 = T0*(1+((kc-1)/2)*M0^2);

•
•

% Inlet Diffuser
Pid = Pidmax*(1-0.075*(M0-1)^1.35);
Specification 5008B
Pt2 = Pt0*Pid;
Tt2 = Tt0;

•
•

ME4935 FA-13
ME 5930 – FA12

%Maximum Inlet Total Pressure Recovery (ideal)
%Temperature at initial conditions
%Mach number at initial conditions
%Cold Section ONLY
%Hot Section ONLY
%Speed at initial conditions
%Tao Lambda

%Mechanical Efficiency
%Altitude 37,000 ft. converted to meters
%Air Pressure and Altitude above Sea Level formula
%Total pressure at initial conditions
%Total temperature at initial conditions

% nr = (1-0.075*(M0-1)^1.35 ... Pid = Pidmax x nr

---> Military

%Temperature doesnt change in ducts

8
Engineering Analysis
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

% Compressor
Pic = 2:40;
value )
ec = 0.9;
Pt3 = Pt2.*Pic;
Tt3 = Tt2.*(Pt3./Pt2).^((kc-1)/(kc.*ec));
TaoC = Tt3./Tt2;
nc = (Pic.^((kc-1)./kc)-1)./(TaoC-1);

%Compressor pressure ratio. Pic can vary from 2 to 40 ( 40 max
%Compressor Polytropic efficiency
%Pressure at compressor exit / combustor entrance
%Temperature at compressor exit / combustor entrance
%Compressor temperature ratio
%Compressor efficiency

% Burner (Combustors)
Mb = 0.2;
E = 1;
nb = 0.98;
Pib = 1-(E.*(0.5.*kc).*Mb.^2);
Pt4 = Pt3.*Pib;
Tt4 = (TaoA.*T0.*Cpc)./Cph;
h0 = T0.*Cpc;
TaoR = Tt2./T0;
f = (TaoA-(TaoR.*TaoC))./(((QR.*nb)./h0)-TaoA);

%Burner efficiency
%Burner pressure ratio
%Pressure at combustor exit / turbine entrance
%Temperature at combustor exit / turbine entrance
%Ambient enthalpy h0 = Cpc*T0
%Compressor temperature ratio
%fuel-air ratio

% Turbine
et = 0.9;
%Turbine polytropic efficiency
TaoT = 1-((TaoR.*(TaoC-1))./((1+f).*TaoA)); %Turbine temperature ratio
Tt5 = Tt4.*TaoT;
%Temperature at tubine exit / nozzle entrance
PiT = (TaoT).^((kh)./((kh-1).*et));
%Turbine Pressure ratio
Pt5 = Pt4.*(Tt5./Tt4).^((kh)./((kh-1).*et));%Pt4*PiT; Pressure at turbine exit / nozzle entrance
nt = (1-TaoT)./(1-TaoT.^(1./et));
%Turbine adiabatic efficiency

ME4935 FA-13
ME 5930 – FA12

9
Engineering Analysis
•
•
•
•
•
•
•
•
•
•
•
•

% Outlet Nozzle
P9 = P0;
NPR = Pt5./P9;

•
•
•
•
•
•
•
•
•
•

%Inlet Design & Dimensions
D2 = rm*4;
%Diameter at end of nozzle section = 4 times Compressor mean radius
A2 = (pi./4).*D2.^2;
%Area at End of inlet (2)
M1 = M0;
%For Supersonic flight
Ati = A2./((1./M2).*((1+((kc-1)./2).*M2.^2)./((kc+1)./2)).^((kc+1)./(2.*(kc-1))));
%Inlet throat area
A1 = Ati.*((1./M0).*((1+((kc-1)./2).*M0.^2)./((kc+1)./2)).^((kc+1)./(2.*(kc-1))));
%Inlet area (1)
A0 = A1;
%For supersonic flight intet area = A0
m0 = A0.*((P0./(R.*T0)).*V0);
%Mass flow
D1 = ((4./pi).*A1).^(1/2);
%Inlet Diameter
Dti = ((4./pi).*Ati).^(1/2);
%Inlet throat diameter

%Perfectly Expanded
%Nozzle Pressure Ratio

%Compressor Design & Dimensions
M2 = 0.4;
%Assuming subsonic speed before compressor
w = 30000;
%Angular Velocity
Beta = -25;
%Beta angle
Alfa = 12;
%Alfa angle
T2 = Tt2./(1+((kh-1)./2).*M2.^2);
%Temperature at inlet exit
U = ((TaoC-1)./(1+.6.*(tan(Beta)-tan(Alfa))).*Cpc.*Tt2).^(1/2);
rm = U./(w.*(2.*pi./60));
%Mean Radius

ME4935 FA-13
ME 5930 – FA12

10
Engineering Analysis
•
•
•
•
•
•
•
•

%Nozzle Design & Dimensions
mg = m0.*(1+f);
M9 = (((NPR).^((kh-1)./kh)-1)./((kh-1)./2)).^(1/2);
%Mach number at nozzle outlet
T9 = Tt5./(1+((kh-1)./2).*M9.^2);
%Temperature at nozzle outlet
V9 = M9.*(kh.*R.*T9).^(1/2);
%Speed at nozzle outlet
A9 = mg./((P9./(R.*T9)).*V9);
%Exhaust mass flow
Atn = A9./((1./M9).*((1+((kh-1)./2).*M9.^2)/((kh+1)/2)).^((kh+1)/(2.*(kh-1))));
%Nozzle throat area
Dtn = ((4./pi).*Atn).^(1/2);
%Nozzle throat Diameter

•
•
•
•
•
•
•
•
•
•
•
•
•

%Other Parameters
mf = mg-m0;
Pt = m0.*(1+f).*Cph.*(Tt4-Tt5);
Pc = Pt.*nm;

%Fuel Flow Rate
%Turbine Power
%Compressor Power

%Performance Parameters
RD = m0.*V0;
GT = (m0+mf).*V9;
F = GT-RD;
TSFC = mf./F;
nT = ((m0+mf).*V9.^2-m0.*V0.^2)./(2.*mf.*QR);
nP = 2./(1+(V9./V0));
nO = (F.*V0)./(mf.*QR);

