Hemos actualizado nuestra política de privacidad. Haga clic aquí para revisar los detalles. Pulse aquí para revisar los detalles
Active su período de prueba de 30 días gratis para desbloquear las lecturas ilimitadas.
Active su período de prueba de 30 días gratis para seguir leyendo.
Descargar para leer sin conexión
RDF and graph databases are steadily increasing their adoption and are no longer choices of niche-only communities. For almost 20 years, a constraint language for RDF was a big missing piece in the technology stack and a prohibiting factor for further adoption.
Even though most RDF-based systems were performing data validation and quality assessment, there was no standardized way to define constraints. People were using ad-hoc solutions or schemas and languages that were not meant for validation.
Thankfully, since 2017 there are 2 additions to the RDF technology stack: SHACL & ShEx. Both provide a high level RDF constraint language that people can use to define data constraints (a.k.a. Shapes), each with different strengths.
This talk provides an outline of different types of RDF data quality issues and existing approaches to quality assessment. The goal is to give an overview of the existing RDF validation landscape and hopefully, inspire people on how to improve their RDF publishing workflows.
RDF and graph databases are steadily increasing their adoption and are no longer choices of niche-only communities. For almost 20 years, a constraint language for RDF was a big missing piece in the technology stack and a prohibiting factor for further adoption.
Even though most RDF-based systems were performing data validation and quality assessment, there was no standardized way to define constraints. People were using ad-hoc solutions or schemas and languages that were not meant for validation.
Thankfully, since 2017 there are 2 additions to the RDF technology stack: SHACL & ShEx. Both provide a high level RDF constraint language that people can use to define data constraints (a.k.a. Shapes), each with different strengths.
This talk provides an outline of different types of RDF data quality issues and existing approaches to quality assessment. The goal is to give an overview of the existing RDF validation landscape and hopefully, inspire people on how to improve their RDF publishing workflows.
Parece que ya has recortado esta diapositiva en .
¡Acabas de recortar tu primera diapositiva!
Los recortes son una forma práctica de recopilar diapositivas importantes para volver a ellas más tarde. Ahora puedes personalizar el nombre de un tablero de recortes para guardar tus recortes.La familia SlideShare crece. Disfruta de acceso a millones de libros electrónicos, audiolibros, revistas y mucho más de Scribd.
Cancela en cualquier momento.Lecturas ilimitadas
Aprenda más rápido y de forma más inteligente con los mejores expertos
Descargas ilimitadas
Descárguelo para aprender sin necesidad de estar conectado y desde cualquier lugar
¡Además, tiene acceso gratis a Scribd!
Acceso instantáneo a millones de libros electrónicos, audiolibros, revistas, podcasts y mucho más.
Lea y escuche sin conexión desde cualquier dispositivo.
Acceso gratis a servicios prémium como TuneIn, Mubi y muchos más.
Hemos actualizado su política de privacidad para cumplir con las cambiantes normativas de privacidad internacionales y para ofrecerle información sobre las limitadas formas en las que utilizamos sus datos.
Puede leer los detalles a continuación. Al aceptar, usted acepta la política de privacidad actualizada.
¡Gracias!