Se dan clases online de Estadística, Tecnicas Cuantitativas, Bioestadistica y Análisis de Datos. Se hacen trabajos por encargo con SPSS, Statgraphics y Minitab. También resolvemos exámenes o relaciones de ejercicios por encargo.
Se dan clases online de Estadística, Tecnicas Cuantitativas, Bioestadistica y Análisis de Datos. Se hacen trabajos por encargo con SPSS, Statgraphics y Minitab. También resolvemos exámenes o relaciones de ejercicios por encargo.
Enunciados de Examenes Introduccion al Analisis de Datos - Grado en Psicologia - UNED
1.
ENUNCIADOS
EXAMENES
INTRODUCCION AL
ANALISIS DE DATOS
UNED
GRADO EN PSICOLOGIA
2002-2003/2010-2013
2.
EXAMEN MODELO A Pág. 1
MODELO DE EXAMEN
INTRODUCCIÓN AL ANÁLISIS DE DATOS
EXAMEN MODELO A
DURACION: 2 HORAS
APELLIDOS
D.N.I.
NOMBRE
CENTRO DONDE ESTÁ MATRICULADO
CENTRO DONDE REALIZA EL EXAMEN
TFNO:
e-mail:
MATERIAL: Addenda (Formulario y Tablas), Calculadora no programable
CALIFICACIÓN= (Aciertos x 0,4) – (Errores x 0,2)
Las preguntas “en blanco” (sin contestar) No puntúan.
Rellene sus datos con letras MAYÚSCULAS
¡¡¡ PARA LA CORRECCIÓN DEL EXAMEN ES IMPRESCINDIBLE ENTREGAR ESTA HOJA JUNTO CON LA
DE LECTURA ÓPTICA!!!
3.
EXAMEN MODELO A Pág. 2
X
9-10
7-8
5-6
3-4
1-2
Tabla 1: Puntuaciones de un grupo
de 150 personas en una prueba X.
Gráfica 1: Representación gráfica de los datos de
200 alumnos de un Colegio donde se recogen los
límites exactos de los intervalos de la variable Edad
(X), en el eje de abscisas, y las frecuencias
acumuladas (na) en el eje de ordenadas
Niño
A
B
C
D
E
X
92,50
77,50
100,00
107,50
122,50
Y
Y
0,50
3,50
5,00
6,50
9,50
Tabla 2: Puntuaciones de 5 niños en las variables
X (Inteligencia verbal) e Y ( calificaciones en la
asignatura de lengua española).
n
20
40
50
30
10
150
X
1ª Semana
2ª Semana
No Apto
100
400
500
Apto
200
300
500
300
700
1000
Tabla 3. Resultados en el examen de una asignatura
según la semana en que se presentaron los
estudiantes.
1. ¿Qué tipo de variable es la Edad, representada en la Gráfica 1?: A) cualitativa : B) dicotómica ; C) cuantitativa
2. Para los datos de la Gráfica 1, la Moda es: A) 12 ; B) 75 ; C) 25
3. La mediana de la variable Edad para los datos de la Gráfica 1 vale: A) 9 ; B) 10,5 ; C) 12,5
4. La puntuación 7,25 , en la Tabla 1, representa el Percentil: A) 80 ; B) 70 ; C) 60
5. El índice de Asimetría de Pearson, para los datos de la Tabla 1, está comprendido entre: A) –4 y 0 ; B) 0 y 2 ;
C) 2 y 4
6. Para representar gráficamente los datos de la Tabla 2, utilizaremos: A) el diagrama de sectores; B) el diagrama
de dispersión ; C) el diagrama de barras acumuladas
7. Con relación a la Tabla 2, ¿cuál de las dos variables, X e Y, presenta mayor variabilidad: A) Y, porque su
coeficiente de variación es mayor que el de X; B) X, porque su coeficiente de variación es mayor que el de Y; C)
No se puede determinar porque sus medias son distintas
8. A partir de los datos de la Tabla 3, el Coeficiente X 2 entre X e Y está comprendido entre: A) 25 y 100 ; B) 100
y 175 ; C) 175 y 250
9. Con los datos de la Tabla 2, la covarianza entre X e Y vale: A) 36 ; B) 3,6 ; C) 46
10. El coeficiente de correlación de Pearson entre X e Y, a partir de la Tabla 2, vale: A) 0,8 ; B) –0,8 ; C) 0,5
4.
EXAMEN MODELO A Pág. 3
11. A partir de los datos de la Tabla 2, la ecuación de la recta de regresión que permite pronosticar las puntuaciones
en lengua española a partir de la inteligencia verbal es: A) Y 1,6X 11 ; B) Y 0,16X 11 ; C)
Y 0,16X 11 .
12. A partir de la recta de regresión obtenida en el ejercicio anterior ¿qué puntuación directa pronosticaremos en Y a
un niño con una puntuación de X=102?: A) 6,5 ; B) 5,32 ; C) 5,8
13. Con los datos de la Tabla 3, elegimos un alumno al azar ¿cuál es la probabilidad de que haya aprobado?: A) 0,2 ;
B) 0,5 ; C) 0,7
14. Con los datos de la Tabla 3, elegimos un alumno al azar ¿cuál es la probabilidad de que se haya presentado la
primera semana y haya aprobado?: A) 0,2 ; B) 0,1 ; C) 0,3
15. Con los datos de la Tabla 3, elegido un alumno al azar resulta que se ha presentado la primera semana ¿Cuál es
la probabilidad de que haya aprobado?: A) 0,246 ; B) 0,667 ; C) 0,476
16. Una variable aleatoria discreta X toma los valores 0 y 1 con probabilidades 0,7 y 0,3 respectivamente. La media
de X vale: A) 0,5 ; B) 0,7 ; C) 0,3
17. En un Centro de la UNED el 60% de los alumnos son mujeres. Si elegimos, al azar, una muestra de 5 alumnos
¿cuál es la probabilidad de que 2 sean varones?: A) 0,125 ; B) 0,230 ; C) 0,3456
18. En una distribución normal ¿qué puntuación típica nos deja por debajo de sí el 67% de los casos?: A) 0,67 ; B)
0,44 ; C) –0,44
19. En una distribución normal, con media 10 y varianza 4 ¿cuánto vale el percentil 25?: A) 7,50 ; B) 11,34 ; C) 8,66
20. ¿Cuál de las siguientes distribuciones NO es simétrica?: A) normal con media 5 y desviación típica 2 ; B) t de
Student con 10 grados de libertad ; C) chi-cuadrado con 10 grados de libertad
21. En una distribución F con 20 grados de libertad en el numerador y 10 grados de libertad en el denominador,
¿cuál es el valor del percentil 95?: A) 2,774; B) 2,348 ; C) 2,978
22. Para la media de la distribución muestral de la media ¿cuál de las siguientes afirmaciones es cierta?: A) es igual
a la desviación típica poblacional ; B) es igual a la media poblacional ; C) es igual a la desviación típica
poblacional partido por la raíz cuadrada de n (siendo n el número de sujetos de la muestra) .
23. Disponemos de una muestra de 100 sujetos en los que la media de una variable X toma el valor 10. Sabiendo que
la desviación típica de esa variable X en la población, de la que ha sido extraída esa muestra, vale 4 y que
trabajamos al nivel de confianza del 95% ( es decir 1-=0,95) ¿qué valores definen el intervalo confidencial de
la media poblacional?: A) 9,216 y 10,784 ; B) 8,968 y 11,032 ; C) 9,216 y 11,032
24. El CI (Cociente Intelectual) medido por el WAIS, uno de los tests más ampliamente utilizados, presenta una
media de 100 y una desviación típica de 15 para toda la población española. Un psicólogo elabora un test propio
basado en el WAIS y considerará que está bien elaborado si aplicándolo a 1225 personas elegidas al azar, y
estableciendo un nivel de confianza de 0,95, el valor 100 se encuentra en el intervalo de confianza por él
calculado. Para las 1225 personas obtiene una media de 112,5 ¿puede considerar que su test es adecuado para
medir el CI?: A) sí ; B) no ; C) con los datos obtenidos no puede responder a su pregunta
25. La desviación típica de la distribución muestral de la proporción se denomina: A) proporción muestral ; B) error
típico de la proporción ; C) desviación típica proporcional
5.
EXAMEN MODELO A Pág. 4
SOLUCIONES:
1. C
2. A
Mo: Punto medio del intervalo con mayor frecuencia
X
2-4
5-7
8-10
11-13
14-16
na
25
50
100
175
200
ni
25
25
50
75
25
200
3. B
X
14-16
11-13
8-10
5-7
2-4
ni
25
75
50
25
25
200
na
200
175
100
50
25
n
nd
Md L i 2
nc
200
50
·3 7,5 3 10,5
·I 7,5 2
50
4. B
X
9-10
7-8
5-6
3-4
1-2
ni
20
40
50
30
10
150
Pk L i ·n c
7,25 6,5·40
30
nd
90
2 90
I
2
k
·100
·100
·100
n
150
150
na
150
130
90
40
10
105
·100 0,7·100 70
150
5. B
X
9-10
7-8
5-6
3-4
1-2
6. B
7. A
n
20
40
50
30
10
150
Xi Xin
9,5
7,5
5,5
3,5
1,5
190
300
275
105
15
885
X
X nX i X 2
3,6
259,2
1,6
102,4
-0,4
8,0
-2,4
172,8
-4,4
193,6
736
i
2
SX
736
4 ,91
150
As
X M O 5 ,9 5 ,5
0 ,18
Sx
2 ,22
S x 4 ,91 2 ,22
6.
EXAMEN MODELO A Pág. 5
500
100
5
X
Niño
X
Y
XY
X2
Y2
A
92,50 0,50 46,25
8556,25 0,25
B
77,50 3,50 271,25 6006,25 12,25
C
100,00 5,00
500
10000
25
D
107,50 6,50 698,75 11556,25 42,25
E
122,50 9,50 1163,75 15006,25 90,25
500
25
2680
51125
170
S2
x
Y
S
CVX
2
Y
X
2
X2
n
51125
100 2 225
5
25
5
5
Y
SX
15
·100
·100 15
X
100
n
2
Y2
170
25 2 9
5
CVY CVX
S
3
CVY Y ·100 ·100 60
Y
5
8. A
Y
No Apto
100 (150)
200 (150)
300
400 (350)
300 (350)
700
500
1ª
Semana
X
2ª
Semana
Apto
500
1000
(100 150) 2 200 150
X
150
150
400 3502 300 3502
350
350
16,67 16,67 7,14 7,14 47,62
2
2
9. A
Niño
X
Y
XY
A
92,50 0,50 46,25
B
77,50 3,50 271,25
C
100,00 5,00
500
D
107,50 6,50 698,75
E
122,50 9,50 1163,75
500
25
2680
S XY
500
100
5
25
Y
5
5
X
XY XY 2680 100·5 536 500 36
n
5
10. A
Niño
A
B
X
92,50
77,50
Y
0,50
3,50
XY
46,25
271,25
X2
8556,25
6006,25
Y2
0,25
12,25
7.
EXAMEN MODELO A Pág. 6
C
D
E
100,00 5,00
500
10000
25
107,50 6,50 698,75 11556,25 42,25
122,50 9,50 1163,75 15006,25 90,25
500
25
2680
51125
170
rxy
n XY X Y
n X 2 X
2
n Y 2 Y
2
5·2680 500·25
5·51125 500
13400 12500
5625 225
2
5·170 25
2
900
0,8
1125
11. C
S
S
3
3
Y rXY Y ·X Y rXY Y X 0,8 X 5 0,8 100 0,16X 11
15
SX
S X 15
12. B
Y 0,16X 11 0,16·102 11 5,32
13. B
500
0,5
1000
14. A
200
0,2
1000
15. B
200
ˆ
0,6666 0,667
300
16. C
x
0
1
f(x)
0,7
0,3
1
Xf(x)
0
0,3
0,3
x·f ( x ) 0·0,7 1·0,3 0 0,3 0,3
17. C
Utilizando las tablas de la binomial (Tabla I) con n=5, p=0,4 y x=2, obtenemos 0,3456
18. B
Mirando directamente en la Tabla de la curva normal
19. C
8.
EXAMEN MODELO A Pág. 7
P25
z 0,67
0,67
P25 10
1,34 P25 10 P25 8,66
2
20. C
Las distribuciones Normal y t de Student son simétricas.
21. A
Mirando directamente en la Tabla F con 0,95
22. B
23. A
X 1,96
10 1,96
n
X 1,96
4
100
n
10 1,96
4
100
9,216 10,784
24. B
nc 0,95 z 1 / 2 1,96
L i 112,5 z1 / 2 ·
L S X z 1 / 2
n
n
112,5 1,96·
112,5 1,96
15
1225
15
1225
112,5 0,84 111,66
112,5 0,84 113,34
Como el valor 100 cae fuera del intervalo confidencial calculado no se puede considerar adecuado.
25. B.
9.
Clases Online de Estadistica, Analisis de Datos y SPSS
granada.clases.particulares@gmail.com
http://estadistica-spss.blogspot.com/
10.
Clases Online de Estadistica, Analisis de Datos y SPSS
granada.clases.particulares@gmail.com
http://estadistica-spss.blogspot.com/
11.
Clases Online de Estadistica, Analisis de Datos y SPSS
granada.clases.particulares@gmail.com
http://estadistica-spss.blogspot.com/
12.
Clases Online de Estadistica, Analisis de Datos y SPSS
granada.clases.particulares@gmail.com
http://estadistica-spss.blogspot.com/
13.
Clases Online de Estadistica, Analisis de Datos y SPSS
granada.clases.particulares@gmail.com
http://estadistica-spss.blogspot.com/
14.
Clases Online de Estadistica, Analisis de Datos y SPSS
granada.clases.particulares@gmail.com
http://estadistica-spss.blogspot.com/
15.
Clases Online de Estadistica, Analisis de Datos y SPSS
granada.clases.particulares@gmail.com
http://estadistica-spss.blogspot.com/
16.
Clases Online de Estadistica, Analisis de Datos y SPSS
granada.clases.particulares@gmail.com
http://estadistica-spss.blogspot.com/
17.
Clases Online de Estadistica, Analisis de Datos y SPSS
granada.clases.particulares@gmail.com
http://estadistica-spss.blogspot.com/
18.
Clases Online de Estadistica, Analisis de Datos y SPSS
granada.clases.particulares@gmail.com
http://estadistica-spss.blogspot.com/
19.
Clases Online de Estadistica, Analisis de Datos y SPSS
granada.clases.particulares@gmail.com
http://estadistica-spss.blogspot.com/
20.
Clases Online de Estadistica, Analisis de Datos y SPSS
granada.clases.particulares@gmail.com
http://estadistica-spss.blogspot.com/
21.
Clases Online de Estadistica, Analisis de Datos y SPSS
granada.clases.particulares@gmail.com
http://estadistica-spss.blogspot.com/
22.
Clases Online de Estadistica, Analisis de Datos y SPSS
granada.clases.particulares@gmail.com
http://estadistica-spss.blogspot.com/
23.
Clases Online de Estadistica, Analisis de Datos y SPSS
granada.clases.particulares@gmail.com
http://estadistica-spss.blogspot.com/
24.
Clases Online de Estadistica, Analisis de Datos y SPSS
granada.clases.particulares@gmail.com
http://estadistica-spss.blogspot.com/
25.
