Presentacion Plano Numerico.pptx

PLANO NUMÉRICO
Participante:
Doris Suarez
7.374.691
PNF ENTRENAMIENTO DEPORTIVO
CONVENIO GOB.- IDEL- UPTAEB
Febrero 2023
Contenido: Plano Numérico:
1. Distancia.
2. Punto Medio.
3. Ecuaciones y Trazado de Circunferencias.
4. Parábolas.
5. Elipses.
6. Hipérbola.
7. Representar gráficamente las Ecuaciones de las Cónicas.
ACTIVIDAD A REALIZAR
PLANO NUMERICO O CARTESIANO:
Es un sistema de referencias que se encuentra
conformado por dos rectas numéricas, una horizontal y otra
vertical, que se cortan en un determinado punto. A la
horizontal se la llama eje de las abscisas o de las x y al
vertical eje de las coordenadas o de las yes, en tanto, el
punto en el cual se cortarán se denomina origen. La
principal función o finalidad de este plano será el de
describir la posición de puntos, los cuales se encontrarán
representados por sus coordenadas o pares ordenados. Las
coordenadas se formarán asociando un valor del eje x y
otro del eje y.
La finalidad del plano cartesiano es describir la posición
o ubicación de un punto en el plano, la cual está
representada por el sistema de coordenadas.
El plano cartesiano también sirve para analizar
matemáticamente figuras geométricas como la parábola, la
hipérbole, la línea, la circunferencia y la elipse, las cuales
forman parte de la geometría analítica.
DISTANCIA Y PUNTO MEDIO:
El punto medio, es el punto que se encuentra a la misma
distancia de otros dos puntos cualquiera o extremos de un
segmento. Si es un segmento, el punto medio es el que lo divide
en dos partes iguales. Ejemplo; Dados dos puntos A y B del
plano, llamamos distancia de A a B al módulo del vector. La
distancia de A a B la expresaremos por d (A, B). La distancia
entre dos puntos es siempre un número positivo o cero, porqué
también lo es el módulo de cualquier vector.
ECUACIONES Y TRAZADO DE CIRCUNFERENCIAS
La circunferencia se define como el lugar geométrico de los puntos del plano que equidistan de un
punto fijo que llamamos centro.
Una circunferencia queda determinada cuando conocemos:
a) Tres puntos de la misma, equidistantes del centro.
b) El centro y el radio.
c) El centro y un punto en ella.
d) El centro y una recta tangente a la circunferencia.
También podemos decir que la circunferencia es la línea formada por todos los puntos que están a
la misma distancia de otro punto, llamado centro.
Esta propiedad es la clave para hallar la expresión analítica de una circunferencia (la ecuación de la
circunferencia).
Entonces, entrando en el terreno de la Geometría Analítica, (dentro del Plano Cartesiano) diremos
que —para cualquier punto, P (x, y), de una circunferencia cuyo centro es el punto C (a, b) y con
radio r ─, la ecuación ordinaria es:
(x ─ a) 2 + (y ─ b) 2 = r 2
Si el ángulo que forma el plano con la base es menor que el ángulo que forma el plano con la generatriz, tenemos que la
sección será una elipse. Si el plano es paralelo a la generatriz tenemos la parábola. Si el ángulo que forma el plano con la base
es mayor del que forma con la generatriz, tenemos la hipérbola.
Cónicas. La circunferencia, la elipse, la parábola o la hipérbola son curvas planas de todos conocidas. Estas curvas aparecían
ya en la geometría griega y fueron denominadas secciones cónicas, ya que los griegos de la época de Platón consideraban que
tales curvas procedían de la intersección de un cono con un plano.
Como saber si es una parábola o elipse?
Si B 2 – 4 AC es menor que cero, si una cónica existe, está puede ser un círculo o una elipse. Si B 2 – 4 AC es igual a cero, si
una cónica existe, será una parábola.
Es importante señalar en cuanto a la elipse y la hipérbola que la diferencia entre estas dos cónicas es que la elipse es la suma
de la distancia del conjunto de los puntos (x,y) y la hipérbola es la distancia del conjunto de los puntos (x,y). Es una cueva
cerrada, la intersección de un cono circular recto, y un plano no paralelo a su base, el eje o algún elemento del cono.
Se llama cónica a todas las curvas resultantes de las diferentes intersecciones entre un cono y un plano; si dicho plano no pasa
por el vértice, se obtienen las cónicas propiamente dichas. Se clasifican en cuatro tipos:
1. Elipse
2. Parábola
3. Hipérbola
4. Circunferencia
PARABOLA Y ELIPSE
REPRESENTACIONES GRAFICA DE LAS ECUACIONES DE
LAS CONICAS
Una superficie cónica esta engendrada por el giro de una recta g,
que llamamos generatriz, alrededor de otra recta e; eje, con el cual se
corta en un punto V, vértice.
g = generatriz
e= el Eje
V= el vértice
ELEMENTOS DE LAS CÓNICAS
Superficie: una superficie cónica de revolución esta engendrada por la
rotación de una recta alrededor de otra recta fija, llamada eje, a la que corta
de modo oblicuo.
Generatriz: el vértice del punto central Vértice: es un punto central donde se
corta la generatriz.
Hoja: las hojas son las dos parte en las que el vértice divide a la superficie
canónica de revolución.
Sección: se denomina sección cónica a la curva intersección de un cono con
un plano que no pasa por su vértice. En función de la relación existente entre
el ángulo de conicidad y (a)la inclinación del plano respecto al eje del cono
(B) pueden tener diferentes secciones cónicas.
ELIPSE
La elipse es la sección producida en una superficie cónica de revolución
por un plano oblicuo al eje, que no sea paralelo a la generatriz y que forme
con el mismo un ángulo mayor que el que forman eje y generatriz.
La elipse es una curva cerrada.
CIRCUNFERENCIA
La Circunferencia es la sección producida por un plano perpendicular al eje.
La circunferencia es un caso particular de
elipse
PARÁBOLA
La parábola es la sección producida en una superficie cónica de
revolución por un plano oblicuo al eje, siendo paralelo a la
generatriz.
a = B
La parábola es una curva abierta que se prolonga hasta el
infinito
HIPÉRBOLA
La hipérbola es la sección producida en una superficie cónica de
revolución por un plano oblicuo al eje, formando con él un ángulo
menor al que forman eje y generatriz, por lo que incide en las dos
hojas de la superficie cónica
La hipérbola es una curva abierta que se prolonga indefinidamente y
consta de dos ramas separadas
REFERENCIA BIBLIOGRAFICA
- Quillet,a (ED)(1973)enciclopedia autodidacta Quillet – México
- https://concepto de/plano-cartesiano
-https://aga.frba.utn.edu.ar.circunferencia
1 de 13

