Se ha denunciado esta presentación.
Se está descargando tu SlideShare. ×

DSD-INT 2016 Yellow River - Schuurman

Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio

Eche un vistazo a continuación

1 de 25 Anuncio

Más Contenido Relacionado

Presentaciones para usted (20)

A los espectadores también les gustó (14)

Anuncio

Similares a DSD-INT 2016 Yellow River - Schuurman (20)

Más de Deltares (20)

Anuncio

Más reciente (20)

DSD-INT 2016 Yellow River - Schuurman

  1. 1. Impact of peak discharge increase on the channel pattern and dynamics of the Yellow River Filip Schuurman 2 November 2016
  2. 2. 26 mei 2016 The Yellow River (Huang He)  6th Longest river in the World (5500 km)  Large social, economic and geographical value  Dynamic river 2
  3. 3. 26 mei 2016 Water stress in the Yellow River basin 3
  4. 4. 26 mei 20164 Water stress in the Yellow River basin
  5. 5. 26 mei 2016 Hydropower dams and basins 5
  6. 6. 26 mei 20166 Impact of a.o. hydropower dams
  7. 7. 26 mei 2016 South-North Water Transfer project  Sedimentation in the hydropower reservoirs  Water shortage, despite water storage in hydropower reservoirs  Water transfer from wet Yangzte River basin to dry Yellow River basin 7
  8. 8. 26 mei 2016 Research question: How does the higher discharge affect the channel pattern and morphodynamics in the Yellow River? 8
  9. 9. 26 mei 2016 Methods  System analysis:  Field data  Satellite photography  Computer simulations:  Hydrodynamics + sediment transport + morphology  Calibration + validation: 1999 - 2014  Prediction future: 2015 - 2040 9
  10. 10. 26 mei 2016 Settings  Curvilinear, structured grid  2D depth-averaged  Grid resolution sufficient to capture bars  Annual hydrograph based on expected discharge regulation scheme  Sediment inflow equal to local transport capacity  Fine sediment (0.11 mm)  Engelund-Hansen  Variable morphological factor 10
  11. 11. 26 mei 2016 Morphological factor 11
  12. 12. 26 mei 2016 Study reaches  Two study reaches of about 50 km:  Braiding  Meandering 12 Braiding reach Meandering reach
  13. 13. 26 mei 201613
  14. 14. 26 mei 2016 However…  First results give static channels with only morphodynamics in first years  Dry-wet bank erosion mechanism is insufficient  Similar to earlier studies (e.g. Schuurman et al., 2013) 14
  15. 15. 26 mei 2016 Bank erosion in Delft3D  Dry-wet bank erosion mechanism at maximum  Boost of bank erosion by:  Strong spiral flow (Espir = 2)  Strong transverse bed slope effect (alpha = 0.2) 15
  16. 16. 26 mei 2016 Result: Braiding reach: 2000 m³/s
  17. 17. 26 mei 2016 Result: Braiding reach: 4000 m³/s
  18. 18. 26 mei 201618
  19. 19. 26 mei 201619 Result: Meandering reach: 2000 m³/s
  20. 20. 26 mei 2016 Result: Bend cutoffs in meandering reach 20
  21. 21. 26 mei 2016 Result: Meandering reach 21
  22. 22. 26 mei 2016 Result: Effect on sedimentation and erosion 22
  23. 23. 26 mei 2016 Sensitivity: Bed slope parameter 23
  24. 24. 26 mei 2016 Sensitivity: Spiral flow parameterization 24
  25. 25. 26 mei 2016 Summary 25  Higher (peak) discharge had large effect on the river pattern:  Higher braiding intensity  Transformation from meandering to braiding  Severe sedimentation on the floodplains  Without mitigation measures, the transfer of water from the Yangtze River to the Yellow River is expected to have large economic and social impacts  Modelling of channel dynamics required a ‘trick’ for bank erosion, which worked well

×