Clases Online de Estadistica, Analisis de Datos y SPSS
granada.clases.particulares@gmail.com
http://estadistica-spss.blogspot.com/
26.
Clases Online de Estadistica, Analisis de Datos y SPSS
granada.clases.particulares@gmail.com
http://estadistica-spss.blogspot.com/
27.
Febrero 2010 EXAMEN MODELO A Pág. 1
GRADO EN PSICOLOGIA
INTRODUCCIÓN AL ANÁLISIS DE DATOS
Código Asignatura: 62011037
FEBRERO 2010
EXAMEN MODELO A
Tabla 1: Para estudiar la relación entre las
puntuaciones en un test (X) y el rendimiento
obtenido en una asignatura (Y) se utiliza una
muestra de 500 niños (n=500), obteniéndose los
siguientes resultados:
Media
Figura 1: Representación
gráfica de las calificaciones
de 150 alumnos en una
asignatura (X)
X
Y
100
7
Desviación
Covarianza
típica
10
24
3
Situación 1:
El 30 % de los niños padece
algún problema de aprendizaje y
de ellos el 80% acude al
psicólogo. De los que no
padecen
problemas
de
aprendizaje sólo el 10% acude
al psicólogo.
Figura 2: Distribución normal de las puntuaciones
en la prueba de selectividad (X) de un grupo de
10000 alumnos con X 7
1. La variable X, representada en la Figura 1, es: A) politómica; B) cualitativa; C) cuantitativa
2. La representación gráfica de la Figura 1 se denomina: A) diagrama de dispersión;
histograma; C) polígono de frecuencias
B)
3. En el eje de ordenadas de la Figura 1 se ha representado: A) la frecuencia absoluta; B) la
frecuencia relativa; C) el porcentaje
4. Considerando la Figura 1, la Moda de la variable X es: A) 5,5; B) 6,5; C) 50
5. En la Figura 1, la calificación 6,5 corresponde al percentil: A) 50; B) 60; C) 65
6. El Percentil 30, para los datos de la Figura 1, es: A) 3; B) 4,7; C) 7,5
7. La varianza de las puntuaciones en X, de la Figura 1, es: A) 3,52 ; B) 4,91; C) 6,28
28.
Febrero 2010 EXAMEN MODELO A Pág. 2
8. En la Tabla 1, ¿cuál de variables X e Y presenta mayor variabilidad?: A) X, porque su
coeficiente de variación es mayor que el de Y ; B) Y, porque su coeficiente de variación es
mayor que el de X ; C) No se puede determinar porque son variables distintas.
9. El coeficiente X2 toma valores: A) iguales o superiores a cero; B) negativos ; C)
comprendidos entre -1 y 1.
10. El coeficiente de correlación de Pearson entre X e Y, a partir de los datos de la Tabla 1, vale:
A) 0,1; B) 0,8; C) 0,9
11. El signo de la pendiente de la recta de regresión de Y sobre X, en puntuaciones directas,
depende de: A) las medias de X e Y; B) el cociente entre las desviaciones típicas de Y y X;
C) el coeficiente de correlación de Pearson entre X e Y.
12. La recta de regresión para pronosticar las puntuaciones en la asignatura a partir de las
puntuaciones en el test, teniendo en cuenta los datos de la Tabla 1 es: A) Y’ = -3+0,8X; B)
Y´=-17+0,24X; C) Y´=0,24X-10
13. En la definición clásica, la probabilidad es: A) el número de veces que se repite un suceso;
B) el cociente entre el número de casos favorables y posibles de aparición de un suceso; C)
la suma de las probabilidades de sucesos mutuamente excluyentes.
14. Si tenemos en cuenta los datos de la Situación 1, elegido un niño al azar ¿cuál es la
probabilidad de que acuda al psicólogo?: A) 0,10; B) 0,24; C) 0,31
15. Continuando con la situación 1, elegido un niño al azar ha resultado que acude al psicólogo
¿cuál es la probabilidad de que padezca algún problema de aprendizaje?: A) 0,77; B) 0,66;
C) 0,88
16. La función de probabilidad de una variable X es: f(0)=0,2, f(1)=0,3 y f(2)=0,5. La media de X
es: A) 0,3; B) 1,3; C) 2,5
17. Se lanza una moneda al aire en 20 ocasiones. Sabiendo que P(Cara)=P(Cruz)=0,5 en cada
ensayo, ¿Cuál es la probabilidad de obtener 10 Caras?: A) 0,0500; B) 0,1762 ; C) 0,2550 .
18. En un Centro de la UNED el 60% de los alumnos son mujeres. Si elegimos, al azar, una
muestra de 5 alumnos ¿cuál es la probabilidad de que 2 sean varones?: A) 0,2350 ; B)
0,3456; C) 0,6544
19. En la Figura 2, ¿cuánto vale la desviación típica de X?: A) 3; B) 2; C) 4
20. Teniendo en cuenta los datos representados en la Figura 2, ¿cuántos alumnos han obtenido,
en selectividad, una puntuación superior a 8?: A) 3085; B) 3830; C) 6915
21. En una distribución Chi-cuadrado con 60 grados de libertad, el valor 79,0819 es: A) el
percentil 5 ; B) el percentil 90; C) el percentil 95.
22. En una distribución F con 40 y 20 grados de libertad en el numerador y en el denominador,
respectivamente ¿cuál es el percentil 95?: A) 1,708 ; B) 1,994 ; C) 2,287
23. ¿Cuál de los siguientes tipos de muestreo es probabilístico?: A) por cuotas; B) opinático; C)
por conglomerados
24. La media de la distribución muestral de la media es igual a: A) la desviación típica
poblacional; B) la media poblacional; C) la desviación típica poblacional partido por la raíz
cuadrada de n (siendo n el número de sujetos de la muestra) .
25. Para estimar el intervalo confidencial de la media poblacional de una variable X, hemos
seleccionado una muestra de 100 personas y en ella hemos obtenido una media de 10.
Trabajando con un nivel de confianza del 95% se han obtenido para ese intervalo unos
límites de 9,216 y 10,784 ¿cuál es el valor de la desviación típica de esa variable X en la
población?: A) 16; B) 4; C) 2
Clases Online de Estadistica, Analisis de Datos y SPSS
granada.clases.particulares@gmail.com
http://estadistica-spss.blogspot.com/
29.
Febrero 2010 EXAMEN MODELO A Pág. 3
SOLUCIONES:
1. C
2. B
3. A
4. A
Mo: Punto medio del intervalo con mayor frecuencia:
4,5 6,5 11
5,5
2
2
5. B
Si observamos la Figura 1, podemos comprobar que la puntuación 6,5 deja por debajo de sí:
10+30+50=90 observaciones
150 100%
90·
100
60 %
X
90 X
150
Por tanto, 6,5 corresponde al P60.
También puede calcularse a partir de la distribución de frecuencias obtenida a partir de la Figura 1.
X
9 -10
7-8
5-6
3-4
1-2
ni
20
40
50
30
10
150
na
150
130
90
40
10
Pk L i ·n c
6,5 4,5·50
nd
40
90
I
2
k
100
100
·
100 60
·
·
n
150
150
6. B
Si tenemos 150 alumnos, el 30% son 45 alumnos. Es decir el P30 nos dejará por debajo de sí 45
alumnos.
La puntuación 4,5 nos deja por debajo de sí 40 alumnos. La puntuación 6,5 nos deja por debajo de
sí 90 alumnos. Por tanto:
2 50
2·5
0,2
X
X 5
50
Por tanto:
P30 4,5 0,2 4,7
También puede calcularse a partir de la distribución de frecuencias obtenida para la Figura 1.
X
9 -10
7-8
5-6
3-4
1-2
ni
20
40
50
30
10
150
na
150
130
90
40
10
150·30
40
·2 4,5 5 ·2 4,5 0,2 4,7
P30 4,5 100
50
50
30.
Febrero 2010 EXAMEN MODELO A Pág. 4
7. B
X
Xi
ni
9 -10
7–8
5–6
3–4
1-2
9,5
7,5
5,5
3,5
1,5
20
40
50
30
10
150
X
n i Xi
190
300
275
105
15
885
i
X
n i X i X
3,6
1,6
-0,4
-2,4
-4,4
2
X
259,2
102,4
8,0
172,8
193,6
736
885
5,9
150
S2
X
736
4,91
150
8. B
CVX
SX
10
·
100
·
100 10
X
100
CVY CVX
S
3
CVY Y ·
100 ·
100 42,86
Y
7
9. A
10. B
rXY
S XY
24
0,8
S x S y 10·3
11. C
La fórmula de la ecuación de regresión de Y sobre X es: Y a bX , donde “b” (la pendiente) es:
b rXY
SY
Sx
Puesto que la desviación típica siempre es un valor positivo (sólo toma el valor cero cuando las
puntuaciones son iguales), el cociente:
SY
SX
será siempre positivo. Por tanto el signo de la pendiente dependerá del signo del coeficiente de
correlación de Pearson entre X e Y rXY .
12. B
Sy
S
3
3
Y Y rxy
X rXY Y ·X 7 0,8 100 0,8 X 17 0,24X
Sx
SX
10
10
13. B
14. C
Llamemos:
PA =problemas de aprendizaje
AP =acudir al psicólogo
P(PA) 0,30 P(PA) 1 0,30 0,70
P(AP PA) 0,80
P(AP PA) 0,10
PA =sin problemas de aprendizaje
31.
Febrero 2010 EXAMEN MODELO A Pág. 5
P(AP) P(AP PA) P(AP PA) P(PA)·P(AP PA) PPA ·PAP PA
0,30·0,80 0,70·0,10 0,24 0,07 0,31
15. A
PPA AP
P(PA AP) P(PA)·P(AP PA) 0,30·0,80 0,24
0,7742 0,77
P(AP)
P(AP)
0,31
0,31
16. B
x
0
1
2
f(x)
0,2
0,3
0,5
x·f(x)
0
0,3
1
1,3
17. B
Utilizando las tablas de la binomial (Tabla I) con n=20, p=0,5 y x=10, obtenemos 0,1762
18. B
Utilizando las tablas de la binomial (Tabla I) con n=5, p=0,4 y x=2, obtenemos 0,3456
19. B
En la Figura 2 se observa, además de que X 7 , que 1587 alumnos de los 10000 no alcanzan la
puntuación 5. Es decir, una proporción de 0,1587 no alcanza la puntuación 5. Si utilizamos lla Tabla
III comprobamos que esa proporción se corresponde con una puntuación típica z=-1. Por tanto:
1
57
S x 5 7 2 S x 2
Sx
20. A
87
0,5 tablas 0,6915
2
1 0,6915 0,3085
0,3085·
10000 3085
21. C
Directamente en la Tabla de chi-cuadrado.
22. B
Mirando directamente en la Tabla F
23. C
24. B
25. B
nc 0,95 z1 / 2 1,96
Para resolver este ejercicio puede utilizarse tanto el límite superior como el límite inferior.
L S X z1α/ 2
σ
10 1,96
σ
10,784
n
100
7,84
10 1,96 10,784 100 1,96σ 107,84 1,96σ 7,84 σ
4
10
1,96
32.
Febrero 2010 EXAMEN MODELO A Pág. 6
L i X z1α/ 2
σ
10 1,96
σ
9,216
n
100
7,84
10 1,96 9,216 100 1,96σ 92,16 1,96σ 7,84 σ
4
10
1,96
33.
Febrero 2010 EXAMEN MODELO B Pág. 1
GRADO EN PSICOLOGIA
INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: 62011037
FEBRERO 2010
EXAMEN MODELO B
Tabla 1
X
10-11
8-9
6-7
4-5
Tabla 2
X
6-7
4-5
2-3
n
2
8
8
2
Situación 1. A un grupo de 100 niños se
les administró un test de inteligencia
espacial (X) y se evaluó (de 0 a 10) su
rendimiento en la asignatura de
matemáticas (Y).
n
2
3
5
Número de palabras recordadas en una subescala
del test “Rivermead” de memoria. La tabla 1
corresponde a 20 ancianos sanos y la tabla 2 a 10
ancianos con enfermedad de Alzheimer.
Algunos datos obtenidos son:
Σ X = 3000
Σ Y = 600
Σ X2 = 92500
SY = 3
Σ XY = 19350
Figura 1. Representación gráfica de una variable
aleatoria X.
Tabla 3. Prevalencia de las alergias de un grupo de
niños según el número de hermanos.
Número de hermanos
Sí
Alergias
No
0
75
25
100
1
40
150
190
2 o más
35
150
175
350
210
500
0,45
0,4
0,35
0,3
0,25
f(x)
0,2
0,15
0,1
0,05
0
0
1
2
3
X
1. La escala de medida de la variable número de palabras recordadas de las tablas 1 y 2 es: A) ordinal; B)
de intervalo; C) de razón.
2. Una representación gráfica adecuada del número de palabras recordadas por los ancianos sanos (tabla
1) se puede realizar con: A) un polígono de frecuencias; B) un diagrama de sectores; C) un diagrama
de dispersión.
3. Para comparar mediante una representación gráfica las puntuaciones obtenidas en el test de memoria
por ambos grupos de ancianos (tablas 1 y 2) hay que situar en el eje de ordenadas las frecuencias: A)
absolutas; B) absolutas acumuladas; C) relativas.
4. El valor de media y mediana es: A) el mismo para los datos de la tabla 1; B) el mismo para los datos de
la tabla 2; C) diferente tanto en la tabla 1 como en la tabla 2.
5. La mediana de las puntuaciones obtenidas en la tabla 1 es: A) 6,5; B) 7,5; C) 8.
6. Según los datos obtenidos en las tablas 1 y 2, los ancianos con Alzheimer obtuvieron: A) mayores
puntuaciones en el test que los sanos; B) menores puntuaciones en el test que los sanos; C)
puntuaciones idénticas a los sanos.
Clases Online de Estadistica, Analisis de Datos y SPSS
granada.clases.particulares@gmail.com
http://estadistica-spss.blogspot.com/
34.
Febrero 2010 EXAMEN MODELO B Pág. 2
7. En relación a las tablas 1 y 2, ¿qué grupo de puntuaciones presenta mayor variabilidad? A) Ambos
grupos presentan una variabilidad parecida porque sus varianzas son similares (2,6 y 2,44); B) Las
puntuaciones de los ancianos sanos porque su coeficiente de variación es mayor; C) Las puntuaciones
de los ancianos con Alzheimer porque su coeficiente de variación es mayor.
8. En relación a la asimetría de las distribuciones de frecuencias de las tablas 1 y 2 podemos afirmar que:
A) al representar gráficamente los datos se observa que la distribución de la tabla 1 es simétrica; B)
aunque se representen gráficamente los datos no es posible saber cuál es la forma de la distribución
de la tabla 1 porque tiene dos modas; C) al representar gráficamente los datos se observa que la
distribución de la tabla 2 es asimétrica negativa.
9. Con los datos de la situación 1, la desviación típica de X es: A) 3; B) 5; C) 25.
10. Según los datos de la situación 1, el coeficiente de correlación de Pearson entre X e Y es: A) -0,9; B)
0,9; C) 13,5.
11. La recta de regresión para pronosticar el rendimiento en matemáticas según los datos de la situación 1
es: A) Y ´ = −10,2 + 0,54 X i ; B) Y ´ = −10,2 X i + 0,54 ; C) Y ´ = 10,2 + 0,54 X i .