Recomendados

PLANO NUMERICO.pptx por
PLANO NUMERICO.pptxPLANO NUMERICO.pptx
PLANO NUMERICO.pptxFreddyDuran14
8 vistas13 diapositivas
PLANO NUMERICO LUIS SANCHEZ.pptx por
PLANO NUMERICO LUIS SANCHEZ.pptxPLANO NUMERICO LUIS SANCHEZ.pptx
PLANO NUMERICO LUIS SANCHEZ.pptxLuisSanchezRojas1
4 vistas13 diapositivas
TareaPLANONUMERICOIIunidad.pdf por
TareaPLANONUMERICOIIunidad.pdfTareaPLANONUMERICOIIunidad.pdf
TareaPLANONUMERICOIIunidad.pdfjoseGARCIA126104
4 vistas7 diapositivas
Presentacion 3 por
Presentacion 3Presentacion 3
Presentacion 3AnabelBastardoMontaa
19 vistas11 diapositivas
Plano Numerico por
Plano NumericoPlano Numerico
Plano NumericoGisel Martinez
23 vistas11 diapositivas
PLANO NUMERICO KARLA GARCIA.pptx por
PLANO NUMERICO KARLA GARCIA.pptxPLANO NUMERICO KARLA GARCIA.pptx
PLANO NUMERICO KARLA GARCIA.pptxKarlaGarcia571339
5 vistas10 diapositivas

