Presentation by Jian Feng Choo (Technology Centre for Offshore and Marine, Singapore (TCOMS), Singapore), at the Delft3D User Days, during Delft Software Days - Edition 2022. Monday, 14 November 2022.
Presentation by Jian Feng Choo (Technology Centre for Offshore and Marine, Singapore (TCOMS), Singapore), at the Delft3D User Days, during Delft Software Days - Edition 2022. Monday, 14 November 2022.
DSD-INT 2022 Prediction of Wind-Waves Using Long-Short Term Memory (LSTM) Models - Choo
1.
Prediction of Wind-Waves Using
Long-Short Term Memory (LSTM)
Models
Authors:
Jian Feng CHOO (Presenter)
Jeng Hei CHOW
Pavel TKALICH
Technology Centre for Offshore and Marine, Singapore (TCOMS)
2.
2
Contents
➢Introduction
➢Methodology
➢Results
➢Conclusion / Future Works
3.
3
Introduction
➢Introduction
• Objective
• Singapore’s Location
• Singapore’s Monsoon Season
• Long-Short Term Memory (LSTM)
4.
4
Objective
To develop a machine learning model that provides
cheap, fast and accurate prediction of waves for self-
driving vessels.
Singapore is the second largest port in the
world, and a large portion of its revenue is from
import and export.
These accidents are usually caused by human
error or unpredictable/constant changing
weather.
5.
5
Pacific
Ocean
Where is Singapore?
Indian
Ocean
South
China
Sea
6.
6
Singapore’s Monsoon Season
Period:
November to February
The winter air from China
blows across east Asia towards
the tropical ocean and
Australia (Summer).
Period:
June to August
Cold air from Australia
blows towards the
warmer tropical ocean
and the Asia
continent.
7.
7
Long Short Term Memory (LSTM) Neural Network
What is LSTM Neural Network?
• A deep neural network that is capable of learning
long term sequential data.
• LSTM are widely used in sentiment analysis,
language modelling, speech recognition and time
series prediction.
• Examples of applications:
o Netflix recommendations algorithms
o Financial market predictions (Stocks, Bonds,
Housing Pricings, etc)
o Chatbots
8.
8
Methodology
➢Methodology
• Source of Datasets
• Pre-processing
• Models schematics
• Model training parameters
9.
9
Source of Datasets
Parameters Significant Height
of Wind Wave
Wind 10m Above Sea
Level
Source ECMWF ECMWF
Type ERA5 Reanalysis ERA5 Reanalysis
Period 2010 - 2021 2010 - 2021
Temporal
Resolution
Hourly Hourly
Spatial
Resolution
0.5 Deg x 0.5 Deg 0.25 Deg x 0.25 Deg
10.
10
Data Pre-processing
Find strongest
correlation between
two points and its
respective lag.
Time Lag
Time Lag Cross-Correlation
11.
11
Data Pre-processing
U-velocity Wind
V-velocity Wind
Significant
Height of Wind
Wave
Wind Speed
Cross Correlation
between Wind Speed
and Significant Height of
Wind Wave
Cross Correlation
between Wind Direction
and Significant Height of
Wind Wave
Wind Direction
Split data
time series
into
respective
monsoon
seasons
24.
24
N – Highest Correlated Points
Number of Highest Correlated
Points (Input)
RMSE R^2
1 0.07585 0.9548
3 0.07067 0.9613
5 0.06939 0.9618
• Increasing the number of input of highly correlated points
increases the accuracy, but not significant.
25.
25
Conclusion and Future Works
Conclusion
1. LSTM shows promising results to predict wind waves from wind.
2. Increase in observations have no effect in prediction accuracy.
3. Accuracy decreases for increasing ahead prediction.
4. Increasing the number input points with “n” highest correlation
points increases the accuracy, however the computational speed
to train the model increases.
Future Works
1. Embed physics about wind wave interaction into LSTM model.
2. Using ConvLSTM model for 2D time series prediction.
Los recortes son una forma práctica de recopilar diapositivas importantes para volver a ellas más tarde. Ahora puedes personalizar el nombre de un tablero de recortes para guardar tus recortes.
Crear un tablero de recortes
Compartir esta SlideShare
¿Odia los anuncios?
Consiga SlideShare sin anuncios
Acceda a millones de presentaciones, documentos, libros electrónicos, audiolibros, revistas y mucho más. Todos ellos sin anuncios.
Oferta especial para lectores de SlideShare
Solo para ti: Prueba exclusiva de 60 días con acceso a la mayor biblioteca digital del mundo.
La familia SlideShare crece. Disfruta de acceso a millones de libros electrónicos, audiolibros, revistas y mucho más de Scribd.
Parece que tiene un bloqueador de anuncios ejecutándose. Poniendo SlideShare en la lista blanca de su bloqueador de anuncios, está apoyando a nuestra comunidad de creadores de contenidos.
¿Odia los anuncios?
Hemos actualizado nuestra política de privacidad.
Hemos actualizado su política de privacidad para cumplir con las cambiantes normativas de privacidad internacionales y para ofrecerle información sobre las limitadas formas en las que utilizamos sus datos.
Puede leer los detalles a continuación. Al aceptar, usted acepta la política de privacidad actualizada.