12. Con los datos de la situación 1 y sabiendo que al suspenso le corresponde una nota inferior a 5, al
aprobado entre 5 y 7 y al notable superior a 7, ¿qué calificación pronosticaremos en matemáticas a un
niño con una inteligencia espacial de 33? A) Suspenso; B) Aprobado; C) Notable.
13. Con los datos de la tabla 3, el valor del estadístico X2 está comprendido entre: A) 0 y 1; B) 75 y 100; C)
100 y 125.
14. Con los datos de la tabla 3, podemos decir que la probabilidad de NO tener alergia es: A) la misma
para niños con y sin hermanos; B) mayor para los niños con hermanos; C) mayor para los niños sin
hermanos.
15. Con los datos de la tabla 3, hemos elegido al azar un niño que resulta tener 2 hermanos, ¿cuál es la
probabilidad de que tenga alergia? A) 0,07; B) 0,17; C) 0,42.
16. Con los datos de la tabla 3, si elegimos al azar a un niño, ¿cuál es la probabilidad de que tenga alergia
y no tenga hermanos?: A) 0,15; B) 0,5; C) 0,75
17. Para una variable aleatoria X, la figura 1 representa: A) la función de probabilidad; B) la función de
distribución; C) la función relativa.
18. Con los datos de la figura 1, la probabilidad de que la variable aleatoria X, tome valores mayores o
iguales a 1 es: A) 0,1; B) 0,5; C) 0,9.
19. Con los datos de la figura 1, la esperanza matemática de la variable aleatoria X es: A) 1; B) 1,5; C) 2.
20. La distribución binomial: A) es un modelo de distribución de probabilidad para variables discretas; B) es
un modelo de distribución de probabilidad para variables continuas; C) no es un modelo de distribución
de probabilidad.
21. Las puntuaciones obtenidas en un test de extraversión se distribuyen normalmente con media igual a
64. Sabiendo que F(46,8) = 0,0158. ¿Cuál será la desviación típica de X?: A) 8; B) 46,8; C) 64.
22. En una distribución F con 10 grados de libertad en el numerador y 5 en el denominador, ¿cuál es el
valor del percentil 95?: A) 3,326; B) 4,735; C) 13,618.
23. Una muestra se considera aleatoria: A) si su grado de diversidad es igual al de su población; B) si sus
elementos se han extraído al azar; C) si no conocemos su probabilidad asociada.
24. A partir de una muestra aleatoria de 100 sujetos universitarios hemos obtenido una media de 35 y una
cuasivarianza de 64 en una prueba de fluidez verbal. ¿Qué nivel de confianza debemos utilizar si
estimamos la media de la población con un intervalo de confianza cuyo error máximo sea de 2 puntos?
A) 0,95; B) 0,9876; C) 0,9938.
25. Algunos trabajos indican una alta prevalencia de depresión en el profesorado de grado medio. Para
cuantificar este problema, se selecciona a una muestra de 300 profesores de Secundaria encontrando
que 63 de ellos presentan trastornos de tipo depresivo. Utilizando un α =0,01,
¿entre qué límites se
encontrará la verdadera proporción de maestros con problemas depresivos? A) 0,148 y 0,210; B) 0,062
y 0,210; C) 0,148 y 0,272.
Clases Online de Estadistica, Analisis de Datos y SPSS
granada.clases.particulares@gmail.com
http://estadistica-spss.blogspot.com/
35.
Febrero 2010 EXAMEN MODELO B Pág. 3
SOLUCIONES:
1. C
2. A
3. C
4. A
5. B
Tabla 1
X
10-11
8-9
6-7
4-5
n
− nd
Md = Li + 2
nc
ni
2
8
8
2
na
20
18
10
2
20
−2
·2 = 5,5 + 2 = 7,5
·I = 5,5 + 2
8
6. B
Ancianos sanos:
X
Xi
10-11 10,5
8-9
8,5
6,5
6-7
4-5
4,5
ni niXi
2 21
8 68
8 52
2
9
20 150
X =
∑n X
i
i
=
150
= 7,5
20
i
=
39
= 3,9
10
n
Ancianos con Alzheimer:
X
6-7
4-5
2-3
Xi
6,5
4,5
2,5
ni niXi
2
13
3 13,5
5 12,5
10 39
X =
∑n X
i
n
7. C
Ancianos sanos:
X
10-11
8-9
6-7
4-5
Xi
10,5
8,5
6,5
4,5
ni
2
8
8
2
20
niXi
21
68
52
9
150
X i2
ni X i2
110,25 220,5
72,25
578
42,25
338
20,25 40,5
1177
X =
S
2
x
∑n X
i
n
∑n X
=
CV X =
=
i
i
n
2
i
150
= 7,5
20
−X2 =
1177
− 7,5 2 = 2,6
20
SX
1,05
·100 =
·100 = 14
X
7,5
36.
Febrero 2010 EXAMEN MODELO B Pág. 4
X =
Ancianos con alzheimer:
X
Xi
ni
niXi
X i2
ni X i2
6-7 6,5 2 13 42,25 84,5
4-5 4,5 3 13,5 20,25 60,75
2-3 2,5 5 12,5 6,25 31,25
10 39
176,5
S
2
x
∑n X
i
n
∑n X
=
i
n
CV X =
=
i
2
i
39
= 3,9
10
−X2 =
176,5
− 3,9 2 = 2,44
10
SX
1,56
·100 =
·100 = 40
X
3,9
8. A
9. B
X =
S
2
x
∑X
=
n
∑X
=
3000
= 30
100
2
−X2 =
n
92500
− 30 2 = 25
100
S x = 25 = 5
10. B
X =
∑X
Y =
∑Y
=
n
n
600
=6
100
∑ XY − XY
S XY =
rXY =
=
3000
= 30
100
n
=
19350
− 30 × 6 = 193,5 − 180 = 13,5
100
S XY
13,5
=
= 0,9
SxSy 5× 3
11. A
Y ′ = a + bX i = −10,2 + 0,54 X i
b = rXY
SY
3
= 0,9 = 0,54
SX
5
a = Y − bX = 6 − 0,54 × 30 = −10,2
12. C
Y ′ = a + bX i = −10,2 + 0,54 X i = −10,2 + 0,54 × 33 = 7,62 Se pronostica una calificación de notable.
13. C
Número de hermanos
0
Alergias
Sí
75 (30)
No 25 (70)
100
1
40 (57)
2 o más
35 (63)
150 (133) 175 (147)
190
210
150
350
500
37.
Febrero 2010 EXAMEN MODELO B Pág. 5
(75 − 30) 2 (40 − 57 ) (35 − 63) (25 − 70 ) (150 − 133) (175 − 147 )
X =
+
+
+
+
+
=
30
57
63
70
133
147
= 67,5 + 5,07 + 12,44 + 28,92 + 2,17 + 5,33 = 121,43
2
2
2
2
2
14. B
25
= 0,25
100
Niños sin hermanos:
Niños con hermanos:
(150 + 175) = 325 = 0,8125
(190 + 210) 400
15. B
35
= 0,17
210
16. A
75
= 0,15
500
17. A
18. C
19. B
x
0
1
2
3
f(x)
0,1
0,4
0,4
0,1
1
xf(x)
0
0,4
0,8
0,3
1,5
µ = ∑ x·f ( x ) = 1,5
20. A
21. A
46,8 − 64
= 0,0158
F (46,8) = P( X ≤ 46,8) = P z ≤
Sx
Mirando directamente en la tabla de la curva normal, se obtiene que
P( z ≤ −2,15) = 0,0158 ⇒
46,8 − 64
= −2,15 ⇒ S x = 8
Sx
22. B
Mirando directamente en la tabla F con 0,95.
23. B
24. B
E maz = z1−α / 2
S n −1
n
2
38.
Febrero 2010 EXAMEN MODELO B Pág. 6
2 = z1−α / 2
8
100
⇒ z1−α / 2 = 2,5
Atendiendo a la tabla de la curva normal tenemos que:
z 0,9938 = 2,5
1 − α / 2 = 0,9938 ⇒ α / 2 = 0,0062 ⇒ α = 0,0124
n.c. = 1 − α = 1 − 0,0124 = 0,9876
25. C
E maz = z1−α / 2
P(1 − P )
0,21·(0,79 )
= z 0,995
= 2,58 × 0,024 = 0,062
n
300
Li = P − E max = 0,21 − 0,062 = 0,148
Ls = P + E max = 0,21 + 0,062 = 0,272
39.
Febrero 2010 EXAMEN MODELO C Pág. 1
GRADO EN PSICOLOGIA
INTRODUCCIÓN AL ANÁLISIS DE DATOS
Código Asignatura: 62011037
FEBRERO 2010
EXAMEN MODELO C
Xi
1
2
3
4
5
6
7
ni
80
52
28
12
6
2
1
X 2,02
S 2 1,47
X
Tabla 1: Número de cigarrillos fumados
en la última hora por 181 jóvenes
fumadores que siguen un tratamiento
para dejar de fumar.
X
Y
X 200
Y 70
X
Y
2
4640
2
530
X
38-40
35-37
32-34
29-31
26-28
23-25
ni
18
36
52
46
32
16
200
Tabla 2: Puntuaciones en un test de memoria de
una muestra de 200 personas.
XY
XY 1528
Tabla 3: Datos de las puntuaciones de 10
alumnos en un test de autoestima (X) y la
calificación final del curso (Y).
Gráfica 1: Diagrama de barras en el que se
representan conjuntamente la titularidad del centro
de primaria en el que estudian los alumnos (X) y si
realizan deberes o no en casa (Y).
1. Un parámetro es un valor numérico que: A) puede adoptar diferentes valores en una población; B)
adopta un único valor en una población; C) adopta un valor diferente en cada muestra.
2. La variable número de cigarrillos fumados de la Tabla 1 presenta un nivel de medida: A) de intervalo; B)
ordinal; C) de razón.
3. El diagrama de barras acumulados NO se puede utilizar en variables: A) nominales; B) ordinales C)
cuantitativas discretas.
4. En la distribución de frecuencias de la Tabla 1, el valor de la mediana está comprendido entre: A) 1,40
y 1,60; B) 1,90 y 2,10; C) 1,65 y 1,75.
5. Con los datos de la Tabla 2, la moda de la distribución es: A) 52; B) 34; C) 33.
40.
Febrero 2010 EXAMEN MODELO C Pág. 2
6. La media en el test de memoria de la distribución de la Tabla 2 es igual a: A) 28,50; B) 36,62; C) 31,71.
7. Si comparamos la variabilidad de las distribuciones de la Tabla 1 y la Tabla 2, ¿qué conjunto de
puntuaciones presenta un mayor grado de dispersión?: A) el de la Tabla 2; B) el de la Tabla 1; C) las
dos distribuciones presentan una variabilidad similar.
8. Con los datos de la Tabla 1, el índice de Asimetría de Pearson indica que la distribución es: A)
asimétrica negativa; B) asimétrica positiva; C) simétrica.
9. Si tenemos en cuenta la forma de la distribución de la Tabla 1, la medida de variabilidad recomendada
es: A) la amplitud semi-intercuartil; B) la varianza; C) el coeficiente de variación.
10. La varianza en el test de memoria de la distribución de la Tabla 2 es igual a: A) 10,78; B) 17,51; C)
13,24.
11. Con los datos de la Tabla 3, ¿cuál es la covarianza entre X e Y?: A) 7,3; B) 9,6; C) 12,8.
12. Con los datos de la Tabla 3, la proporción de la varianza de la calificación final del curso explicada por
el test de autoestima vale: A) 0,80; B) 0,64; C) 0,89.
13. Con los datos de la Tabla 3, la pendiente de la recta de regresión que permite pronosticar la calificación
final (Y) a partir del test de autoestima (X) es: A) 0,50; B) 1,05; C) 0,20.
14. Si en una tabla de contingencia las frecuencias observadas coinciden con las teóricas, el valor de X2
es: A) 0; B) 1; C) -1.
15. Atendiendo a la Gráfica 1, si seleccionamos al azar a un niño, ¿cuál es la probabilidad de que estudie
en un centro público y que realice deberes en casa?: A) 0,64; B) 0,50; C) 0,30.
16. Con los datos de la gráfica 1, si se elige al azar un niño y ha resultado ser de un centro privado, ¿cuál
es la probabilidad de que no haga los deberes en casa?: A) 2/3; B) 1/3; C) 1/6.
17. Si A y B son dos sucesos dependientes, entonces la probabilidad de que ocurran conjuntamente
ambos sucesos es igual a: A) P ( A) P( B | A) ; B) P ( A) P ( B ) ; C) P ( A) P ( B ) P ( A B ) .
18. La función de distribución de la variable aleatoria X número de horas diarias de un adolescente
conectado a internet es F(0)=0,05, F(1)=0,28, F(2)=0,66; F(3)=0,92; F(4)=1. La media de X es: A) 1,56;
B) 2,09; C) 1,67.
19. Se sabe que el 20 % de los españoles no ha acudido nunca a terapia con un psicólogo clínico. Si
seleccionamos aleatoriamente una muestra de 10 personas, ¿cuál es la probabilidad de que tres
personas de la muestra no hayan acudido a terapia? : A) 0,8791; B) 0,1209; C) 0,2013.
20. Las puntuaciones en una prueba de rendimiento en matemáticas siguen la distribución normal con
media 500 y desviación típica 100. ¿qué proporción de sujetos obtienen una puntuación superior a
650?: A) 0,9332; B) 0,3224; C) 0,0668.
21. En una distribución t de Student, a medida que aumentan los grados de libertad, la distribución se
aproxima más y más a la distribución: A) chi-cuadrado con pocos grados de libertad; B) normal; C)
binomial.
22. Sea X una variable que sigue la distribución chi-cuadrado con 8 grados de libertad, ¿cuál es la
desviación típica de esa variable?: A) 4; B) 16; C) 8.
23. En la distribución muestral de la media, el grado de variabilidad entre los valores de las medias
muestrales se mide con: A) la desviación típica de la población; B) la cuasidesviación típica de la
muestra; C) el error típico de la media.
24. Cuando NO existe homogeneidad en la población, es recomendable utilizar un muestreo: A)
estratificado; B) aleatorio simple; C) sistemático.
25. Se sospecha que los padres con hijos que padecen el trastorno por déficit atencional con hiperactividad
(TDAH) pueden manifestar también dicho trastorno. Para estudiar este aspecto se ha extraído una
muestra de 200 padres y se ha obtenido que el 30% padecen el TDAH. Para un nivel de confianza del
95%, la amplitud del intervalo de confianza de la proporción de padres con TDAH es: A) 0,064; B)
0,127; C) 0,032.
Clases Online de Estadistica, Analisis de Datos y SPSS
granada.clases.particulares@gmail.com
http://estadistica-spss.blogspot.com/
41.
Febrero 2010 EXAMEN MODELO C Pág. 3
SOLUCIONES:
1. B
2. C
3. A
4. C
n 181
90,5 , por lo que el intervalo crítico es [1,5-2,5], con na=132.