Más contenido relacionado

Similar a Presentacion Plano Numerico.pptx

Plano Numérico por
Plano NuméricoPlano Numérico
Plano NuméricoDavid Alfonzo Liscano Mogollón
7 vistas11 diapositivas
PLANOS NUMERICOS.pptx por
PLANOS NUMERICOS.pptxPLANOS NUMERICOS.pptx
PLANOS NUMERICOS.pptxyorleannys1
9 vistas11 diapositivas
Plano numerico por
Plano numericoPlano numerico
Plano numericoNombre Apellidos
58 vistas14 diapositivas
plano numerico por
plano numericoplano numerico
plano numericoMaylinAlvaradoMendoz
21 vistas11 diapositivas
Plano Numérico.pdf por
Plano Numérico.pdfPlano Numérico.pdf
Plano Numérico.pdfJonathanQuintero51
16 vistas7 diapositivas
Presentación Jesús Pire.pptx por
Presentación Jesús Pire.pptxPresentación Jesús Pire.pptx
Presentación Jesús Pire.pptxUptaeb
7 vistas13 diapositivas

Similar a Presentacion Plano Numerico.pptx(20)

PLANOS NUMERICOS.pptx por yorleannys1
PLANOS NUMERICOS.pptxPLANOS NUMERICOS.pptx
PLANOS NUMERICOS.pptx
yorleannys19 vistas
Presentación Jesús Pire.pptx por Uptaeb
Presentación Jesús Pire.pptxPresentación Jesús Pire.pptx
Presentación Jesús Pire.pptx
Uptaeb 7 vistas
La S CóNi Ca S por guestd42bc
La S CóNi Ca SLa S CóNi Ca S
La S CóNi Ca S
guestd42bc743 vistas
Rennyscamacho.pdf por Rennys4
Rennyscamacho.pdfRennyscamacho.pdf
Rennyscamacho.pdf
Rennys49 vistas
geometria analitica:Secciones conicas por evevalebola
geometria analitica:Secciones conicas geometria analitica:Secciones conicas
geometria analitica:Secciones conicas
evevalebola5.5K vistas
Presentación de Matematicas-Plano Numerico.pptx por EliomarYajure1
Presentación de Matematicas-Plano Numerico.pptxPresentación de Matematicas-Plano Numerico.pptx
Presentación de Matematicas-Plano Numerico.pptx
EliomarYajure124 vistas

Último

Misión en favor de los poderosos.pdf por
Misión en favor de los poderosos.pdfMisión en favor de los poderosos.pdf
Misión en favor de los poderosos.pdfAlejandrinoHalire
66 vistas10 diapositivas
Tema 3 Modulo IV Redacción de Articulos.pdf por
Tema 3 Modulo IV Redacción de Articulos.pdfTema 3 Modulo IV Redacción de Articulos.pdf
Tema 3 Modulo IV Redacción de Articulos.pdfRevista Crítica con Ciencia (e-ISSN: 2958-9495)
44 vistas11 diapositivas
Tema 6 (anexo 04).- NPS.pdf por
Tema 6 (anexo 04).- NPS.pdfTema 6 (anexo 04).- NPS.pdf
Tema 6 (anexo 04).- NPS.pdfDaniel Ángel Corral de la Mata, Ph.D.
29 vistas18 diapositivas
Concepto de determinación de necesidades.pdf por
Concepto de determinación de necesidades.pdfConcepto de determinación de necesidades.pdf
Concepto de determinación de necesidades.pdfLauraJuarez87
64 vistas6 diapositivas
Aprendiendo a leer :Ma me mi mo mu..pdf por
Aprendiendo a leer :Ma me mi mo mu..pdfAprendiendo a leer :Ma me mi mo mu..pdf
Aprendiendo a leer :Ma me mi mo mu..pdfcamiloandres593920
40 vistas14 diapositivas
Infografia Planificación didactica por Maria Marquez .pdf por
Infografia Planificación didactica por Maria Marquez .pdfInfografia Planificación didactica por Maria Marquez .pdf
Infografia Planificación didactica por Maria Marquez .pdfmarialauramarquez3
54 vistas1 diapositiva

Último(20)