%Ram Drag
%Gross Thrust
%Uninstalled Trust
%Thrust Specific Fuel Consumption
%Thermal Efficiency
%Propulsive Efficiency
%Overall Efficiency

ME4935 FA-13
ME 5930 – FA12

11
Engineering Analysis
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

%Plots Thrust vs Compressor Pressure Ratio
subplot(2,4,1)
plot(Pic,F);
title('Thrust vs Compressor Pressure Ratio')
xlabel('Compressor Pressure Ratio');
ylabel('Thrust (lb)');
axis([2 40 0 45000])
grid on
%Plots Tt3 and Tt5 vs Compressor Pressure Ratio
subplot(2,4,2)
plot(Pic,Tt3,Pic,Tt5);
title('Tt3 and Tt5 vs Compressor Pressure Ratio')
xlabel('Compressor Pressure Ratio');
ylabel('Tt3 and Tt5');
grid on
%Plots Mass flow vs Compressor Pressure Ratio
subplot(2,4,3)
plot(Pic,m0);
title('Mass flow vs Compressor Pressure Ratio')
xlabel('Compressor Pressure Ratio');
ylabel('Mass flow');
grid on

ME4935 FA-13
ME 5930 – FA12

12
Engineering Analysis
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

%Plots Fuel to Air ratio vs Compressor Pressure Ratio
subplot(2,4,4)
plot(Pic,f);
title('Fuel to Air ratio vs Compressor Pressure Ratio')
xlabel('Compressor Pressure Ratio');
ylabel('Fuel to Air ratio');
grid on
%Plots TSFC vs Compressor Pressure Ratio
subplot(2,4,5)
plot(Pic,TSFC);
title('TSFC vs Compressor Pressure Ratio')
xlabel('Compressor Pressure Ratio');
ylabel('TSFC');
grid on
%Plots Thermal Efficiency vs Compressor Pressure Ratio
subplot(2,4,6)
plot(Pic,nT);
title('Thermal Efficiency vs Compressor Pressure Ratio')
xlabel('Compressor Pressure Ratio');
ylabel('Thermal Efficiency');
grid on

ME4935 FA-13
ME 5930 – FA12

13
Engineering Analysis

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

%Plots Propulsive Efficiency vs Compressor Pressure Ratio
subplot(2,4,7)
plot(Pic,nP);
title('Propulsive Efficiency vs Compressor Pressure Ratio')
xlabel('Compressor Pressure Ratio');
ylabel('Propulsive Efficiency');
grid on
%Plots Fuel Mass Flow vs Compressor Pressure Ratio
subplot(2,4,8)
plot(Pic,mf);
title('Fuel Mass Flow vs Compressor Pressure Ratio')
xlabel('Compressor Pressure Ratio');
ylabel('Fuel mass flow');
grid on

ME4935 FA-13
ME 5930 – FA12

14
Engineering Analysis
4

Thrust vs Compressor Pressure Ratio

x 10

Compressor Di
1

4

Compressor Diameter

0.9

Thrust (N)

3

2

1

0.8
0.7
0.6
0.5
0.4

0

5

10

15
20
25
Compressor Pressure Ratio

30

35

40

1

1.5

Co

Compressor Pressure Ratio vs Mass flow

Compress
40

Compressor Pressure Ratio

Compressor Pressure Ratio

40

30

20

10

0

0

20

40

60

80
100
Mass flow

120

140

160

180

30

20

10

0
0.005

0.01

Graphical Analysis helps to identify the highest performing values in our design.
ME4935 FA-13
ME 5930 – FA12

15
Engineering Analysis

essure Ratio

Tt3 and Tt5 vs Compressor Pressure Ratio
1400

Tt3 and Tt5

1200
1000

800
600

25
re Ratio

30

35

400

40

0

5

Pressure Ratio

10

15
20
25
Compressor Pressure Ratio

30

35

40

35

40

Fuel to Air ratio vs Compressor Pressure Ratio
0.03

Fuel to Air ratio

0.025
0.02

0.015
0.01

25
re Ratio

30

35

40

0.005

0

5

10

15
20
25
Compressor Pressure Ratio

30

Optimum values for pressure ratio
ME4935 FA-13
ME 5930 – FA12

16
Engineering Analysis
-5

6

TSFC vs Compressor Pressure Ratio

x 10

Thermal Efficiency
0.6
0.55

Thermal Efficiency

TSFC

5.5
5

4.5

0.5
0.45
0.4
0.35

4
0.3
3.5
0

5

10

15
20
25
Compressor Pressure Ratio

30

35

0.25

40

0

5

Propulsive Efficiency vs Compressor Pressure Ratio

1.6

0.9

1.4

Fuel mass flow

1.8

0.95

Propulsive Efficiency

15
Compre

Fuel Mass Flow v

1

0.85
0.8
0.75
0.7
0.65

ME4935 FA-13
ME 5930 – FA12

10

1.2
1
0.8
0.6

0

5

10

15
20
25
Compressor Pressure Ratio

30

35

40

0.4

0

5

10

15
Compre

17
Engineering Analysis

essure Ratio

Thermal Efficiency vs Compressor Pressure Ratio
0.6

Thermal Efficiency

0.55
0.5
0.45
0.4
0.35
0.3

25
re Ratio

30

35

0.25

40

0

5

ssor Pressure Ratio

10

15
20
25
Compressor Pressure Ratio

30

35

40

35

40

Fuel Mass Flow vs Compressor Pressure Ratio
1.8

Fuel mass flow

1.6
1.4
1.2
1
0.8
0.6

25
re Ratio

30

ME4935 FA-13
ME 5930 – FA12

35

40

0.4

0

5

10

15
20
25
Compressor Pressure Ratio

30

18
πc = 40

Total

πc = 17

10
10
40
20
10
10
100

πc = 2

Weighting
Air mass flow rate
Fuel flow rate
Thrust
TSFC
Thermal efficiency
Propulsive efficiency

Baseline

Criteria

Problem Statement

Concept Selection

1
-1
1
1
0
0
60

1
0
0
0
0
1
20

Analyzing 3 different cases of compressor pressure ratio makes us take a better judgment of
which is the best for the steps to come and final design.
ME4935 FA-13
ME 5930 – FA12