2
2
ni
1
2
6
12
28
52
80
181
Xi
7
6
5
4
3
2
1
na
181
180
178
172
160
132
80
n
nd
Md Li 2
nc
181
80
·1 1,701923 1,70
· I 1,5 2
52
5. C
6. C
X
38-40
35-37
32-34
29-31
26-28
23-25
X
ni
18
36
52
46
32
16
200
n X
i
i
n
Xi
39
36
33
30
27
24
niXi
702
1296
1716
1380
864
384
6342
6342
31,71
200
7. B
CV X 1
CV X 2
SX
1,21
·100
·100 59,90
X
2,02
S
4,18
X ·100
·100 13,18
X
31,71
8. B
2
S X 1,47 S x 1,47 1,21
X M O 2,02 1
As
0,84
1,21
Sx
Asimetría positiva
9. A
CV X 1 CV X 2
42.
Febrero 2010 EXAMEN MODELO C Pág. 4
10. B
X
38-40
35-37
32-34
29-31
26-28
23-25
2
SX
n X
i
200
2
i
(31,71) 2
Xi
39
36
33
30
27
24
ni
18
36
52
46
32
16
200
X i2
n i X i2
1521
1296
1089
900
729
576
27378
46656
56628
41400
23328
9216
204606
204606
1005.5241 17,5059 17,51
200
11. C
X
Y
XY
X 200 Y 70
XY 1528
X 4640 Y 530
2
S XY
2
XY XY
n
1528
20 7 12,8
10
12. B
S
2
X
X
2
X 64 S X 8
2
n
rXY
S
2
Y
Y
n
2
Y 2 4 SY 2
S XY
12,8
2
0,80 rXY 0,64
S X SY 8 2
13. C
b
n XY X Y
n X ( X )
2
2
10 1528 200 70 1280
0,20
10 4640 (200) 2 6400
14. A
15. C
Y
X
P(Público Sí)
Público
Privado
Sí
90
50
140
No
60
100
160
90
0,3
300
16. A
P( No / Pr ivado)
17. A
P( No Pr iv) 100 / 300 1 / 3
2/3
P(Pr iv)
150 / 300 1 / 2
150
150
300
43.
Febrero 2010 EXAMEN MODELO C Pág. 5
18. B
x
4
3
2
1
0
F(x)
1
0,92
0,66
0,28
0,05
2,09
f(x)
0,08
0,26
0,38
0,23
0,05
xf(x)
0,32
0,78
0,76
0,23
0
2,09
19. C
f(3)=P(X=3)=0,2013. Tabla 1, es el valor en la intersección de la fila n=10, x=3 con la columna
p=0,20.
20. C
z
X X 650 500 150
1,5
100
100
SX
P(z>1,5)=1-P(z≤1,5)=1-0,9332=0,0668
21. B
22. A
2n 2 8 4
23. C
24. A
25. B
E max 1,96
0,30 0,70
0,21
1,96
1,96 0,00105 1,96 0,0324 0,0635
200
200
La amplitud del intervalo es 2 E max 2 0,0635 0,127
44.
Febrero 2010
EXAMEN MODELO D Pág. 1
GRADO EN PSICOLOGIA
INTRODUCCIÓN AL ANÁLISIS DE DATOS
Código Asignatura: 62011037
FEBRERO 2010
EXAMEN MODELO D
TR
281 – 300
301 – 320
321 – 340
341 –
360
361 –
380
ni
32
24
68
48
28
Tabla 1. Tiempos de reacción
(TR) en
milisegundos a un
estímulo visual en una muestra
de 200 sujetos.
Sujetos
1
2
3
4
5
6
7
8
Inteligencia
social (X)
3
5
4
1
9
7
10
9
Tolerancia
(Y)
5
6
4
2
8
5
8
10
Figura 1. En el eje de abscisas aparecen los
valores de una variable X medida en una
muestra de 120 sujetos y en el eje de
ordenadas las proporciones (pi) de sujetos
correspondientes a cada uno de los valores.
Situación 1. Los valores posibles de una
variable aleatoria X son: 0, 1, 2, 3 y 4. Todos
los valores tienen la misma probabilidad.
Tabla 2. Puntuaciones de 8 sujetos en
las variables inteligencia social (X) y
tolerancia (Y), donde X 6, Y 6, SX =
3,04, SY = 2,40 y rXY = 0,89.
1. Los límites aparentes de uno de los intervalos de una distribución de frecuencias son 10,5 y
14,5. ¿Cuáles son los límites exactos de este intervalo: A) 10 y 14; B) 10,45 y 14,55; C) 10,
455 y 10,555
2. Para los datos de la Tabla 1, el nivel de medida de la variable es: A) ordinal; B) de intervalo;
C) de razón
3. Respecto a la Figura 1,¿cuántos sujetos han obtenido una X > 2,5?: A) 20; B) 30; C) 45
4. Para los datos de la Figura 1, ¿cuál es el valor más frecuente?: A) 0,25; B) 2,5; C) 4
45.
Febrero 2010
EXAMEN MODELO D Pág. 2
5. La mediana de la distribución de la variable tiempo de reacción de la Tabla 1 vale: A) 320,5; B)
333,44; C) 360,50
6. En la Tabla 1, un sujeto con un tiempo de reacción igual a 310 está aproximadamente en el
percentil: A) 22; B) 56; C) 78
7. Si la varianza ( S 2 ) de una variable cuantitativa es igual a 33,75 para n = 16, la cuasivarianza
X
2
( Sn 1 ): A) es menor que 33,75; B) es igual a 33,75; C) es mayor que 33,75
8. Dada la Tabla 2, la puntuación diferencial y la puntuación típica del sujeto 2 en tolerancia: A)
son iguales a 0; B) tienen valores positivos; C) tienen valores negativos
9. Respecto a la Tabla 2, para comparar la variabilidad de las dos variables: A) es necesario
comparar los coeficientes de variación; B) basta comparar las desviaciones típicas; C) hay
que fijarse en la magnitud del coeficiente de correlación
10. Con los datos de la Tabla 2, la covarianza entre inteligencia social y tolerancia está: A) entre
0,85 y 0,90; B) ente 5 y 5,50; C) entre 6,40 y 6,60
11. Dada la Tabla 2, la pendiente y la ordenada en el origen de la ecuación de la recta de
regresión que permite pronosticar la tolerancia a partir de la inteligencia social son
respectivamente: A) 0,50 y 2; B) 0,70 y 1,80; C) 1,13 y -0,78
12. A partir de la Tabla 2, ¿qué puntuación directa pronosticaremos en tolerancia a un sujeto cuya
puntuación directa en inteligencia social es 4: A) 3,74; B) 4; C) 4,6
13. En un determinado Centro Asociado el 70% de los alumnos asisten a las tutorías y el 60% son
mujeres. ¿Cuál es la probabilidad de que un alumno elegido al azar sea varón y no asista a las
tutorías?: A) 0,12; B) 0,28; C) 0,40
14. En una determinada asignatura, el 70 % de los alumnos dedican al menos 2 horas diarias al
estudio y aprueban el 90% mientras que el 30% dedican menos de 2 horas diarias y sólo
aprueban el 20%. ¿Cuál es la probabilidad de que un alumno elegido al azar apruebe la
asignatura?: A) 0,63; B) 0,69; C) 0,94
15. Con los datos de la pregunta anterior, elegido un alumno al azar resulta que ha aprobado,
¿cuál es la probabilidad de que haya estudiado al menos dos horas diarias?: A) 0,50; B) 0,70;
C) 0,91
16. La función de probabilidad de una variable aleatoria discreta es una función que asocia una
probabilidad a cada uno de los valores de la variable y que cumple que la suma de las
probabilidades: A) es un valor cualquiera entre 0 y 1; B) es igual a 1; C) es mayor que 1
17. Dada la Situación 1, la varianza de la variable aleatoria X es: A) 0; B) 2; C) 10
18. Dada la Situación 1, la probabilidad de que X sea menor o igual que 3 es: A) 0,20; B) 0,60; C)
0,80
19. En un examen tipo test de 20 preguntas con dos alternativas de respuesta posibles
(verdadero/ falso), la probabilidad de acertar más de 10 preguntas al azar es: A) 0,1762; B)
0,4119; C) 0,5881
20. Las puntuaciones en un test de asertividad se distribuyen normalmente con media 100 y
varianza 36. Luis obtiene en este test una puntuación de 110,02, ¿qué porcentaje de personas
quedará por debajo de Luis en este test?: A) 4,75%; B) 10,02%; C) 95,25%
21. Si una variable se distribuye según la distribución normal, podemos afirmar que: A) la media, la
mediana y la moda son iguales; B) sólo la media y la mediana son iguales; C) la media, la
mediana y la moda son distintas
22. Una variable aleatoria se distribuye según la distribución t de Student con 40 grados de
libertad, ¿cuál es el percentil 90?: A) -1,303; B) 1,303; C) ninguno de los dos anteriores
Clases Online de Estadistica, Analisis de Datos y SPSS
granada.clases.particulares@gmail.com
http://estadistica-spss.blogspot.com/
46.
Febrero 2010
EXAMEN MODELO D Pág. 3
23. ¿Cuál de los siguientes tipos de muestreo es probabilístico?: A) el muestreo “bola de nieve”; B)
el muestreo por conglomerados; C) el muestreo casual
24. En una investigación, la variable estrés laboral se distribuye normalmente con σ = 5. ¿Qué
tamaño mínimo debe tener la muestra para realizar una estimación por intervalo de la media si
queremos que el error de estimación no sea mayor que 2 para un nivel de confianza de 0,99?:
A) 24; B) 34; C) 42
25. En una muestra aleatoria de 200 sujetos extraída de la población de amas de casa, 120 son
fumadoras. Para un nivel de confianza de 0,99, los límites entre los cuales se estima esté la
proporción de fumadoras de esta población son: A) 0,31 y 0,49; B) 0,51 y 0,69; C) 0 y 1
Clases Online de Estadistica, Analisis de Datos y SPSS
granada.clases.particulares@gmail.com
http://estadistica-spss.blogspot.com/
47.
Febrero 2010
EXAMEN MODELO D Pág. 4
SOLUCIONES:
1. B
LEI = 10,5 – 0,05 = 10,45
LES = 14,5 + 0,05 = 14,55
2. C
3. C
La proporción de sujetos con puntuación mayor que 2,5 es:
0,200 + 0,125 + 0,050 = 0,375
El número de sujetos con puntuación mayor que 2,5 es:
120(0,375) = 45
4. B
La moda es el valor de la variable que más se repite: Mo = 2,5
5. B
TR
361 – 380
341 – 360
321 – 340
301 – 320
281 – 300
ni n a
28 200
48 172
68 124
24 56
32 32
Md L i
n
2
nd
nc
·I 320,5
200
56
2
·20
68
320,5
44 / 68(20 ) 333,44
6. A
TR
361 – 380
341 – 360
321 – 340
301 –
320
281 –
300
ni
28
48
68
24
32
na
200
172
124
56
32
7. C
Si S 2 = 33,75,
X
2
Sn
(Pk
Li ) nc
I
n
k
1
(310
nd
100
300,5) 24
20
200
32
100
21,70
22
no puede ser igual a 33,75 ni menor que 33,75 dado que el
2
denominador de la varianza ( S 2 ) es n y el denominador de la cuasivarianza ( S n 1 ) es n -1.
X
La alternativa correcta es la C, lo comprobamos:
2
Sn
2
Vemos que S n
1
n
1
n 1
S2
X
2
Sn
1
16
33,75
16 1
es igual a 36 y, por lo tanto, mayor que 33,75.
36
48.
Febrero 2010
EXAMEN MODELO D Pág. 5
8. A
y
Y Y
6 6
0
z
Y Y
SY
6 6
2,4
0
9. B
Cuando las medias son iguales no es necesario comparar los coeficientes de variación,
basta comparar las desviaciones típicas (o las varianzas).
10. C
S XY
S XS Y
rXY
S XY
rXY S X S Y
0,89·3,04·2,40
6,49
11. B
b
r XY
SY
SX
0,89·
2,40
3,04
0,70
a = Y - b X = 6-(0,70·6) = 1,80
12. C
Y
bX a
Y
0,70( 4) 180
,
4,60
13. A
T : no asistir a tutorías
P( T )
V: varón
0,30
P(V) = 0,40
Asumiendo que V y T son independientes: P(T
V) P(T)·P(V) 0,30·0,40
0,12
14. B
A= Aprobar
P(E) 0,70
P( A E) 0,90
P(A)
P(A
E = estudiar 2 ó más horas E = estudiar menos de 2 horas
P( E ) 1 0,70
P( A E )
E) P(A
0,30
0,20
E)
P(E)·P(A E) P( E ) P( A E )
15. C
P(E A )
16. B
P(E A)
P(A)
P(E)·P(A E)
P(A)
0,63
0,69
0,9130
0,91
0,70·0,90 0,30·0,20
0,69
49.
Febrero 2010
EXAMEN MODELO D Pág. 6
17. B
x
0
1
2
3
4
f(x) x f(x) x0,20
0
-2
0,20 0,20 -1
0,20 0,40 0
0,20 0,60 1
0,20 0,80 2
2
2
Por lo tanto,
(x
(x- )2 (x- )2 f(x)
4
0,80
1
0,20
0
0
1
0,20
4
0,80
2
) 2 f ( x)
2
18. C
P(X ≤ 3) = f(0) + f(1) + f(2) + f(3) = 0,20 + 0,20 + 0,20 + 0,20 = 0,80 (ver tabla anterior)
19. B
Utilizando la función de distribución de la binomial (Tabla II) con n=20, p=1/2=0,5 y x=10,
obtenemos: P(X>10) = 1-P(X≤10) = 1 – 0,5881 = 0,4119
20. C
z
110,02 100
6
167 → 0,9525 (Tabla IV). Por lo tanto, el 95,25%
,
21. A
22. B
Para una distribución t con n-1 = 40 grados de libertad, el percentil 90 es 1,303 (Tabla VI)
23. B
24. C
n
2
z1
2
2,58 2 (25 )
4
/2
2
Emáx
41,6025
42
25. B
P = 120/200 = 0,60
Li
LS
P z1
P z1
/2
/2
P(1 P)
n
P(1 P)
n
0,60 2,58
0,60 2,58
0,60·(1 0,60 )
200
0,60·(1 0,60 )
200
0,51
0,69
50.
Septiembre 2010 EXAMEN MODELO A Pág. 1
X
8-9
6-7
4-5
2-3
0-1
∑
Mujeres
20
16
10
8
6
60
Varones
12
13
17
10
8
60
Tabla 2: Para pronosticar las puntuaciones en una
asignatura (Y) a partir de las puntuaciones en un test de
razonamiento (X) disponemos de los siguientes datos
obtenidos en un grupo de 500 niños:
Media
X
Y
Tabla 1: Resultados obtenidos por un
grupo de 60 mujeres y 60 hombres en
una prueba de fluidez verbal (X)
100
8
Variabl
e
Y
χ2
40
V
Figura 1. Rata situada en un
laberinto con cuatro salidas (A, B,
C y D) equiprobables
N(20,5)
F20,10
Recta de regresión
Y´= - 8 + 0,16 X
Distribució
n
X
Desviación
típica
10
2
Normal con media 20 y desviación
típica 5
Chi-cuadrado con 40 grados de
libertad
F con 20 grados de libertad en el
numerador y 10 grados de libertad
en el denominador
Tabla 3: Conjunto de variables y su tipo de distribución
.