Concepto de determinación de necesidades.pdf por LauraJuarez87
Concepto de determinación de necesidades.pdfConcepto de determinación de necesidades.pdf
Concepto de determinación de necesidades.pdf
LauraJuarez8764 vistas
Infografia Planificación didactica por Maria Marquez .pdf por marialauramarquez3
Infografia Planificación didactica por Maria Marquez .pdfInfografia Planificación didactica por Maria Marquez .pdf
Infografia Planificación didactica por Maria Marquez .pdf
marialauramarquez354 vistas
FORTI-DICIEMBRE.2023.pdf por El Fortí
FORTI-DICIEMBRE.2023.pdfFORTI-DICIEMBRE.2023.pdf
FORTI-DICIEMBRE.2023.pdf
El Fortí157 vistas
Unicómic 25 años: líneas de investigación para la Didáctica de la Lengua y la... por IGNACIO BALLESTER PARDO
Unicómic 25 años: líneas de investigación para la Didáctica de la Lengua y la...Unicómic 25 años: líneas de investigación para la Didáctica de la Lengua y la...
Unicómic 25 años: líneas de investigación para la Didáctica de la Lengua y la...
Infografia María Fuenmayor S _20231126_070624_0000.pdf por mariafuenmayor20
Infografia María Fuenmayor S _20231126_070624_0000.pdfInfografia María Fuenmayor S _20231126_070624_0000.pdf
Infografia María Fuenmayor S _20231126_070624_0000.pdf
mariafuenmayor2034 vistas
S1_CPL.pdf por Conecta13
S1_CPL.pdfS1_CPL.pdf
S1_CPL.pdf
Conecta1354 vistas
Semana de Gestion Escolar Final 2023 GE Ccesa007.pdf por Demetrio Ccesa Rayme
Semana de Gestion Escolar Final 2023  GE  Ccesa007.pdfSemana de Gestion Escolar Final 2023  GE  Ccesa007.pdf
Semana de Gestion Escolar Final 2023 GE Ccesa007.pdf