19
Engineering Analysis
 The compressor pressure ratio that develops the most thrust is πc = 17.
 It’s also the best compressor pressure ratio to obtain the best TSFC.
 The temperatures Tt5 and Tt3 are the same at πc = 14 which means that
our method to approximate the mean radius is very good.
 For our design we chose a πc = 17 and obtained the following results:












Funin = 42,705 N
TSFC = 3.53 x10-5
ηT = 51%
ηP = 75%
ṁ0 = 108.87 kg/s
ṁf = 1.51 kg/s
ϝ = 0.0139
Pc = 6.15 x107 W
Pt = 6.21 x107 W
V9 = 966.89 m/s
NPR = 15.12

Using the best compressor pressure ratio yields optimum results.
ME4935 FA-13
ME 5930 – FA12

20
Engineering Analysis
 Temperature and pressures per stage:

Stage
Tt (K)
Pt (KPa)

Total Temperatures and Pressures per stage
0
2
3
4
387.97
387.97
958.73
1371
169.47

156.76

2664.9

2590.3

5
830
327.53

With all needed parameters, parts and/or components of the turbine can be designed.
ME4935 FA-13
ME 5930 – FA12

21
Final Design
 INLET

ME4935 FA-13
ME 5930 – FA12

22
Final Design
 NOZZLE

ME4935 FA-13
ME 5930 – FA12

23
Conclusions

 Increasing the compressor pressure ratio not necessary increase the
thrust output. Air fuel ratio started deceasing after the optimum πc.
 When the output temperatures of the compressor and turbine are similar
the engines returns more thrust per pound of fuel.
 Increasing the air mass flow and fuel mass flow not necessary increase
the thrust output (it also depends in other factors like pressure ratio).
 We have to convert all the pressure that its not consumed by the turbine
into speed to get the most thrust (perfectly expanded).
 The diameter of the compressor wheel and blades depends on the
thermodynamic calculations.

ME4935 FA-13
ME 5930 – FA12

24
Recommendations

 Being able to acquire the knowledge in class to implement to our project
the following:
 Cooling of the turbine section.
 Detailed design of the compressor and turbine blades.
 Compare more than one type of propulsion (turbojet vs turbofan vs turboprop).

ME4935 FA-13
ME 5930 – FA12

25
Back Up Slides

ME4935 FA-13
ME 5930 – FA12

26
Backup
INLET

ME4935 FA-13
ME 5930 – FA12

NOZZLE

27

More Related Content

What's hot

Turbine engine 1
Turbine engine 1Turbine engine 1
Turbine engine 1
Zaib Amjad
 

What's hot (20)

Trent 1000 presentation
Trent 1000 presentationTrent 1000 presentation
Trent 1000 presentation
 
Aerospace Propulsion Study For Shenyang Aerospace University by Lale420 (1)
Aerospace Propulsion Study For Shenyang Aerospace University by Lale420 (1)Aerospace Propulsion Study For Shenyang Aerospace University by Lale420 (1)
Aerospace Propulsion Study For Shenyang Aerospace University by Lale420 (1)
 
Jet Propulsion: Recap, Intake, Types of compressor, and More
Jet Propulsion: Recap, Intake, Types of compressor, and MoreJet Propulsion: Recap, Intake, Types of compressor, and More
Jet Propulsion: Recap, Intake, Types of compressor, and More
 
TURBOFAN ENGINE PPT
TURBOFAN ENGINE PPTTURBOFAN ENGINE PPT
TURBOFAN ENGINE PPT
 
Gas turbine course
Gas turbine courseGas turbine course
Gas turbine course
 
DKA-867-Final
DKA-867-FinalDKA-867-Final
DKA-867-Final
 
Jet engine
Jet engineJet engine
Jet engine
 
turbocharger
 turbocharger turbocharger
turbocharger
 
Gas turbine
Gas turbineGas turbine
Gas turbine
 
Report on jet engines
Report on jet enginesReport on jet engines
Report on jet engines
 
turbine engine intake
 turbine engine intake turbine engine intake
turbine engine intake
 
Turbine engine 1
Turbine engine 1Turbine engine 1
Turbine engine 1
 
Jet engine seminar report
Jet engine seminar reportJet engine seminar report
Jet engine seminar report
 
Trent
TrentTrent
Trent
 
propulsion 1
propulsion 1propulsion 1
propulsion 1
 
Introduction to gas turbine engine
Introduction to gas turbine engineIntroduction to gas turbine engine
Introduction to gas turbine engine
 
Turbofan engine
Turbofan engineTurbofan engine
Turbofan engine
 
Jet Engines
Jet Engines Jet Engines
Jet Engines
 
Turbocharger and superchrger
Turbocharger and superchrgerTurbocharger and superchrger
Turbocharger and superchrger
 
Jet engines
Jet enginesJet engines
Jet engines
 

Similar to Turbojet Design Project

JRAME Vol 3 2015 No 2 Part 2 PP 2 (3)
JRAME Vol 3 2015 No 2 Part 2 PP 2 (3)JRAME Vol 3 2015 No 2 Part 2 PP 2 (3)
JRAME Vol 3 2015 No 2 Part 2 PP 2 (3)
Kittipass Wasinarom
 
Turbofan Engine Design Report
Turbofan Engine Design ReportTurbofan Engine Design Report
Turbofan Engine Design Report
Nicholas Cordero
 

Similar to Turbojet Design Project (20)

JRAME Vol 3 2015 No 2 Part 2 PP 2 (3)
JRAME Vol 3 2015 No 2 Part 2 PP 2 (3)JRAME Vol 3 2015 No 2 Part 2 PP 2 (3)
JRAME Vol 3 2015 No 2 Part 2 PP 2 (3)
 
Turbofan Engine Design Report
Turbofan Engine Design ReportTurbofan Engine Design Report
Turbofan Engine Design Report
 
Pr 1
Pr 1Pr 1
Pr 1
 
Process Design for Natural Gas Transmission
Process Design for Natural Gas TransmissionProcess Design for Natural Gas Transmission
Process Design for Natural Gas Transmission
 
Gas Compressor Calculations Tutorial
Gas Compressor Calculations TutorialGas Compressor Calculations Tutorial
Gas Compressor Calculations Tutorial
 
Numerical Study of Gas Effect at High Temperature on the Supersonic Plug and ...
Numerical Study of Gas Effect at High Temperature on the Supersonic Plug and ...Numerical Study of Gas Effect at High Temperature on the Supersonic Plug and ...
Numerical Study of Gas Effect at High Temperature on the Supersonic Plug and ...
 
Brayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-IntroductionBrayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-Introduction
 
4.8.compressors
4.8.compressors4.8.compressors
4.8.compressors
 
4.8.compressors
4.8.compressors4.8.compressors
4.8.compressors
 
project 2
project 2project 2
project 2
 
Aircraft propulsion non ideal turbofan cycle analysis
Aircraft propulsion   non ideal turbofan cycle analysisAircraft propulsion   non ideal turbofan cycle analysis
Aircraft propulsion non ideal turbofan cycle analysis
 
Aircraft Propulsion - Ideal Turbojet Performance
Aircraft Propulsion - Ideal Turbojet PerformanceAircraft Propulsion - Ideal Turbojet Performance
Aircraft Propulsion - Ideal Turbojet Performance
 
Aircraft propulsion non ideal cycle analysis
Aircraft propulsion   non ideal cycle analysisAircraft propulsion   non ideal cycle analysis
Aircraft propulsion non ideal cycle analysis
 
X10705 (me8595)
X10705 (me8595)X10705 (me8595)
X10705 (me8595)
 
Summer Internship at Cranfield University-Report
Summer Internship at Cranfield University-ReportSummer Internship at Cranfield University-Report
Summer Internship at Cranfield University-Report
 
Torque estimator using MPPT method for wind turbines
Torque estimator using MPPT method for wind turbines Torque estimator using MPPT method for wind turbines
Torque estimator using MPPT method for wind turbines
 
DJA3032 CHAPTER 2
DJA3032   CHAPTER 2DJA3032   CHAPTER 2
DJA3032 CHAPTER 2
 
HVAC CAPSULEEMERSON EDUARDO RODRIGUES
HVAC CAPSULEEMERSON EDUARDO RODRIGUESHVAC CAPSULEEMERSON EDUARDO RODRIGUES
HVAC CAPSULEEMERSON EDUARDO RODRIGUES
 
HVAC CAPSULE EMERSON EDUARDO RODRIGUES
HVAC CAPSULE EMERSON EDUARDO RODRIGUESHVAC CAPSULE EMERSON EDUARDO RODRIGUES
HVAC CAPSULE EMERSON EDUARDO RODRIGUES
 
NASA 2004 PP
NASA 2004 PPNASA 2004 PP
NASA 2004 PP
 

Recently uploaded

Escorts Service Nagavara ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Escorts Service Nagavara ☎ 7737669865☎ Book Your One night Stand (Bangalore)Escorts Service Nagavara ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Escorts Service Nagavara ☎ 7737669865☎ Book Your One night Stand (Bangalore)
amitlee9823
 
ab-initio-training basics and architecture
ab-initio-training basics and architectureab-initio-training basics and architecture
ab-initio-training basics and architecture
saipriyacoool
 
Editorial design Magazine design project.pdf
Editorial design Magazine design project.pdfEditorial design Magazine design project.pdf
Editorial design Magazine design project.pdf
tbatkhuu1
 
Anamika Escorts Service Darbhanga ❣️ 7014168258 ❣️ High Cost Unlimited Hard ...
Anamika Escorts Service Darbhanga ❣️ 7014168258 ❣️ High Cost Unlimited Hard  ...Anamika Escorts Service Darbhanga ❣️ 7014168258 ❣️ High Cost Unlimited Hard  ...
Anamika Escorts Service Darbhanga ❣️ 7014168258 ❣️ High Cost Unlimited Hard ...
nirzagarg
 
Abortion pill for sale in Muscat (+918761049707)) Get Cytotec Cash on deliver...
Abortion pill for sale in Muscat (+918761049707)) Get Cytotec Cash on deliver...Abortion pill for sale in Muscat (+918761049707)) Get Cytotec Cash on deliver...
Abortion pill for sale in Muscat (+918761049707)) Get Cytotec Cash on deliver...
instagramfab782445
 
call girls in Dakshinpuri (DELHI) 🔝 >༒9953056974 🔝 genuine Escort Service 🔝✔️✔️
call girls in Dakshinpuri  (DELHI) 🔝 >༒9953056974 🔝 genuine Escort Service 🔝✔️✔️call girls in Dakshinpuri  (DELHI) 🔝 >༒9953056974 🔝 genuine Escort Service 🔝✔️✔️
call girls in Dakshinpuri (DELHI) 🔝 >༒9953056974 🔝 genuine Escort Service 🔝✔️✔️
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Jigani Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Bangal...
Jigani Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Bangal...Jigani Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Bangal...
Jigani Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Bangal...
amitlee9823
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
 
Escorts Service Basapura ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Escorts Service Basapura ☎ 7737669865☎ Book Your One night Stand (Bangalore)Escorts Service Basapura ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Escorts Service Basapura ☎ 7737669865☎ Book Your One night Stand (Bangalore)
amitlee9823
 
Peaches App development presentation deck
Peaches App development presentation deckPeaches App development presentation deck
Peaches App development presentation deck
tbatkhuu1
 
怎样办理伯明翰大学学院毕业证(Birmingham毕业证书)成绩单留信认证
怎样办理伯明翰大学学院毕业证(Birmingham毕业证书)成绩单留信认证怎样办理伯明翰大学学院毕业证(Birmingham毕业证书)成绩单留信认证
怎样办理伯明翰大学学院毕业证(Birmingham毕业证书)成绩单留信认证
eeanqy
 
Just Call Vip call girls dharamshala Escorts ☎️9352988975 Two shot with one g...
Just Call Vip call girls dharamshala Escorts ☎️9352988975 Two shot with one g...Just Call Vip call girls dharamshala Escorts ☎️9352988975 Two shot with one g...
Just Call Vip call girls dharamshala Escorts ☎️9352988975 Two shot with one g...
gajnagarg
 

Recently uploaded (20)