1. La variable Género, con las categorías Hombre y Mujer, está medida en una escala: A) de
razón ; B) ordinal ; C) nominal
2. La variable X, puntuaciones en una prueba de fluidez verbal, recogida en la Tabla 1, es: A)
dicotómica; B) cualitativa; C) cuantitativa
3. Los datos recogidos en la Tabla 1, en fluidez verbal (X), para el grupo de mujeres pueden
representarse mediante un: A) histograma; B) diagrama de sectores; C) diagrama de
dispersión
4. La Moda, para el grupo de Varones de la Tabla 1, es: A) 4,5; B) 17; C) 60
5. Con los datos de la Tabla 1, la media en X para las Mujeres es: A) igual a la media para los
Varones; B) mayor que la media para los Varones; C) menor que la media para los Varones
6. El Percentil 30, para el grupo de Mujeres en la Tabla 1, es: A) 3; B) 4,3; C) 7,5
7. La varianza de las puntuaciones en X, en la Tabla 1, para el grupo de varones es
aproximadamente: A) 3,7 ; B) 5,7; C) 6,7
8. En la Tabla 1, si queremos saber en cuál de los dos grupos (mujeres o varones) es mayor la
variabilidad en la variable X utilizaremos: A) las desviaciones típicas ; B) las desviaciones
medias ; C) los coeficientes de variación
9. Si queremos estudiar la relación entre dos variables, X e Y, cada una de ellas con tres
categorías utilizaremos el coeficiente: A) C de Contingencia; B)
de Pearson ; C)
de
Asimetría
Clases Online de Estadistica, Analisis de Datos y SPSS
granada.clases.particulares@gmail.com
http://estadistica-spss.blogspot.com/
51.
Septiembre 2010 EXAMEN MODELO A Pág. 2
10. Si queremos estudiar la relación entre dos variables dicotómicas, X e Y, el valor del
Coeficiente de Contingencia máximo que podemos obtener es: A) 0,20 ; B) 0,71 ; C) 0,9
11. Utilizando la recta de regresión, recogida en la Tabla 2, ¿qué puntuación en Y
pronosticaremos a un alumno que ha obtenido una puntuación de 100 en X?: A) 4 ; B) 6; C) 8
12. Teniendo en cuenta los datos de la Tabla 2, el coeficiente de correlación de Pearson entre X
e Y, vale: A) 0,7 ; B) 0,8 ; C) 0,9
13. En la definición clásica, la probabilidad es: A) el número de veces que se repite un suceso; B)
el cociente entre el número de casos favorables y posibles de aparición de un suceso; C) la
suma de las probabilidades de sucesos mutuamente excluyentes.
14. Si colocamos una rata en un laberinto, como el recogido en la Figura 1, ¿cuál es la
probabilidad de que escoja la salida C?: A) 0,10; B) 0,20; C) 0,25
15. Si colocamos una rata en dos ocasiones en un laberinto, como el recogido en la Figura 1, y
suponemos que no hay aprendizaje (los ensayos son independientes) ¿cuál es la
probabilidad de que escoja la misma salida en las dos ocasiones?: A) 0,06; B) 0,25; C) 0,50
16. Si colocamos una rata en un laberinto, como el recogido en la Figura 1, y la variable aleatoria
X toma el valor 1 cuando la rata escoge la salida A y 0 en otro caso. ¿cuánto vale la media de
X?: A) 0,25; B) 0,50; C) 2,50
17. Si en un laberinto como el de la Figura 1 colocamos sucesivamente 20 ratas diferentes,
¿Cuál es la probabilidad de que 5 de ellas escojan la salida A?: A) 0,1686; B) 0,2023 ; C)
0,6172
18. Si en un laberinto como el de la Figura 1 colocamos sucesivamente 20 ratas diferentes,
¿Cuál es la probabilidad de que 5 ó menos escojan la salida A?: A) 0,2023 ; B) 0,3456; C)
0,6172
19. Teniendo en cuenta la Tabla 3, la
es: A) 0,2500; B) 0,8413; C) 0,9681
20. Teniendo en cuenta la Tabla 3, el percentil 67 para la variable X vale: A) 22,2; B) 67; C) 76,2
21. Teniendo en cuenta la Tabla 3, para la variable Y, el valor 51,8051 es el percentil: A) 10 ; B)
50 ; C) 90.
22. Teniendo en cuenta la Tabla 3, para la variable V ¿cuál es el percentil 95?: A) 2,200 ; B)
2,774 ; C) 3,123
23. El procedimiento que “consiste en estimar, con cierta probabilidad, un parámetro desconocido
a partir de una muestra aleatoria extraída de la población” se denomina : A) parametrización
estadística; B) aleatorización estadística; C) inferencia estadística
24. La “desviación típica de la distribución muestral de la media” se denomina: A) desviación
típica poblacional; B) variabilidad muestral; C) error típico de la media
25. Para estimar el intervalo confidencial de la media poblacional de una variable X con
desviación típica poblacional igual a 4, hemos seleccionado una muestra de 100 personas y
en ella hemos obtenido una media de 10. Trabajando con un nivel de confianza del 95%, los
límites del intervalo confidencial son: A) 8,968 y 11,032; B) 9,216 y 10,784 ; C) 8 y 12
Clases Online de Estadistica, Analisis de Datos y SPSS
granada.clases.particulares@gmail.com
http://estadistica-spss.blogspot.com/
52.
Septiembre 2010 EXAMEN MODELO A Pág. 3
SOLUCIONES:
1. C
2. C
3. A
4. A
Mo: Punto medio del intervalo con mayor frecuencia
5. B
Mujeres
nM
20
16
10
8
6
60
X
8-9
6-7
4-5
2-3
0-1
Varones
nV
12
13
17
10
8
60
Xi
8,5
6,5
4,5
2,5
0,5
Xi nM
170
104
45
20
3
342
Xi nV
102
84,5
76,5
25
4
292
6. B
X
8-9
6-7
4-5
2-3
0-1
nM
20
16
10
8
6
60
na
60
40
24
14
6
60·30
− 14
·2 = 3,5 + 4 ·2 = 3,5 + 0,8 = 4,3
P30 = 3,5 + 100
10
10
7. C
X
nV
Xi
n VXi
8-9
6-7
4-5
2-3
0-1
12
13
17
10
8
60
8,5
6,5
4,5
2,5
0,5
102
84,5
76,5
25
4
292
(X
i
− X)
3,63
1,63
-0,37
-2,37
-4,37
n V (X i − X )
2
158,1228
34,5397
2,3273
56,169
152,7752
403,934
X=
292
= 4,87
60
S2 =
V
403,934
≅ 6,7
60
8. C
Los coeficientes de variación porque sus medias son distintas
9. A
10. B
C max =
k −1
=
k
2 −1
= 0,5 = 0,71
2
11. C
Y ′ = −8 + 0,16X = −8 + 0,16·100 = −8 + 16 = 8
12. B
53.
Septiembre 2010 EXAMEN MODELO A Pág. 4
13. B
14. C
15. B
11 1
P(AA ) = · =
4 4 16
1
4
= 0,25
4· =
16 16
11 1
P(BB) = · =
4 4 16
11 1
P(CC) = · =
4 4 16
11 1
P(DD) = · =
4 4 16
16. A
x
f(x)
x·f(x)
0
3/4
0
1
1/4
1/4
1
1/4
X = ∑ x·f ( x ) =
1
= 0,25
4
17. B
Utilizando las tablas de la binomial (Tabla I) con n=20, p=0,25 y x=5, obtenemos 0,2023
18. C
Función de distribución binomial (Tabla II)
19. B
25 − 20
P(X ≤ 25) = P z ≤
= P(z ≤ 1) = 0,8413
5
(Tabla IV)
20. A
21. C
Directamente en la Tabla V (chi-cuadrado )
22. B
Mirando directamente en la Tabla VII
23. C
24. C
25. B
nc = 0,95 ⇒ z 1−α / 2 = 1,96
L i = X − z 1−α/ 2
L S = X + z1−α/ 2
σ
n
σ
n
= 10 − 1,96
= 10 + 1,96
4
100
4
100
= 10 − 0,784 = 9,216
= 10 + 0,784 = 10,784
54.
2010 Septiembre MODELO B Pág. 1
Figura 1. Número de niñas de 9
años
Figura 2. Número de niños de 9
años
Tabla 1. Se ha tomado una
muestra aleatoria de 100 parejas,
que se casaron en Madrid en el
año 2000. Se ha tomado nota del
número de hijos y de si las
parejas se han divorciado o no.
Divorciados
Número
de hijos
En las abscisas se clasifica el “número de puntos obtenidos” por
cada niña o niño, en un juego de ordenador en una hora. La
Figura 1 corresponde a 15 niñas de nueve años y la Figura 2 a 10
niños de nueve años. En las ordenadas están las frecuencias de
cada intervalo.
Tabla 2. Resultados de medir el Cociente Intelectual (CI),
variable X, y la nota media al terminar el curso, variable
Y, de 5 alumnos de 15 años de edad.
Alumno
Roberto
Ana
María
Jesús
Inés
X
122
130
124
123
135
Y
5,7
8,4
6,0
6,1
8,6
0
1
2ó
más
No
20
40
Sí
10
10
10
10
Tabla 3. Función de probabilidad de una
variable X.
x
-1
0
1
2
3
f(x)
0,2
0,1
0,2
0,3
0,2
1. En las Figuras 1 y 2, la escala de medida del número de puntos obtenidos en el juego de ordenador es:
A) nominal; B) ordinal; C) de razón
2. La representación gráfica correspondiente a las Figuras 1 y 2 se denomina: A) histograma ; B) diagrama
de sectores ; C) nube de puntos
3. Para comparar, mediante una representación gráfica, las puntuaciones de dos grupos distintos en una
variable hay que utilizar en el eje de ordenadas: A) frecuencias absolutas; B) frecuencias absolutas
acumuladas; C) frecuencias relativas
4. Según los datos obtenidos en las Figuras 1 y 2, las niñas obtuvieron en media: A) más puntos que los
niños; B) los mismos puntos que los niños; C) menos puntos que los niños
5. La mediana de las puntuaciones obtenidas con los datos de la Figura 1 es: A) 26,5; B) 27,0; C) 28,6
6. El valor de la media y la mediana es: A) el mismo en el caso de la Figura 1; B) el mismo en el caso de la
Figura 2; C) diferente tanto en la Figura 1 como en la Figura 2
7. Con los datos de la Tabla 2, la varianza de la nota media al terminar el curso es: A) 1,6; B) 1,7; C) 1,8
8. En relación a la asimetría de las distribuciones de frecuencias de las Figuras 1 y 2: A) la Figura 1 es
simétrica; B) la Figura 2 es simétrica; C) ambas Figuras no son simétricas
9. Con los datos de la Tabla 1, hemos obtenido un valor de X2, Chi cuadrado, igual a 6,352. El coeficiente C
de Contingencia está comprendido entre: A) 0,7 y 1; B) 0,4 y 0,7; C) 0,1 y 0,4
Clases Online de Estadistica, Analisis de Datos y SPSS
granada.clases.particulares@gmail.com
http://estadistica-spss.blogspot.com/
55.
2010 Septiembre MODELO B Pág. 2
10. Según los datos de la Tabla 2, la covarianza entre el CI y la nota media a final de curso es: A) 6; B) 7;
C) 8
11. La recta de regresión, calculada con los datos de la Tabla 2, para pronosticar la nota media al terminar el
curso, en función del CI, es: A) − 24,1 + 0,245 X i ; B) − 24,1X i + 0,245 ; C) 24,1 + 0,245 X i
12. Con los datos de la Tabla 2 ¿qué nota media a final de curso pronosticaremos a un alumno que tiene un
CI de 127? A) 6; B) 7; C) 8
13. Con los datos de la Tabla 1, si elegimos al azar una pareja casada en Madrid en el año 2000 ¿cuál es la
probabilidad de que no tenga hijos y esté divorciada?: A) 0,10; B) 0,20; C) 0,33
14. Con los datos de la Tabla 1, podemos decir que la probabilidad de divorcio es: A) constante al variar el
número de hijos; B) mínima para las parejas con 1 hijo; C) máxima para las parejas sin hijos
15. Con los datos de la Tabla 1, si elegimos al azar una pareja casada en Madrid en el año 2000, y resulta
que tiene 1 hijo, ¿cuál es la probabilidad de que no se haya divorciado? A) 0,4; B) 0,5; C) 0,8
16. Con los datos de la Tabla 1, elegimos al azar, sucesivamente y sin reposición, dos parejas casadas en
Madrid en el año 2000 ¿cuál es la probabilidad de que las dos estén divorciadas?: A) 0,3 ; B) 0,09 ; C) 0,6
17. Con los datos de la Tabla 3, la probabilidad de que la variable aleatoria X tome valores mayores que 1 es:
A) 0,2; B) 0,4; C) 0,5
18. Considerando los datos de la Tabla 3, la función de distribución, F(x), para x = 1 es: A) 0,3; B) 0,4; C) 0,5
19. Considerando la Tabla 3, la esperanza matemática de la variable aleatoria X es: A) 1,1; B) 1,2; C) 1,3
20. La distribución binomial es un modelo de distribución de probabilidad para variables: A) discretas; B)
continuas; C) tanto discretas como continuas
21. Se sabe que el absentismo laboral de la empresa se distribuye como una normal de media 2,2 y de
varianza 1,44. El percentil 25 es un valor comprendido entre: A) 0 y 1; B) 1 y 2; C) 2 y 3
22. Las puntuaciones resultantes de la aplicación de un test de inteligencia se distribuyen según una normal
de media 17,3. Si el cuartil 3 es 20,1 ¿cuál es la desviación típica de las puntuaciones en el test de
inteligencia?: A) 2,18; B) 3,18; C) 4,18
23. En las tablas de la t de Student con 16 grados de libertad ¿cuál es el percentil 90?: A) 1,337; B) 1,537;
C) 1,737
24. Si extraemos una muestra aleatoria sin reposición de 25 casos de una población, en la que conocemos
que la varianza es 9, ¿cuál es el valor del error típico de la media?: A) 0,6; B) 0,7; C) 0,8
25. Extraemos una muestra aleatoria sin reemplazamiento de 100 alumnos de 11 años y medimos en cada
alumno el CI. Los resultados han sido: media = 112 y varianza insesgada = 36. Al nivel de confianza del
95%, los límites del intervalo para la media son: A) 110,824 y 113,176; B) 110,452 y 113,548; A) 110,534
y 113,762
Clases Online de Estadistica, Analisis de Datos y SPSS
granada.clases.particulares@gmail.com
http://estadistica-spss.blogspot.com/
56.
2010 Septiembre MODELO B Pág. 3
SOLUCIONES:
1. C
2. A
3. C
4. A
5. C
X
36-40
31-35
26-30
21-25
16-20
ni
3
3
4
4
1
15
na
15
12
9
5
1
15
−5
·5 = 25,5 + 3,125 = 28,625 ≅ 28,6
Md = 25,5 + 2
4
6. C
Las dos distribuciones son asimétricas a simple vista.
7. A
8. C
9. C
10. A
Alumno
Roberto
Ana
María
Jesús
Inés
Y
5,7
8,4
6
6,1
8,6
634
S XY =
X
122
130
124
123
135
34,8
XY
695,4
1092
744
750,3
1161
4442,7
∑ XY − XY = 4442,7 − 126,8·6,96 = 6,012 ≅ 6
n
5
11. A
Alumno
Roberto
X
122
Y
5,7
2
X
XY
14884
695,4
57.