Presentacion Plano Numerico.pptx

  • 1. PLANO NUMÉRICO Participante: Doris Suarez 7.374.691 PNF ENTRENAMIENTO DEPORTIVO CONVENIO GOB.- IDEL- UPTAEB Febrero 2023
  • 2. Contenido: Plano Numérico: 1. Distancia. 2. Punto Medio. 3. Ecuaciones y Trazado de Circunferencias. 4. Parábolas. 5. Elipses. 6. Hipérbola. 7. Representar gráficamente las Ecuaciones de las Cónicas. ACTIVIDAD A REALIZAR
  • 3. PLANO NUMERICO O CARTESIANO: Es un sistema de referencias que se encuentra conformado por dos rectas numéricas, una horizontal y otra vertical, que se cortan en un determinado punto. A la horizontal se la llama eje de las abscisas o de las x y al vertical eje de las coordenadas o de las yes, en tanto, el punto en el cual se cortarán se denomina origen. La principal función o finalidad de este plano será el de describir la posición de puntos, los cuales se encontrarán representados por sus coordenadas o pares ordenados. Las coordenadas se formarán asociando un valor del eje x y otro del eje y. La finalidad del plano cartesiano es describir la posición o ubicación de un punto en el plano, la cual está representada por el sistema de coordenadas. El plano cartesiano también sirve para analizar matemáticamente figuras geométricas como la parábola, la hipérbole, la línea, la circunferencia y la elipse, las cuales forman parte de la geometría analítica.
  • 4. DISTANCIA Y PUNTO MEDIO: El punto medio, es el punto que se encuentra a la misma distancia de otros dos puntos cualquiera o extremos de un segmento. Si es un segmento, el punto medio es el que lo divide en dos partes iguales. Ejemplo; Dados dos puntos A y B del plano, llamamos distancia de A a B al módulo del vector. La distancia de A a B la expresaremos por d (A, B). La distancia entre dos puntos es siempre un número positivo o cero, porqué también lo es el módulo de cualquier vector.
  • 5. ECUACIONES Y TRAZADO DE CIRCUNFERENCIAS La circunferencia se define como el lugar geométrico de los puntos del plano que equidistan de un punto fijo que llamamos centro. Una circunferencia queda determinada cuando conocemos: a) Tres puntos de la misma, equidistantes del centro. b) El centro y el radio. c) El centro y un punto en ella. d) El centro y una recta tangente a la circunferencia. También podemos decir que la circunferencia es la línea formada por todos los puntos que están a la misma distancia de otro punto, llamado centro. Esta propiedad es la clave para hallar la expresión analítica de una circunferencia (la ecuación de la circunferencia). Entonces, entrando en el terreno de la Geometría Analítica, (dentro del Plano Cartesiano) diremos que —para cualquier punto, P (x, y), de una circunferencia cuyo centro es el punto C (a, b) y con radio r ─, la ecuación ordinaria es: (x ─ a) 2 + (y ─ b) 2 = r 2
  • 6. Si el ángulo que forma el plano con la base es menor que el ángulo que forma el plano con la generatriz, tenemos que la sección será una elipse. Si el plano es paralelo a la generatriz tenemos la parábola. Si el ángulo que forma el plano con la base es mayor del que forma con la generatriz, tenemos la hipérbola. Cónicas. La circunferencia, la elipse, la parábola o la hipérbola son curvas planas de todos conocidas. Estas curvas aparecían ya en la geometría griega y fueron denominadas secciones cónicas, ya que los griegos de la época de Platón consideraban que tales curvas procedían de la intersección de un cono con un plano. Como saber si es una parábola o elipse? Si B 2 – 4 AC es menor que cero, si una cónica existe, está puede ser un círculo o una elipse. Si B 2 – 4 AC es igual a cero, si una cónica existe, será una parábola. Es importante señalar en cuanto a la elipse y la hipérbola que la diferencia entre estas dos cónicas es que la elipse es la suma de la distancia del conjunto de los puntos (x,y) y la hipérbola es la distancia del conjunto de los puntos (x,y). Es una cueva cerrada, la intersección de un cono circular recto, y un plano no paralelo a su base, el eje o algún elemento del cono. Se llama cónica a todas las curvas resultantes de las diferentes intersecciones entre un cono y un plano; si dicho plano no pasa por el vértice, se obtienen las cónicas propiamente dichas. Se clasifican en cuatro tipos: 1. Elipse 2. Parábola 3. Hipérbola 4. Circunferencia PARABOLA Y ELIPSE
  • 7. REPRESENTACIONES GRAFICA DE LAS ECUACIONES DE LAS CONICAS Una superficie cónica esta engendrada por el giro de una recta g, que llamamos generatriz, alrededor de otra recta e; eje, con el cual se corta en un punto V, vértice. g = generatriz e= el Eje V= el vértice
  • 8. ELEMENTOS DE LAS CÓNICAS Superficie: una superficie cónica de revolución esta engendrada por la rotación de una recta alrededor de otra recta fija, llamada eje, a la que corta de modo oblicuo. Generatriz: el vértice del punto central Vértice: es un punto central donde se corta la generatriz. Hoja: las hojas son las dos parte en las que el vértice divide a la superficie canónica de revolución. Sección: se denomina sección cónica a la curva intersección de un cono con un plano que no pasa por su vértice. En función de la relación existente entre el ángulo de conicidad y (a)la inclinación del plano respecto al eje del cono (B) pueden tener diferentes secciones cónicas.
  • 9. ELIPSE La elipse es la sección producida en una superficie cónica de revolución por un plano oblicuo al eje, que no sea paralelo a la generatriz y que forme con el mismo un ángulo mayor que el que forman eje y generatriz. La elipse es una curva cerrada.
  • 10. CIRCUNFERENCIA La Circunferencia es la sección producida por un plano perpendicular al eje. La circunferencia es un caso particular de elipse
  • 11. PARÁBOLA La parábola es la sección producida en una superficie cónica de revolución por un plano oblicuo al eje, siendo paralelo a la generatriz. a = B La parábola es una curva abierta que se prolonga hasta el infinito
  • 12. HIPÉRBOLA La hipérbola es la sección producida en una superficie cónica de revolución por un plano oblicuo al eje, formando con él un ángulo menor al que forman eje y generatriz, por lo que incide en las dos hojas de la superficie cónica La hipérbola es una curva abierta que se prolonga indefinidamente y consta de dos ramas separadas
  • 13. REFERENCIA BIBLIOGRAFICA - Quillet,a (ED)(1973)enciclopedia autodidacta Quillet – México - https://concepto de/plano-cartesiano -https://aga.frba.utn.edu.ar.circunferencia