Escorts Service Nagavara ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Escorts Service Nagavara ☎ 7737669865☎ Book Your One night Stand (Bangalore)Escorts Service Nagavara ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Escorts Service Nagavara ☎ 7737669865☎ Book Your One night Stand (Bangalore)
 
💫✅jodhpur 24×7 BEST GENUINE PERSON LOW PRICE CALL GIRL SERVICE FULL SATISFACT...
💫✅jodhpur 24×7 BEST GENUINE PERSON LOW PRICE CALL GIRL SERVICE FULL SATISFACT...💫✅jodhpur 24×7 BEST GENUINE PERSON LOW PRICE CALL GIRL SERVICE FULL SATISFACT...
💫✅jodhpur 24×7 BEST GENUINE PERSON LOW PRICE CALL GIRL SERVICE FULL SATISFACT...
 
ab-initio-training basics and architecture
ab-initio-training basics and architectureab-initio-training basics and architecture
ab-initio-training basics and architecture
 
Sector 104, Noida Call girls :8448380779 Model Escorts | 100% verified
Sector 104, Noida Call girls :8448380779 Model Escorts | 100% verifiedSector 104, Noida Call girls :8448380779 Model Escorts | 100% verified
Sector 104, Noida Call girls :8448380779 Model Escorts | 100% verified
 
Editorial design Magazine design project.pdf
Editorial design Magazine design project.pdfEditorial design Magazine design project.pdf
Editorial design Magazine design project.pdf
 
Anamika Escorts Service Darbhanga ❣️ 7014168258 ❣️ High Cost Unlimited Hard ...
Anamika Escorts Service Darbhanga ❣️ 7014168258 ❣️ High Cost Unlimited Hard  ...Anamika Escorts Service Darbhanga ❣️ 7014168258 ❣️ High Cost Unlimited Hard  ...
Anamika Escorts Service Darbhanga ❣️ 7014168258 ❣️ High Cost Unlimited Hard ...
 
Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Hy...
Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Hy...Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Hy...
Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Hy...
 
Abortion pill for sale in Muscat (+918761049707)) Get Cytotec Cash on deliver...
Abortion pill for sale in Muscat (+918761049707)) Get Cytotec Cash on deliver...Abortion pill for sale in Muscat (+918761049707)) Get Cytotec Cash on deliver...
Abortion pill for sale in Muscat (+918761049707)) Get Cytotec Cash on deliver...
 
call girls in Dakshinpuri (DELHI) 🔝 >༒9953056974 🔝 genuine Escort Service 🔝✔️✔️
call girls in Dakshinpuri  (DELHI) 🔝 >༒9953056974 🔝 genuine Escort Service 🔝✔️✔️call girls in Dakshinpuri  (DELHI) 🔝 >༒9953056974 🔝 genuine Escort Service 🔝✔️✔️
call girls in Dakshinpuri (DELHI) 🔝 >༒9953056974 🔝 genuine Escort Service 🔝✔️✔️
 
Call Girls Jalgaon Just Call 8617370543Top Class Call Girl Service Available
Call Girls Jalgaon Just Call 8617370543Top Class Call Girl Service AvailableCall Girls Jalgaon Just Call 8617370543Top Class Call Girl Service Available
Call Girls Jalgaon Just Call 8617370543Top Class Call Girl Service Available
 
Jigani Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Bangal...
Jigani Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Bangal...Jigani Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Bangal...
Jigani Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Bangal...
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
Escorts Service Basapura ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Escorts Service Basapura ☎ 7737669865☎ Book Your One night Stand (Bangalore)Escorts Service Basapura ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Escorts Service Basapura ☎ 7737669865☎ Book Your One night Stand (Bangalore)
 
Hingoli ❤CALL GIRL 8617370543 ❤CALL GIRLS IN Hingoli ESCORT SERVICE❤CALL GIRL
Hingoli ❤CALL GIRL 8617370543 ❤CALL GIRLS IN Hingoli ESCORT SERVICE❤CALL GIRLHingoli ❤CALL GIRL 8617370543 ❤CALL GIRLS IN Hingoli ESCORT SERVICE❤CALL GIRL
Hingoli ❤CALL GIRL 8617370543 ❤CALL GIRLS IN Hingoli ESCORT SERVICE❤CALL GIRL
 
Peaches App development presentation deck
Peaches App development presentation deckPeaches App development presentation deck
Peaches App development presentation deck
 
AMBER GRAIN EMBROIDERY | Growing folklore elements | Root-based materials, w...
AMBER GRAIN EMBROIDERY | Growing folklore elements |  Root-based materials, w...AMBER GRAIN EMBROIDERY | Growing folklore elements |  Root-based materials, w...
AMBER GRAIN EMBROIDERY | Growing folklore elements | Root-based materials, w...
 
怎样办理伯明翰大学学院毕业证(Birmingham毕业证书)成绩单留信认证
怎样办理伯明翰大学学院毕业证(Birmingham毕业证书)成绩单留信认证怎样办理伯明翰大学学院毕业证(Birmingham毕业证书)成绩单留信认证
怎样办理伯明翰大学学院毕业证(Birmingham毕业证书)成绩单留信认证
 
High Profile Escorts Nerul WhatsApp +91-9930687706, Best Service
High Profile Escorts Nerul WhatsApp +91-9930687706, Best ServiceHigh Profile Escorts Nerul WhatsApp +91-9930687706, Best Service
High Profile Escorts Nerul WhatsApp +91-9930687706, Best Service
 
Sector 105, Noida Call girls :8448380779 Model Escorts | 100% verified
Sector 105, Noida Call girls :8448380779 Model Escorts | 100% verifiedSector 105, Noida Call girls :8448380779 Model Escorts | 100% verified
Sector 105, Noida Call girls :8448380779 Model Escorts | 100% verified
 
Just Call Vip call girls dharamshala Escorts ☎️9352988975 Two shot with one g...
Just Call Vip call girls dharamshala Escorts ☎️9352988975 Two shot with one g...Just Call Vip call girls dharamshala Escorts ☎️9352988975 Two shot with one g...
Just Call Vip call girls dharamshala Escorts ☎️9352988975 Two shot with one g...
 