2010 Septiembre MODELO B Pág. 4
Ana
María
Jesús
Inés
n ∑ XY − ∑ X ∑ Y
n ∑ X 2 − (∑ X )
2
=
8,4
6
6,1
8,6
16900
1092
15376
744
15129
750,3
18225
1161
634
b=
130
124
123
135
34,8
80514 4442,7
5·4442,7 − 634·34,8 22213,5 − 22063,2 150,3
=
=
= 0,245
402570 − 401956
614
5·80514 − 634 2
Por tanto:
a = Y − bX = 6,96 − 0,245·126,8 = −24,106 ≅ −24,1
Y ′ = −24,1 + 0,245 X i
12. B
Y ′ = −24,1 + 0,245 X i = −2,41 + 0,245·127 = 7,015 ≅ 7
13. A
10
= 0,10
100
14. B
El número de divorcios es constante y donde hay más parejas, con 1 hijo, el porcentaje de divorcios es
menor.
15. C
40
= 0,8
50
16. B
17. C
0,3+0,2=0,5
18. C
x
-1
0
1
2
3
f(x)
0,2
0,1
0,2
0,3
0,2
1
58.
2010 Septiembre MODELO B Pág. 5
F(1)=f(-1)+f(0)+f(1)=0,2+0,1+0,2=0,5
19. B
x
-1
0
1
2
3
f(x)
0,2
0,1
0,2
0,3
0,2
1
x·f(x)
-0,2
0
0,2
0,6
0,6
1,2
20. A
21. B
z=
X−X
X − 2,2
X − 2,2
⇒ −0,67 =
⇒ −0,67 =
⇒ X − 2,2 = −0,804 ⇒ X = 1,396
SX
1,2
1,44
22. C
Q 3 = P75 = 20,1
0,67 =
20,1 − 17,3
2,8
⇒ 0,67·S x = 2,8 ⇒ S x =
= 4,179
Sx
0,67
23. A
24. A
σX =
25. A
σ
n
=
3
25
= 0,6
59.
2010 Septiembre MODELO C Pág. 1
Tabla 1: Distribución de frecuencias de las
puntuaciones obtenidas por 80 sujetos en un test
de inteligencia emocional. Sabemos que la
desviación típica es igual a 5,86.
X
30-34
35-39
40-44
45-49
50-54
ni
10
15
30
15
10
Tabla 2: En una investigación se estudió la
aceptación o no del tratamiento psicológico por
parte de pacientes que presentaban dos tipos de
trastornos psicológicos. En la tabla de doble
entrada se muestra la distribución conjunta de
frecuencias absolutas de ambas variables.
Trastorno psicológico
Aceptación
del
tratamiento
Sí
No
Tabla 3: Un psicólogo utilizó un test de Analogías
Verbales (X) para predecir el rendimiento en
Lengua de 4º de la ESO (Y). Obtuvo las
puntuaciones de las dos variables en una muestra
aleatoria de 1000 estudiantes. En la tabla se
muestran las medias, las varianza y la correlación
entre ambas variables.
X
Y
Media
30
15
Varianza
64
36
Correlación rXY 0,70
Depresión
Trastorno de
Personalidad
36
4
44
16
Tabla 4: Función de probabilidad de la variable
número de horas diarias de estudio en casa (X)
que dedican los niños de quinto de primaria.
x
2
1
0
f(x)
0,35
0,40
0,25
1. Un estadístico: A) se puede utilizar para estimar algún parámetro de la población; B) adopta el mismo
valor en cada muestra; C) coincide con el parámetro cuando el muestreo es probabilístico
2. La variable tipo de trastorno psicológico de la Tabla 2 presenta un nivel de medida: A) nominal; B)
ordinal; C) de razón
3. Para representar gráficamente la distribución de las puntuaciones en el test de inteligencia emocional
de la Tabla 1 se utiliza el: A) diagrama de dispersión; B) histograma; C) diagrama de sectores.
4. Con los datos de la Tabla 1, ¿qué percentil le corresponde a un alumno con una puntuación de 47?: A)
62; B) 75; C) 78
5. Con los datos de la Tabla 1, el valor de la mediana es: A) 42; B) 44; C) 50
6. Con los datos de la Tabla 1, el índice de asimetría de Pearson es: A) 1; B) -1; C) 0
7. Si tenemos en cuenta la forma de la distribución de la Tabla 1, la medida de variabilidad recomendada
es: A) la mediana; B) la desviación típica; C) el coeficiente de variación
8. La moda de la variable aceptación del tratamiento de la Tabla 2 es: A) sí; B) 80; C) no tiene moda
9. Con los datos de la Tabla 3, ¿qué variable presenta un mayor grado de dispersión?: A) las
puntuaciones en el test de analogías verbales; B) las puntuaciones en lengua; C) las dos variables
presentan el mismo grado de dispersión
10. Con los datos de la Tabla 2, si analizamos la relación entre ambas variables, el índice chi-cuadrado es
igual a: A) 7,25; B) 0; C) 4,17
Clases Online de Estadistica, Analisis de Datos y SPSS
granada.clases.particulares@gmail.com
http://estadistica-spss.blogspot.com/
60.
2010 Septiembre MODELO C Pág. 2
11. Con los datos de la Tabla 3, la covarianza entre ambas variables es igual a: A) 83,6; B) 25,3; C) 33,6
12. La recta de regresión de Yo sobre X siempre pasa por el punto: A) X , Y ; B) 0, Y ; C) X ,0
13. Con los datos de la Tabla 3, la pendiente de la recta de regresión de Y sobre X en puntuaciones
directas es: A) 0,525; B) 0,385; C) 0,495
14. Atendiendo a la Tabla 2, si seleccionamos al azar a un paciente, ¿cuál es la probabilidad de que acepte
el tratamiento y que padezca depresión?: A) 0,36; B) 0,90; C) 0,45
15. Con los datos de la Tabla 2, si se elige al azar un paciente y observamos que padece un trastorno de
personalidad, ¿cuál es la probabilidad de que no acepte el tratamiento?: A) 0,16; B) 0,27; C)0,80
16. Sean A={1,2,3,4}, B={2,4,6,8} y C={3,4,5,6}. La operación (AB)C es: A){4}; B){3,4,6}; C){2,3,4,5,6}
17. Una variable aleatoria es discreta si entre dos valores consecutivos: A) existen infinitos valores
intermedios; B) no existen valores intermedios; C) existen valores intermedios si el conjunto es infinito
18. Sabiendo que las puntuaciones en el test de analogías verbales de la Tabla 3 se distribuyen
normalmente, ¿cuál es la proporción de sujetos con una puntuación entre 22 y 38?: A) 0,84; B) 0,50;
C) 0,68
19. Sea X una variable aleatoria que sigue una distribución 2 podemos
4
A) P(0 X 2) P(2 X 4) ; B) la varianza es igual a 4; C) la media es igual a 4
decir
que:
20. Las puntuaciones de un grupo de sujetos en un test psicomotor se distribuyen según la t de Student con
40 grados de libertad. La probabilidad de obtener puntuaciones mayores que 2,423 es de: A) 0,010; B)
0,005; C) 0,990
21. La probabilidad de que un paciente con esquizofrenia se recupere con un tratamiento determinado es
de 0,40. Un psicólogo está tratando individual e independientemente a 10 pacientes con este trastorno.
La probabilidad de que se recuperen al menos 7 pacientes es de: A) 0,9452; B) 0,0548; C) 0,0123
22. Con los datos de la Tabla 4, la función de distribución de la variable Número de horas diarias de estudio
en casa es: A) 0,25; 0,65 y 1; B) 0,25; 0,40 y 0,35; C) 0,40; 0,60 y 1
23. Con los datos de la Tabla 4, la esperanza matemática de la variable Número de horas diarias de estudio
en casa es igual a: A) 0,70; B) 1,0; C) 1,1
24. Se aplicó un test de fluidez verbal a una muestra de 121 personas extraídas al azar de la población.
Sabemos que en la población el test presenta una varianza de 100 y que en la muestra hemos obtenido
una media de 105. Con un nivel de confianza del 95%, la media poblacional del test estará comprendida
entre los valores: A) 87,19 y 122,81; B) 100,95 y 109,05; C) 103,22 y 106,78
25. Si una variable X presenta una distribución normal en la población, la distribución muestral de la media
de esa variable sigue una distribución: A) normal; B) F de Snedecor; C) chi-cuadrado
Clases Online de Estadistica, Analisis de Datos y SPSS
granada.clases.particulares@gmail.com
http://estadistica-spss.blogspot.com/
61.
2010 Septiembre MODELO C Pág. 3
SOLUCIONES:
1. A
2. A
3. B
4. C
Xi
50-54
45-49
40-44
35-39
30-34
ni
10
15
30
15
10
80
na
80
70
55
25
10
La puntuación X=47 está en el intervalo [45-49].
(Pk L i ) n c
(47 44,5) 15
55
nd
5
I
k
100
100 78,125 78
n
80
Por lo tanto, a la puntuación X=47, le corresponde el percentil 78.
5. A
n 80
40 , por lo que el intervalo crítico es [40-44]
2 2
Xi
50-54
45-49
40-44
35-39
30-34
ni
10
15
30
15
10
80
na
80
70
55
25
10
Xi
52
47
42
37
32
ni
10
15
30
15
10
80
n
nd
Md Li 2
nc
80
25
·I 39,5 2
·5 42
30
6. C
X
50-54
45-49
40-44
35-39
30-34
n X
3360
42
n
80
X Mo 42 42
AS
0
Sx
5'86
X
i
i
Xini
520
705
1260
555
320
3360
AS
X Mo
Sx
Mo=42
En el enunciado se dice que SX=5’86
62.
2010 Septiembre MODELO C Pág. 4
7. B
8. A
9. B
X Y
Media
30 15
Varianza 64 36
SX
8
·100 ·100 26,67
X
30
S
6
CVY Y ·100 ·100 40
Y
15
CV X
CVY CV X
10. C
Tabla de frecuencia conjunta observada
Trastorno psicológico
Aceptación
del
tratamiento
Depresión
Trastorno de
Personalidad
36
4
40
44
16
60
Sí
No
80
20
100
Tabla de frecuencia conjunta esperada
Trastorno psicológico
Aceptación
del
tratamiento
Depresión
T. de Personalidad
32
8
40
48
12
60
Sí
No
X2
(36 32) 2 (44 48) 2 (4 8) 2 (16 12) 2
4'166 4,17
32
48
8
12
11. C
X Y
Media 30 15
Varianza 64 36
S XY rXY S X SY 33,6
12. A
80
20
100
63.
2010 Septiembre MODELO C Pág. 5
13. A
b rXY
SY
6
0,70 0,525
SX
8
14. A
Trastorno psicológico
Aceptación
del
tratamiento
Depresión
Trastorno de
Personalidad
36
4
40
44
16
60
Sí
No
P( Depresión Sí )
80
20
100
36
0,36
100
15. B
P( No / TP)
P( No TP) 0,16
0,26666 0,27
P(TP)
0,60
16. C
17. B
18. C
Nos piden: P(22 X 38) P( X 38) P( X 22)
Para calcular estas proporciones transformamos las puntuaciones a típicas y buscamos en las tablas.
z
22 X 22 30
1 ; P(Z 1) 0,1587
Sx
8
z
38 30
1 ; P(Z 1) 0,8413
8
Por lo tanto:
P(22 X 38) P( X 38) P( X 22) P(Z 1) P(Z 1) 0,8413 0,1587 0,6823 0,68
19. C
20. A
En la tabla VI se observa que P(T 2,423) 0,990 con 40 grados de libertad. Este valor se localiza
en el interior de la tabla para la fila g.l.= 40. La probabilidad aparece en la columna correspondiente
a dicho valor.
Dado que nos piden la probabilidad de obtener puntuaciones mayores, la probabilidad es igual a 10,990=0,010
21. B
p=0,40 P(X 7) 1 P(X 7) 1 F(6) 1 0,9452 0,0548
El valor de F(6) se busca en la tabla II, y es el valor de la intersección de la fila n=10, x=6 con la
columna p=0,40.
22. A
64.
2010 Septiembre MODELO C Pág. 6
x
2
1
0
f(x)
0,35
0,40
0,25
F(x)
1
0,65
0,25
23. C
x
2
1
0
f(x)
0,35
0,40
0,25
xf(x)
0,70
0,40
0
1,1
1,1
24. C
10
103,22
11
10
Ls X + z 1-/2 X 105 1,96 106,78
11
Li X z 1-/2 X 105 1,96
z1-/2 =1,96 → Tabla IV
25. A
65.
Clases Online de Estadistica, Analisis de Datos y SPSS
granada.clases.particulares@gmail.com
http://estadistica-spss.blogspot.com/
66.
Curso 2010-11 EXAMEN MODELO A Pág. 1
INTRODUCCIÓN AL ANÁLISIS DE DATOS
FEBRERO 2011 Código asignatura: 62011037
EXAMEN TIPO TEST MODELO A DURACION: 2 HORAS
Material: Addenda (Formulario y Tablas) y calculadora no programable
Calificación= (0,4 x Aciertos) - (0,2 x Errores)
No debe entregar los enunciados
Tabla 1. Estatura en centímetros de 100
niños de 12 meses de edad.
Estatura
Frecuencia
79-81
10
76-78
25
73-75
45
70-72
Tabla 2. Resultados en un test de fluidez verbal de un
grupo de vendedores de enciclopedias y número de
ventas diarias realizadas.
20
Situación 1. Lanzamos al aire una vez un dado,
definiendo dos sucesos: A = “obtener un número
menor que tres” y B = “obtener un número impar”.
En el diagrama de Venn se representa una
operación entre ambos sucesos.
Vendedor
1
2
3
4
5
Fluidez
verbal (X)
10
50
50
60
20
Ventas
diarias (Y)
2
4
5
3
1
Gráfico 1. Puntuaciones obtenidas en un test de
razonamiento abstracto (X) por un grupo de 100
estudiantes. Se distribuyen normalmente, con una
desviación típica de 37,3. Hay 25 estudiantes que no
alcanzan la puntuación 65 y 25 que superan la
puntuación 115.
1. Mediante la Estadística Descriptiva se organizan y resumen conjuntos de observaciones procedentes de: A)
muestras exclusivamente; B) muestras aleatorias exclusivamente; C) muestras o poblaciones totales.
2. La variable “ventas diarias realizadas” de la tabla 2 presenta un nivel de medida: A) ordinal; B) de intervalo;
C) de razón.
3. El P50 de una distribución se corresponde con el: A) Q1; B) D5; C) Q5.
4. ¿Qué porcentaje de niños de 12 meses de la tabla 1 tienen menor estatura que un niño de esa edad que mide
80 centímetros? A) 50; B) 90; C) 95.
5. Con los datos de la tabla 1, ¿cuál es la moda de la distribución? A) 45; B) 74; C) 80.
6. La amplitud total de la distribución de frecuencias de la tabla 1 es: A) 11; B) 12; C) 100.
7. La desviación típica de la variable estatura de la tabla 1 es un valor entre: A) 2 y 3; B) 4 y 5; C) 7 y 8.
8. La puntuación típica en Fluidez Verbal del vendedor 5 de la tabla 2 necesariamente será: A) negativa; B)
igual a cero; C) positiva.
67.
Curso 2010-11 EXAMEN MODELO A Pág. 2
9. ¿Qué diagrama de dispersión corresponde a los datos presentados en la tabla 2? A) El 1; B) El 2; C) El 3.