Turbojet Design Project

  • 1. Turbojet Design Carlos J Gutiérrez Román 54543 Ramón Natal Ramos 70286 ME4935 Aircraft Propulsion October 31, 2013
  • 2. Problem Definition Design a turbojet engine under the following conditions:  Altitude of 37000 ft.  The pressure ratio across the compressor πc.  The Mach number M0=2.0.  Maximum enthalpy ratio τλ=7.0  Fuel type is hydrocarbon with QR = 42800 kJ/kg For a range of compressor pressure ratios, namely 2<πc<40, calculate: a) The pressure and temperatures at each principal state in kPa and K. b) Air mass flow rate. c) The velocity at the nozzle exit. d) Power of the turbo-components. e) Fuel flow rate necessary to power the engine. f) Performance parameters (SFC, TSFC, thermal efficiency, propulsive efficiency). Defined problem gives us a start point for assumptions & correct analysis. ME4935 FA-13 ME 5930 – FA12 2
  • 3. Technology Assessment  http://en.wikipedia.org/wiki/Turbojet Simple explanations on how a turbojet works.  http://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node85.html Very specific explanations of the thermodynamic cycle of a turbojet.  http://www.stanford.edu/~cantwell/AA283_Course_Material/AA283_Course_Notes/Ch _04_Turbojet_Cycle.pdf Complete description and formulas for turbojet design, from thermodynamics to compressor geometry. It’s always a good idea to understand the current trends to better guide the design. ME4935 FA-13 ME 5930 – FA12 3
  • 4. Applicable Engineering Principles  Thermodynamics Analysis. The gas generator is composed of a compressor, a turbine, a pair of nozzles and a burner. All are analyzed thermodynamically to find the total pressures and temperatures. With these data pressure and temperatures ratios, air fuel ratio and power of the turbine and compressor are calculated.  Fluid dynamics The compressor geometry depends on the angles the fluid must take when approaching the blades. A fluid dynamics analysis was made to obtain the mean radius of the compressor blades. With this data nozzles areas and mass flow are calculated. Previously learned topics are the key elements to analyze the given problem. ME4935 FA-13 ME 5930 – FA12 4
  • 5. Engineering Requirements  The engine must be able to operate at an altitude of 37000 ft.  The pressure ratio across the compressor πc must produce the maximum thrust for each pound of fuel.  The engine must be able to operate at a Mach number of M0=2.0.  Maximum enthalpy ratio possible for this engine is τλ= 7.0  Fuel type it will use is hydrocarbon with QR = 42800 kJ/kg.  It can not violate any fluid mechanics or thermodynamics laws.  Turbine inlet temperature must not exceed 2000K. Constraints creates the boundaries for the design requirements. ME4935 FA-13 ME 5930 – FA12 5
  • 6. Analysis and Synthesis ME4935 FA-13 ME 5930 – FA12 6
  • 7. Proposed Concepts  For the given conditions we will design a turbojet engines that delivers the maximum thrust possible.  Instead of using three different compressor pressure ratios we write a Matlab script program that varies the compressor ratio for the following range of values: 2<πc<40  Our program utilizes the compressor temperature ratio to calculate the mean radius of the compressor and the corresponding inlet area.  Since the temperature ratio depends of the pressure ratio, the program returns the optimal mean radius for a given πc.  For all the different values of πc our program also optimizes the corresponding inlet and nozzle areas, inlet mass flow and fuel ratio.  Plotting the most relevant data, we can decide which compressor pressure ratio returns the best performance from the turbojet engine. Technology and logical assumptions ease the design process from the start ME4935 FA-13 ME 5930 – FA12 7
  • 8. Engineering Analysis • • • • • • • • • • • • • • • • • • • clear all clc %TurboJet Engine Analysis Pidmax = 1; T0 = 273.15-56.5; M0 = 2; R = 285; kc = 1.4; kh = 1.33; V0 = sqrt(kc*R*T0)*M0; TaoA = 7; QR = 42800000; Cpc = 1004; Cph = 1156; nm = 0.99; h = (37000*0.3048); P0 = 101325*(1-0.0000225577*(h))^5.25588; Pt0 = P0*(1+((kc-1)/2)*M0^2)^((kc/(kc-1))); Tt0 = T0*(1+((kc-1)/2)*M0^2); • • % Inlet Diffuser Pid = Pidmax*(1-0.075*(M0-1)^1.35); Specification 5008B Pt2 = Pt0*Pid; Tt2 = Tt0; • • ME4935 FA-13 ME 5930 – FA12 %Maximum Inlet Total Pressure Recovery (ideal) %Temperature at initial conditions %Mach number at initial conditions %Cold Section ONLY %Hot Section ONLY %Speed at initial conditions %Tao Lambda %Mechanical Efficiency %Altitude 37,000 ft. converted to meters %Air Pressure and Altitude above Sea Level formula %Total pressure at initial conditions %Total temperature at initial conditions % nr = (1-0.075*(M0-1)^1.35 ... Pid = Pidmax x nr ---> Military %Temperature doesnt change in ducts 8