Diagrama 1
Diagrama 2
Diagrama 3
10. Entre las variables Fluidez Verbal y Nº de Ventas Diarias de la tabla 2 existe una relación lineal: A) directa;
B) inversa; C) nula.
11. Con los datos de la tabla 2, la pendiente de la recta de regresión que permite pronosticar el número de ventas
diarias (Y) a partir de la fluidez verbal de los vendedores (X) es: A) -0,053; B) 0; C) 0,053.
12. ¿Cuántas ventas diarias se pronosticará a un nuevo aspirante al puesto de vendedor de enciclopedias que ha
obtenido en el test de fluidez verbal una puntuación de 40? A) Entre 0 y 1; B) Entre 2 y 3; C) Entre 3 y 4.
13. La zona sombreada del diagrama de Venn de la Situación 1 representa: A) A ∪ B ; B) A∩B; C) A ∪ B .
14. El espacio muestral descrito en la situación 1 está formado por: A) E= {
,
,
,
,
,
}
B) E= {
,
,
,
,
,
} ; C) E= {
}
15. Con los datos de la situación 1 se define un nuevo suceso C = “obtener un número par”. ¿Cuál es P(A ∪ C) ?
A) 1/6; B) 3/6; C) 4/6.
16. La Dirección General de Tráfico ha estimado que la probabilidad de infracción por “no respetar una señal de
Stop” es 0,2, por “adelantamiento indebido” es 0,3 y por el “resto de infracciones” es 0,5. Además, la
probabilidad de “accidente mortal supuesto no haber respetado el stop” es 0,5, la probabilidad de “accidente
mortal supuesto adelantamiento indebido es 0,4” y la probabilidad de “accidente mortal supuesto otra
infracción es 0,2. ¿Cuál es la probabilidad de que suceda un accidente mortal? A) 0,20; B) 0,32; C) 0,60.
17. Una variable aleatoria discreta X puede adoptar, con la misma probabilidad, los valores 1, 2, 3 y 4. ¿Cuál es su
esperanza matemática? A) 0,25; B) 1; C) 2,5.
18. La función que asocia a cada valor de la variable la probabilidad de que ésta adopte ese valor o cualquier otro
inferior es la función: A) aleatoria; B) de probabilidad; C) de distribución.
19. ¿Cuál es la probabilidad de que un estudiante que responde al azar las 20 preguntas de un examen de
verdadero o falso acierte más de 15? A) 0,0059; B) 0,5900; C) 0,9941.
20. Con los datos del gráfico 1, ¿cuál es la media del test de razonamiento abstracto? A) 50; B) 90; C) 100.
21. Con los datos del gráfico 1, ¿cuál será el percentil 79? A) 81,30; B) 100; C) 120,21.
22. Atendiendo al gráfico 1, ¿Cuántas personas han obtenido una puntuación menor de 100 en el test de
razonamiento abstracto? A) Entre 10 y 30; B) Entre 50 y 70; C) Entre 80 y 100.
23. El muestreo por cuotas es: A) aleatorio; B) probabilístico; C) no probabilístico.
24. Una muestra aleatoria de 16 estudiantes de ESO responde a una prueba de comprensión verbal que se
distribuye normalmente, obteniendo una media de 80 y una varianza insesgada de 100. ¿Entre qué límites se
hallará la verdadera comprensión verbal media de los estudiantes de secundaria, con un nivel de confianza de
0,99? A) 72,63 y 87,37; B); B) 75,62 y 84,38; C) 62,5 y 97,5.
25. Se ha aplicado una nueva terapia de afrontamiento de fobias a 100 pacientes obteniendo un resultado positivo
en 70 de ellos. ¿Cuál es el error de estimación máximo para la proporción de pacientes curados con un nivel
de confianza de 0,95? A) 0,09; B) 0,19; C) 0,30.
Clases Online de Estadistica, Analisis de Datos y SPSS
granada.clases.particulares@gmail.com
http://estadistica-spss.blogspot.com/
68.
Curso 2010-11 EXAMEN MODELO A Pág. 3
SOLUCIONES:
1. C
2. C
3. B
4. C
Estatura
Frecuencia
na
79-81
76-78
73-75
70-72
10
25
45
20
100
90
65
20
La puntuación 80 se encuentra en el intervalo 79-81.
(80 − 78,5)10
(Pk − Li ) ⋅ nc
+ 90
+ nd
3
I
k=
× 100 = 95
× 100 =
n
100
5. B
73 + 75
= 74
2
La moda es el punto medio del intervalo con mayor frecuencia
6. B
AT = X máx − X mín = 81,5 − 69,5 = 12
7. A
Estatura
Xi
Frecuencia
niXi
Xi2
niXi2
79-81
80
77
74
71
10
20
800
1925
3330
1420
6400
5929
5476
5041
64000
148225
246420
100820
100
7475
76-78
73-75
70-72
X=
S
2
x
∑n X
i
=
i
n
nX
=∑
i
2
i
n
25
45
559465
7475
= 74,75
100
− X2 =
559465
− 74,752 = 7 ,09
100
S x = S x2 = 7 ,09 = 2,66
8. A
El vendedor 5 tiene una puntuación en fluidez verbal de 20, que es menor que la media
X=
∑X
n
i
=
X − X 20 − 38
190
el resultado será un
=
= 38 Por tanto, al pasar su puntuación a típica, Z =
Sx
Sx
5
valor negativo, ya que la desviación típica es siempre positiva.
69.
Curso 2010-11 EXAMEN MODELO A Pág. 4
9. B
10. A
11. C
Vendedor
1
2
3
4
5
b=
X
10
50
50
60
20
190
Y
2
4
5
3
1
15
XY
20
200
250
180
20
670
X2
100
2500
2500
3600
400
9100
n ∑ XY − ∑ X ∑ Y 5 × 670 − 190 × 15 500
=
=
= 0 ,053
2
9400
n ∑ X 2 − (∑ X )
5 × 9100 − 1902
12. C
b = 0,053
∑X
190
= 38
Y =
n
5
a = Y − bX = 3-0 ,053 × 38 = 0 ,986
X=
i
=
∑Y
i
n
=
15
=3
5
Y ' = a + bX = 0,986 + 0,053 X = 0,986 + 0,053 × 40 = 3,106
i
13. A
14. A
15. C
P(A ∪ C) = P(A) + P(C) - P(A ∩ C) =
2 3 1 4
+ − =
6 6 6 6
16. B
P(no stop) = 0,2
P(AI) = 0,3
P(resto) = 0,5
P(M│no stop) = 0,5
P(M│AI) = 0,4
P(M│resto) = 0,2
P(M) = P(no stop∩M) + P(AI∩M) + P(resto∩M) = P(no stop)×P(M│no stop) + P(AI)×P(M│AI) +
+ P(resto)× P(M│resto) = 0,2×0,5 + 0,3×0,4 + 0,5×0,2 = 0,1 + 0,12 + 0,1 = 0,32
17. C
X
f(x)
Xf(x)
1
0,25
0,25
0,25
0,25
0,25
2
3
4
µ = ∑ x· f (x ) = 2,5
0,50
0,75
1
2,5
70.
Curso 2010-11 EXAMEN MODELO A Pág. 5
18. C
19. A
P ( X > 15) = 1 − P ( X ≤ 15)
Utilizando la Tabla II comprobamos (para n=20, x=15 y p=0,5) que P ( X ≤ 15) = 0,9941 . Por tanto,
P( X > 15) = 1 − 0,9941 = 0,0059
20. B
X=
65 + 115 180
=
= 90
2
2
21. C
Se busca en la tabla IV de la curva normal la probabilidad 0,79.
0,81 =
P79 − 90
⇒ P33 = 90 + 30,21 = 120,21
37 ,3
22. B
z=
X − X 100 − 90
=
= 0,27
SX
37 ,3
P(z<0,27) = 0,6064
0,6064 × 100 = 60,64 ≈ 61
23. C
24. A
S n −1
= 80 − 2 ,947
n
S
Ls = X + t15;0 ,995 n −1 = 80 + 2 ,947
n
Li = X − t15;0 ,995
10
= 80 − 7 ,37 = 72 ,63
16
10
= 80 + 7 ,37 = 87 ,37
16
25. A
n.c. = 0,95 → z1-α/2 = z0,975 = 1,96 (Tabla IV)
Probabilidad de curar fobia = 70/100=0,70
E máx. = 1,96
0,70(1 - 0,70)
= 0 ,09
100
71.
Febrero 2011 EXAMEN MODELO B Pág. 1
INTRODUCCIÓN AL ANÁLISIS DE DATOS
FEBRERO Código asignatura: 62011037
EXAMEN MODELO B DURACION: 2 HORAS
X
17-20
13-16
9-12
5-8
1-4
Figura 1. Poder adquisitivo de las familias que
participan en una investigación.
Ciudad A
10
20
25
15
10
80
Ciudad B
17
27
15
12
9
80
Tabla 1: Puntuaciones obtenidas en un test de
aptitud numérica por dos grupos de niños de dos
ciudades distintas. Los de la ciudad A, presentan una
media de 10,75, mientras que en los de la ciudad B
la desviación típica es de 5,12.
Tiempo dedicado
X
Y
Media
8
14
Desv. típica
2,83
5,66
Correlación
rXY 0,7
Tabla 2: Datos de 50 personas en un estudio para
predecir la nota en dibujo artístico (Y) a partir de su
nivel de creatividad (X)
x
F(x)
1
0,15
SÍ
No
Éxito
poco
100
600
suficiente
300
280
mucho
200
120
Tabla 3: Éxito en un examen en función del tiempo
dedicado al estudio
2
0,50
3
0,80
4
1
Tabla 4: Función de distribución de la variable aleatoria X
1. La variable Poder adquisitivo de la figura 1, está medida en una escala: A) de razón; B) ordinal; C)
nominal
2. Con los datos de la figura 1, el número de familias con un nivel alto en la variable Poder adquisitivo es
de: A) 5; B) 45; C) 95
3. La estadística inferencial: A) permite analizar descriptivamente la muestra bajo estudio; B) no tiene en
cuenta las leyes de probabilidad; C) permite realizar generalizaciones a la población con una muestra
4. Con los datos de la figura 1, la moda de la variable Poder adquisitivo es igual a: A) 1 “bajo”; B) 2
“medio”; C) 3 “alto”
5. Cuando a un conjunto de puntuaciones X con media igual a 5 se les resta una constante igual a 5, las
puntuaciones resultantes van a tener una media de: A) 5; B) -5; C) 0
6. Con los datos de la tabla 1, el percentil 75 de los niños de la ciudad A es igual a: A) 16; B) 14,5; C)
13,5
7. Por la asimetría que adopta una distribución de frecuencias ha sido necesario utilizar la mediana como
índice de tendencia central. ¿Qué índice de dispersión sería apropiado utilizar?: A) la amplitud semiintercuartil; B) la cuasivarianza; C) el coeficiente de variación
72.
Febrero 2011 EXAMEN MODELO B Pág. 2
8. Con los datos de la tabla 1, la varianza en las puntuaciones de los niños de la ciudad A está
comprendida entre: A) 4 y 6; B) 16 y 18; C) 21 y 23
9. Con los datos de la tabla 1, el índice de asimetría de Pearson de las puntuaciones de los niños de la
ciudad B es igual a: A) -0,19; B) -0,48; C) -0,77
10. El coeficiente de Contingencia puede tomar valores: A) mayores o iguales a 0 y menores que 1; B)
entre -1 y 1; C) entre 0 y 100
11. Con los datos de la tabla 2, la covarianza entre la variable X e Y es: A) 0,49; B) 13,38; C) 11,21
12. Respecto a la tabla 2, la ordenada en el origen y la pendiente de la ecuación de la recta de regresión
para pronosticar la variable Y a partir de la variable X son, respectivamente: A) 2,8 y 1,4; B) -8,4 y
2,8; C) 0,35 y 11,2
13. Considerando los datos de la tabla 2, ¿qué puntuación en Y pronosticaremos a un alumno que tiene
una puntuación en X de 10?: A) 112,35; B) 19,6; C) 16,8
14. Una característica de un experimento aleatorio es que: A) conocemos todos los posibles resultados
antes de realizarse; B) sabemos con certeza el resultado que se va a obtener antes de realizarse; C)
se puede repetir aunque varíen las condiciones
15. Con los datos de la tabla 3, la probabilidad de seleccionar al azar un alumno con “mucha dedicación”
y con éxito en el examen es de: A) 0,333; B) 0,167; C) 0,125
16. Atendiendo a la tabla 3, si se ha elegido al azar un alumno y resulta que no ha tenido éxito en el
examen, ¿cuál es la probabilidad de que su tiempo de dedicación haya sido “poco”?: A) 0,12; B)
0,375; C) 0,60
17. Según la tabla 4, la probabilidad de obtener un valor menor o igual a 2 es: A) 0,35; B) 0,50 C) 0,15
18. Con los datos de la tabla 4, la esperanza matemática de la variable X es: A) 7,55; B) 2,55; C) 3
19. La probabilidad de que un alumno de la UNED compagine los estudios con el trabajo es de 0,80. Si
se seleccionan cuatro alumnos al azar, ¿cuál es la probabilidad de que tres trabajen?: A) 0,3125; B)
0,0256; C) 0,4096
20. En una distribución normal tipificada, la probabilidad de obtener una puntuación igual a la media es:
A) 0; B) 0,5; C)0,1
21. Una variable aleatoria sigue una distribución chi-cuadrado con varianza igual a 4. Los grados de
libertad de esta variable son: A) 8; B) 2; C) 4
22. ¿Cuál de las siguientes distribuciones se emplea habitualmente en pruebas de bondad de ajuste?: A)
chi-cuadrado; B) t de Student; C) F de Snedecor
23. Si la media de la distribución muestral de la proporción es igual a 0,60, ¿cuál es el tamaño mínimo
de la muestra para llevar a cabo la aproximación a la normal en la estimación de la proporción?: A)
21; B) 17; C) 24
24. ¿Cuál de los siguientes tipos de muestreos No es probabilístico?: A) por conglomerados; B)
sistemático; C) por cuotas
25. Uno de los objetivos de una investigación es inferir la puntuación promedio en matemáticas en la
población de niños de cuarto de Educación Primaria en una Comunidad Autónoma. Para ello se
extrae una muestra aleatoria 100 niños y en ella se obtiene una media de 5,4. Si se sabe que la
varianza poblacional es de 1, ¿cuáles son los límites del intervalo de confianza para la media
poblacional con un nivel de confianza de 0,95?: A) 4,975 y 5,825; B) 5,204 y 5,596; C) 5,297 y 5,503
Clases Online de Estadistica, Analisis de Datos y SPSS
granada.clases.particulares@gmail.com
http://estadistica-spss.blogspot.com/
73.
Febrero 2011 EXAMEN MODELO B Pág. 3
SOLUCIONES:
1. B
2. A
3. C
4. B
5. C
6. B
X
17-20
13-16
9-12
5-8
1-4
ni
10
20
25
15
10
80
na
80
70
50
25
0
7. A
8. C
X
17-20
13-16
9-12
5-8
1-4
18,5
14,5
10,5
6,5
2,5
ni
10
20
25
15
10
80
18,5
14,5
10,5
6,5
2,5
ni
17
27
15
12
9
80
342,25
210,25
110,25
42,25
6,25
9. B
X
17-20
13-16
9-12
5-8
1-4
314,5
391,5
157,5
78
22,5
964
3422,5
4205
2756,25
633,75
62,5
11080
74.
Febrero 2011 EXAMEN MODELO B Pág. 4
10. A
11. C
12. A
13. C
14. A
15. C
16. C
17. B
x
F(x)
1
0,15
2
0,50
3
0,80
4
1
18. B
x
F(x)
f(x)
x·f(x)
1
0,15
0,15
0,15
2
0,50
0,35
0,70
3
0,80
0,30
0,9
4
1
0,20
0,8
2,55
75.
Febrero 2011 EXAMEN MODELO B Pág. 5
19. C
P(3 trabajen)= P(1 no trabaje)
P(trabajar)=0,80
P(no trabajar)=0,20
Buscamos en la tabla I con n=4, p=0,20 y X=1
20. A
21. B
22. A
23. A
24. C
25. B
nc 0,95 z1 / 2 1,96
76.
Febrero 2011 EXAMEN MODELO C Pág. 1
INTRODUCCIÓN AL ANÁLISIS DE DATOS
FEBRERO 2011 Código asignatura: 62011037
EXAMEN MODELO C
SOLUCIONES
Situación 1. La gráfica muestra la distribución de
la edad (X) de los 250 sujetos de una
investigación. En el eje horizontal, se recogen los
límites exactos de los intervalos de X y en el eje
vertical la frecuencia absoluta acumulada (na).
Situación 2. En una investigación para estudiar la
relación entre siesta y mejora del aprendizaje,
todos los sujetos realizaron una tarea de
aprendizaje por la mañana. Después de comer, la
mitad de los sujetos se echó la siesta. Finalmente,
todos los sujetos volvieron a realizar la misma
tarea de aprendizaje por la tarde. Los datos
fueron los siguientes:
Mejora del aprendizaje
Sí
Sí
170
30
200
No
70
130
200
240
Siesta
No
160
400
1. El número de sujetos de una muestra que realizaron correctamente una tarea de discriminación en
un experimento psicofísico es 80, lo que representa el 40% de la muestra. ¿Cuál el número de
sujetos de la muestra? A) 200; B) 320 ; C) 500
2. La variable mejora del aprendizaje medida en la situación 2 es: A) dicotómica; B) cuantitativa
discreta; C) cuasicuantitativa
3. En la situación 1, el número de sujetos con edades comprendidas entre 20,5 y 23,5 es A) 22; B) 50;
C) 100
4. En la situación 1, la distribución de la edad de los sujetos: A) no tiene moda; B) tiene una moda; C)
tiene dos modas
5. En la situación 1, el 80% de los sujetos tiene una edad menor que: A) 26,5; B) 28; C) 29,5
6. En la situación 1, la edad media de los sujetos es: A) 25; B) 50; C) 150
7. En la situación 1, la varianza de las edades de los sujetos es: A) 18; B) 22; C) 24
8. En la situación 1, el rango o amplitud total (AT) del conjunto de las edades de los sujetos es: A) 3;
B) 15; C) 50
9. Tenemos 10 puntuaciones cuya media es 15, si sumamos un 5 a cada una de las puntuaciones, la
media de las nuevas puntuaciones es: A) 15; B) 20; C) 75
10. En la situación 2, el valor del estadístico X2 para cuantificar el grado de asociación entre siesta y
mejora del aprendizaje está entre: A) 30 y 40; B) 50 y 60; C) 100 y 110
11. En la situación 2, el valor del coeficiente de contingencia C para cuantificar el grado de asociación
entre siesta y mejora del aprendizaje está entre: A) 0,26 y 0,30; B) 0,33 y 0,36; C) 0, 43 y 0,46
12. La recta de regresión que permite pronosticar el riesgo de padecer una enfermedad coronaria (Y)
en función de la hostilidad (X) es Y’ = 1,1 + 0,9X, ¿cuál es el riesgo de padecer una enfermedad
77.
Febrero 2011 EXAMEN MODELO C Pág. 2
coronaria de una persona que ha obtenido una puntuación X = 8 en hostilidad?: A) 0,9; B) 1,1;
C) 8,3
13. La propiedad 0 ≤ P(A) ≤ 1 es válida: A) sólo para la definición clásica de la probabilidad; B) sólo
para la definición estadística de la probabilidad; C) para las definiciones clásica y estadística de la
probabilidad
14. En una clase, la mitad son chicos y la otra mitad son chicas. La mitad de los chicos y la mitad de las
chicas han elegido inglés como optativa. Si elegimos una persona al azar de esta clase ¿cuál es la
probabilidad de que sea chica y estudie inglés?: A) 0,25; B) 0,50; C) 0,75
15. Con los datos del ejercicio 14, ¿podemos decir que los sucesos “ser chica” y “estudiar inglés” son
independientes: A) no; B) sí; C) no se puede saber con los datos disponibles
16. Una variable aleatoria discreta X toma los valores 0, 1, 2 y 3. Si sabemos que P(X > 2) = 0,125
¿cuál es la probabilidad de que X sea igual a 3?: A) 0,125; B) 0,25; C) 0,875
17. Si lanzamos al aire 10 veces una moneda (no trucada), la varianza de la variable aleatoria “número
de caras” es: A) 2,5; B) 4; C) 10
18. Lanzamos al aire 10 veces una moneda (no trucada), ¿cuál es la probabilidad de que salgan 4
caras? : A) 0,2051; B) 0,3770; C) 0,5000
19. Lanzamos al aire 100 veces una moneda (no trucada), ¿cuál es la probabilidad de que salgan 60
caras?: A) 0,0015; B) 0,0108; C) 0,0225
20. En una población de 2500 personas, las puntuaciones de un test de inteligencia siguen una
distribución normal con media 100 y desviación típica 15. ¿Cuántas personas tienen en el test una
puntuación superior a 130?: A) 15; B) 25; C) 57
21. En una distribución F de Snedecor con 7 grados de libertad en el numerador y 30 en el
denominador, el percentil 5 es: A) 0,296; B) 2,334; C) 3,376
22. La probabilidad de que una variable que sigue una distribución t de Student con 10 grados de
libertad tome el valor -0,7 o uno menor es: A) 0,25; B) 0,50; C) 0,75
23. Para realizar inferencias sobre el parámetro µ con cierta probabilidad: A) necesitamos el error típico
de la media; B) debemos conocer la desviación típica de la población; C) podemos aplicar el
muestreo casual
24. Sabemos que el error típico de la media vale 1,5 y el tamaño de la muestra es 100, ¿cuál es la
desviación típica de la población?: A) 1,5; B) 15; C) 150
25. La amplitud deseada de un intervalo de confianza para la media es 4 para un nivel de confianza
igual a 0,95, ¿cuál debe ser el tamaño de la muestra si la desviación típica de la población es 10?
A) 24; B) 67; C) 96
Clases Online de Estadistica, Analisis de Datos y SPSS
granada.clases.particulares@gmail.com
http://estadistica-spss.blogspot.com/
78.
Febrero 2011 EXAMEN MODELO C Pág. 3
SOLUCIONES:
1. A
ni = 80 pi = 0,40
pi = ni / n
n = ni / pi
n = 80 / 0,40 = 200
2. A
La variable mejora del aprendizaje es una variable cualitativa con dos categorías: sí y no.
3. B
Límites exactos
29,5 – 32,5
26,5 – 29,5
23,5 – 26,5
20,5 – 23,5
17,5 – 20,5
ni
50
50
50
50
50
na
250
200
150
100
50
4. A
La distribución no tiene moda (es amodal) dado que todos los intervalos tienen la misma
frecuencia absoluta.
5. C
En la gráfica de la situación 1 se observa que el 80% de los sujetos tiene una edad menor que
29,5. Obtendríamos el mismo resultado aplicando la siguiente fórmula:
Límites exactos
29,5 – 32,5
26,5 – 29,5
23,5 – 26,5
20,5 – 23,5
17,5 – 20,5
ni
50
50
50
50
50
na
250
200
150
100
50
P80
Li
n·k
nd
100
nc
I 26,5
6. A
X
29,5 – 32,5
26,5 – 29,5
23,5 – 26,5
20,5 – 23,5
17,5 – 20,5
ni
50
50
50
50
50
250
Xi
31
28
25
22
19
ni Xi
1550
1400
1250
1100
950
6250
X
ni Xi
n
6250
250
25
250 80
150
100
50
3
29,5
79.
Febrero 2011 EXAMEN MODELO C Pág. 4
7. A
ni
29,5 – 32,5
26,5 – 29,5
23,5 – 26,5
20,5 – 23,5
17,5 – 20,5
Xi
ni Xi2
50
50
50
50
50
X
31
28
25
22
19
48050
39200
31250
24200
18050
160750
S2
X
ni Xi2
n
X2
160750
250
252
18
8. B
Para una variable continua, la amplitud del intervalo es la diferencia entre el límite exacto superior
y el límite exacto inferior: AT = 32,5 – 17,5 = 15
9. B
X 15
a
5
Y 15 5
20
10. C
Mejora del aprendizaje
Sí
170
x
(80)
240
2
130
(120)
No
(80)
70
Siesta
30
(120)
Sí
No
160
(170 120)2
120
(30 80)2
80
200
200
400
(70 120)2
120
(130 80)2
80
104,17
11. C
C
X2
X
2
n
104,17
104,17 400
0,45
12. C
Y’ = 1,1 + 0,9(8) = 8,3
13. C
El axioma 0 ≤ P(A) ≤ 1 es válido tanto para las definiciones clásica y estadística.
14. A
P(chica) = 0,5
P(chica
P(inglés/chica) = 0,5
inglés) = P(chica) P(inglés/chica) = 0,5 0,5
0,25
80.
Febrero 2011 EXAMEN MODELO C Pág. 5
15. B
P(inglés) = P(chica
inglés) + P(chico
inglés) = 0,25 + 0,25 = 0,50
Los sucesos “ser chica” y “estudiar inglés” son independientes dado que:
P(inglés/chica) = P(inglés)
P(chica
inglés) = P(chica) P(inglés)
16. A
P(X > 2) = P(X = 3) = 0,125
17. A
Binomial con n = 10 y p = 0,5
varianza = npq = 10 0,5 0,5
2,5
18. A
Binomial con n = 10, p = 0,5 y x = 4 (Tabla I)
19. B
Binomial con n=100, p=0,5 y x=60
Aproximación de la binomial a la normal:
Media
np
100·0,5
(60 0,5) 50
5
P
50
Desviación típica
(60 0,5) 50
5
Z
P(19
,
Z
npq
2,1)
100·0,5·0,5
0,9821 0,9713
25
5
0,0108 (Tabla IV)
P(X = 60) = P(1,9 ≤ Z ≤ 2,1) = 0,0108 por aproximación de la binomial a la normal
20. C
(130 100 ))
15
z
P( Z
2
2) 1 P( Z
2) 1 0,9772
0,0228
(Tala IV)
Nº de personas con inteligencia mayor que 130
2500 0,0228
57
21. A
F0,05;7,30 = 1/F0,95;30,7 = 1/3,376 = 0,296 (Tabla VII)
22. A
P(X ≤ -0,7) = 1-P(X ≤ 0,7) = 1-0,75 = 0,25 (Tabla VI con 10 g.l)
23. A
Necesitamos conocer la desviación típica de la distribución muestral de la media para realizar
inferencias.
24. B
X
X
15
,
n
n 100
n
X
100 15 10 15 15
,
,
81.
Febrero 2011 EXAMEN MODELO C Pág. 6
25. C
n.c. = 0,95 → z1-α/2 = z1-0,05/2 = z0,975 = 1,96 (Tabla IV)
Emáx = 4/2 = 2
n
z2
1
2
/2
2
Emáx
1962.102
,
22
96,04
96
82.
Septiembre 2011 EXAMEN MODELO A Pág. 1
INTRODUCCIÓN AL ANÁLISIS DE DATOS
Septiembre 2011 Código asignatura: 62011037
EXAMEN TIPO TEST MODELO A
Gráfica 1: Número de conductas obsesivas observadas durante un día, en una muestra de n enfermos.
Altruismo
Tabla 1: Puntuaciones de 100 niños en un test de Tabla 2. Los 1000 estudiantes de un centro
inteligencia emocional (X) agrupadas en intervalos educativo clasificados según sean o no voluntarios
junto con sus frecuencias absolutas (ni) y sus y según puntúen alto o bajo en altruismo.
frecuencias absolutas acumuladas (na).
Voluntariado
sí
no
X
ni
na
17-20
10
100
Bajo 250
150
13-16
20
90
9-12
42
70
5-8
21
28
Alto
550
50
1-4
7
7
1. Las puntuaciones de una distribución de frecuencias están agrupadas en 4 intervalos ordenados de
menor a mayor, siendo los puntos medios de estos intervalos: 2, 5, 8 y 11. La amplitud de los
intervalos: A) es 2; B) es 3; C) no se puede calcular
2. La gráfica 1 es: A) un histograma; B) un diagrama de dispersión; C) un polígono de frecuencia
3. El número de enfermos de la muestra de la gráfica 1 es: A) 70; B) 80; C) 200
4. En la gráfica 1, la moda es igual a: A) 3; B) 6; C) 70
5. Un niño de la tabla 1 con una puntuación X = 12,7 indica que ese niño tiene una inteligencia
emocional: A) inferior a la media de su grupo; B) igual a la media de su grupo; C) superior a la
media de su grupo
6. Con los datos de la tabla 1, el percentil 75 es: A) 11,5; B) 13,5; C) 15,5
7. La amplitud semi-intercuartil de los datos de la tabla 1 es un valor entre: A) 2 y 3; B) 4 y 5; C) 6 y 7
2
8. La cuasivarianza (S n 1 ) es igual a: A)
nS 2
(n 1)S 2
S2
X
X
; B)
; C) X
n 1
n
n 1
9. Si sumamos un 2 a cada una de las puntuaciones de un conjunto de puntuaciones, la desviación
típica de las nuevas puntuaciones será: A) menor que la desviación típica de las puntuaciones
originales; B) igual a la desviación típica de las puntuaciones originales; C) mayor que la desviación
típica de las puntuaciones originales
Los recortes son una forma práctica de recopilar diapositivas importantes para volver a ellas más tarde. Ahora puedes personalizar el nombre de un tablero de recortes para guardar tus recortes.
Crear un tablero de recortes
Compartir esta SlideShare
¿Odia los anuncios?
Consiga SlideShare sin anuncios
Acceda a millones de presentaciones, documentos, libros electrónicos, audiolibros, revistas y mucho más. Todos ellos sin anuncios.
Oferta especial para lectores de SlideShare
Solo para ti: Prueba exclusiva de 60 días con acceso a la mayor biblioteca digital del mundo.
La familia SlideShare crece. Disfruta de acceso a millones de libros electrónicos, audiolibros, revistas y mucho más de Scribd.
Parece que tiene un bloqueador de anuncios ejecutándose. Poniendo SlideShare en la lista blanca de su bloqueador de anuncios, está apoyando a nuestra comunidad de creadores de contenidos.
¿Odia los anuncios?
Hemos actualizado nuestra política de privacidad.
Hemos actualizado su política de privacidad para cumplir con las cambiantes normativas de privacidad internacionales y para ofrecerle información sobre las limitadas formas en las que utilizamos sus datos.
Puede leer los detalles a continuación. Al aceptar, usted acepta la política de privacidad actualizada.