  • 9. Engineering Analysis • • • • • • • • • • • • • • • • • • • • • • • • • • % Compressor Pic = 2:40; value ) ec = 0.9; Pt3 = Pt2.*Pic; Tt3 = Tt2.*(Pt3./Pt2).^((kc-1)/(kc.*ec)); TaoC = Tt3./Tt2; nc = (Pic.^((kc-1)./kc)-1)./(TaoC-1); %Compressor pressure ratio. Pic can vary from 2 to 40 ( 40 max %Compressor Polytropic efficiency %Pressure at compressor exit / combustor entrance %Temperature at compressor exit / combustor entrance %Compressor temperature ratio %Compressor efficiency % Burner (Combustors) Mb = 0.2; E = 1; nb = 0.98; Pib = 1-(E.*(0.5.*kc).*Mb.^2); Pt4 = Pt3.*Pib; Tt4 = (TaoA.*T0.*Cpc)./Cph; h0 = T0.*Cpc; TaoR = Tt2./T0; f = (TaoA-(TaoR.*TaoC))./(((QR.*nb)./h0)-TaoA); %Burner efficiency %Burner pressure ratio %Pressure at combustor exit / turbine entrance %Temperature at combustor exit / turbine entrance %Ambient enthalpy h0 = Cpc*T0 %Compressor temperature ratio %fuel-air ratio % Turbine et = 0.9; %Turbine polytropic efficiency TaoT = 1-((TaoR.*(TaoC-1))./((1+f).*TaoA)); %Turbine temperature ratio Tt5 = Tt4.*TaoT; %Temperature at tubine exit / nozzle entrance PiT = (TaoT).^((kh)./((kh-1).*et)); %Turbine Pressure ratio Pt5 = Pt4.*(Tt5./Tt4).^((kh)./((kh-1).*et));%Pt4*PiT; Pressure at turbine exit / nozzle entrance nt = (1-TaoT)./(1-TaoT.^(1./et)); %Turbine adiabatic efficiency ME4935 FA-13 ME 5930 – FA12 9
  • 10. Engineering Analysis • • • • • • • • • • • • % Outlet Nozzle P9 = P0; NPR = Pt5./P9; • • • • • • • • • • %Inlet Design & Dimensions D2 = rm*4; %Diameter at end of nozzle section = 4 times Compressor mean radius A2 = (pi./4).*D2.^2; %Area at End of inlet (2) M1 = M0; %For Supersonic flight Ati = A2./((1./M2).*((1+((kc-1)./2).*M2.^2)./((kc+1)./2)).^((kc+1)./(2.*(kc-1)))); %Inlet throat area A1 = Ati.*((1./M0).*((1+((kc-1)./2).*M0.^2)./((kc+1)./2)).^((kc+1)./(2.*(kc-1)))); %Inlet area (1) A0 = A1; %For supersonic flight intet area = A0 m0 = A0.*((P0./(R.*T0)).*V0); %Mass flow D1 = ((4./pi).*A1).^(1/2); %Inlet Diameter Dti = ((4./pi).*Ati).^(1/2); %Inlet throat diameter %Perfectly Expanded %Nozzle Pressure Ratio %Compressor Design & Dimensions M2 = 0.4; %Assuming subsonic speed before compressor w = 30000; %Angular Velocity Beta = -25; %Beta angle Alfa = 12; %Alfa angle T2 = Tt2./(1+((kh-1)./2).*M2.^2); %Temperature at inlet exit U = ((TaoC-1)./(1+.6.*(tan(Beta)-tan(Alfa))).*Cpc.*Tt2).^(1/2); rm = U./(w.*(2.*pi./60)); %Mean Radius ME4935 FA-13 ME 5930 – FA12 10
  • 11. Engineering Analysis • • • • • • • • %Nozzle Design & Dimensions mg = m0.*(1+f); M9 = (((NPR).^((kh-1)./kh)-1)./((kh-1)./2)).^(1/2); %Mach number at nozzle outlet T9 = Tt5./(1+((kh-1)./2).*M9.^2); %Temperature at nozzle outlet V9 = M9.*(kh.*R.*T9).^(1/2); %Speed at nozzle outlet A9 = mg./((P9./(R.*T9)).*V9); %Exhaust mass flow Atn = A9./((1./M9).*((1+((kh-1)./2).*M9.^2)/((kh+1)/2)).^((kh+1)/(2.*(kh-1)))); %Nozzle throat area Dtn = ((4./pi).*Atn).^(1/2); %Nozzle throat Diameter • • • • • • • • • • • • • %Other Parameters mf = mg-m0; Pt = m0.*(1+f).*Cph.*(Tt4-Tt5); Pc = Pt.*nm; %Fuel Flow Rate %Turbine Power %Compressor Power %Performance Parameters RD = m0.*V0; GT = (m0+mf).*V9; F = GT-RD; TSFC = mf./F; nT = ((m0+mf).*V9.^2-m0.*V0.^2)./(2.*mf.*QR); nP = 2./(1+(V9./V0)); nO = (F.*V0)./(mf.*QR); %Ram Drag %Gross Thrust %Uninstalled Trust %Thrust Specific Fuel Consumption %Thermal Efficiency %Propulsive Efficiency %Overall Efficiency ME4935 FA-13 ME 5930 – FA12 11
  • 12. Engineering Analysis • • • • • • • • • • • • • • • • • • • • • • • • %Plots Thrust vs Compressor Pressure Ratio subplot(2,4,1) plot(Pic,F); title('Thrust vs Compressor Pressure Ratio') xlabel('Compressor Pressure Ratio'); ylabel('Thrust (lb)'); axis([2 40 0 45000]) grid on %Plots Tt3 and Tt5 vs Compressor Pressure Ratio subplot(2,4,2) plot(Pic,Tt3,Pic,Tt5); title('Tt3 and Tt5 vs Compressor Pressure Ratio') xlabel('Compressor Pressure Ratio'); ylabel('Tt3 and Tt5'); grid on %Plots Mass flow vs Compressor Pressure Ratio subplot(2,4,3) plot(Pic,m0); title('Mass flow vs Compressor Pressure Ratio') xlabel('Compressor Pressure Ratio'); ylabel('Mass flow'); grid on ME4935 FA-13 ME 5930 – FA12 12
  • 13. Engineering Analysis • • • • • • • • • • • • • • • • • • • • • • • %Plots Fuel to Air ratio vs Compressor Pressure Ratio subplot(2,4,4) plot(Pic,f); title('Fuel to Air ratio vs Compressor Pressure Ratio') xlabel('Compressor Pressure Ratio'); ylabel('Fuel to Air ratio'); grid on %Plots TSFC vs Compressor Pressure Ratio subplot(2,4,5) plot(Pic,TSFC); title('TSFC vs Compressor Pressure Ratio') xlabel('Compressor Pressure Ratio'); ylabel('TSFC'); grid on %Plots Thermal Efficiency vs Compressor Pressure Ratio subplot(2,4,6) plot(Pic,nT); title('Thermal Efficiency vs Compressor Pressure Ratio') xlabel('Compressor Pressure Ratio'); ylabel('Thermal Efficiency'); grid on ME4935 FA-13 ME 5930 – FA12 13
  • 14. Engineering Analysis • • • • • • • • • • • • • • • %Plots Propulsive Efficiency vs Compressor Pressure Ratio subplot(2,4,7) plot(Pic,nP); title('Propulsive Efficiency vs Compressor Pressure Ratio') xlabel('Compressor Pressure Ratio'); ylabel('Propulsive Efficiency'); grid on %Plots Fuel Mass Flow vs Compressor Pressure Ratio subplot(2,4,8) plot(Pic,mf); title('Fuel Mass Flow vs Compressor Pressure Ratio') xlabel('Compressor Pressure Ratio'); ylabel('Fuel mass flow'); grid on ME4935 FA-13 ME 5930 – FA12 14
  • 15. Engineering Analysis 4 Thrust vs Compressor Pressure Ratio x 10 Compressor Di 1 4 Compressor Diameter 0.9 Thrust (N) 3 2 1 0.8 0.7 0.6 0.5 0.4 0 5 10 15 20 25 Compressor Pressure Ratio 30 35 40 1 1.5 Co Compressor Pressure Ratio vs Mass flow Compress 40 Compressor Pressure Ratio Compressor Pressure Ratio 40 30 20 10 0 0 20 40 60 80 100 Mass flow 120 140 160 180 30 20 10 0 0.005 0.01 Graphical Analysis helps to identify the highest performing values in our design. ME4935 FA-13 ME 5930 – FA12 15
  • 16. Engineering Analysis essure Ratio Tt3 and Tt5 vs Compressor Pressure Ratio 1400 Tt3 and Tt5 1200 1000 800 600 25 re Ratio 30 35 400 40 0 5 Pressure Ratio 10 15 20 25 Compressor Pressure Ratio 30 35 40 35 40 Fuel to Air ratio vs Compressor Pressure Ratio 0.03 Fuel to Air ratio 0.025 0.02 0.015 0.01 25 re Ratio 30 35 40 0.005 0 5 10 15 20 25 Compressor Pressure Ratio 30 Optimum values for pressure ratio ME4935 FA-13 ME 5930 – FA12 16
  • 17. Engineering Analysis -5 6 TSFC vs Compressor Pressure Ratio x 10 Thermal Efficiency 0.6 0.55 Thermal Efficiency TSFC 5.5 5 4.5 0.5 0.45 0.4 0.35 4 0.3 3.5 0 5 10 15 20 25 Compressor Pressure Ratio 30 35 0.25 40 0 5 Propulsive Efficiency vs Compressor Pressure Ratio 1.6 0.9 1.4 Fuel mass flow 1.8 0.95 Propulsive Efficiency 15 Compre Fuel Mass Flow v 1 0.85 0.8 0.75 0.7 0.65 ME4935 FA-13 ME 5930 – FA12 10 1.2 1 0.8 0.6 0 5 10 15 20 25 Compressor Pressure Ratio 30 35 40 0.4 0 5 10 15 Compre 17
  • 18. Engineering Analysis essure Ratio Thermal Efficiency vs Compressor Pressure Ratio 0.6 Thermal Efficiency 0.55 0.5 0.45 0.4 0.35 0.3 25 re Ratio 30 35 0.25 40 0 5 ssor Pressure Ratio 10 15 20 25 Compressor Pressure Ratio 30 35 40 35 40 Fuel Mass Flow vs Compressor Pressure Ratio 1.8 Fuel mass flow 1.6 1.4 1.2 1 0.8 0.6 25 re Ratio 30 ME4935 FA-13 ME 5930 – FA12 35 40 0.4 0 5 10 15 20 25 Compressor Pressure Ratio 30 18
  • 19. πc = 40 Total πc = 17 10 10 40 20 10 10 100 πc = 2 Weighting Air mass flow rate Fuel flow rate Thrust TSFC Thermal efficiency Propulsive efficiency Baseline Criteria Problem Statement Concept Selection 1 -1 1 1 0 0 60 1 0 0 0 0 1 20 Analyzing 3 different cases of compressor pressure ratio makes us take a better judgment of which is the best for the steps to come and final design. ME4935 FA-13 ME 5930 – FA12 19
  • 20. Engineering Analysis  The compressor pressure ratio that develops the most thrust is πc = 17.  It’s also the best compressor pressure ratio to obtain the best TSFC.  The temperatures Tt5 and Tt3 are the same at πc = 14 which means that our method to approximate the mean radius is very good.  For our design we chose a πc = 17 and obtained the following results:            Funin = 42,705 N TSFC = 3.53 x10-5 ηT = 51% ηP = 75% ṁ0 = 108.87 kg/s ṁf = 1.51 kg/s ϝ = 0.0139 Pc = 6.15 x107 W Pt = 6.21 x107 W V9 = 966.89 m/s NPR = 15.12 Using the best compressor pressure ratio yields optimum results. ME4935 FA-13 ME 5930 – FA12 20
  • 21. Engineering Analysis  Temperature and pressures per stage: Stage Tt (K) Pt (KPa) Total Temperatures and Pressures per stage 0 2 3 4 387.97 387.97 958.73 1371 169.47 156.76 2664.9 2590.3 5 830 327.53 With all needed parameters, parts and/or components of the turbine can be designed. ME4935 FA-13 ME 5930 – FA12 21
  • 22. Final Design  INLET ME4935 FA-13 ME 5930 – FA12 22
  • 23. Final Design  NOZZLE ME4935 FA-13 ME 5930 – FA12 23
  • 24. Conclusions  Increasing the compressor pressure ratio not necessary increase the thrust output. Air fuel ratio started deceasing after the optimum πc.  When the output temperatures of the compressor and turbine are similar the engines returns more thrust per pound of fuel.  Increasing the air mass flow and fuel mass flow not necessary increase the thrust output (it also depends in other factors like pressure ratio).  We have to convert all the pressure that its not consumed by the turbine into speed to get the most thrust (perfectly expanded).  The diameter of the compressor wheel and blades depends on the thermodynamic calculations. ME4935 FA-13 ME 5930 – FA12 24
  • 25. Recommendations  Being able to acquire the knowledge in class to implement to our project the following:  Cooling of the turbine section.  Detailed design of the compressor and turbine blades.  Compare more than one type of propulsion (turbojet vs turbofan vs turboprop). ME4935 FA-13 ME 5930 – FA12 25
  • 26. Back Up Slides ME4935 FA-13 ME 5930 – FA12 26
  • 27. Backup INLET ME4935 FA-13 ME 5930 – FA12 NOZZLE 27