PART TEST - 1 (PT-1) TOPIC : HEAT AND THERMODYNAMICS (PHYSICS) Duration : 1 Hour Max. Marks : 90 GENERAL INSTRUCTIONS 1. This Question Paper contains 30 objective type questions. 2. Each question has 4 choices (A), (B), (C) and (D), out of which only one is correct. 3. For each question, you will be awarded 3 Marks if you give the correct answer and zero Mark if no answer is given. In all other cases, minus one (–1) Mark will be awarded. Straight Objective Type This section contains 30 Single choice questions. Each question has choices (A), (B), (C) and (D), out of which ONLY ONE is correct. 1. A gas mixture consists of 2 moles of oxygen and 4 moles of argon at temperature T. Neglecting all vibrational modes, the total internal energy of the system is: (A) 4 R T (B) 5 R T (C) 15 R T (D) 11 R T 2. Maxwell’s velocity distribution curve is given for two different temperatures. For the given curves. (A) T1 > T2 (B) T1 < T2 (C) T1 T2 (D) T1 = T2 3. The ratio of translational and rotational kinetic energies at 100 K temperature is 3 : 2. Then the internal energy of one mole gas at that temperature is[R = 8.3 J/mol-K] (A) 1175J (B) 1037.5 J (C) 2075 J (D) 4150J 4. 12 gm He and 4 gm H2 is filled in a container of volume 20 litre maintained at temperature 300 K. The pressure of the mixture is nearly : (A) 3 atm (B) 5 atm (C) 6.25 atm (D) 12.5 atm 5. Which of the following will have maximum total kinetic energy at temperature 300 K. (A) 1 kg H2 (B) 1 kg He (C) 1 kg H + 2 2 1 kg He (D) 2 1 kg H + 4 2 3 kg He 4 6. A ring shaped tube contains two ideal gases with equal masses and atomic mass numbers M1 = 32 and M2 = 28. The gases are separated by one fixed partition P and another movable conducting partition S which can move freely without friction inside the ring. The angle as shown in the figure in equilibrium is: 7 (A) 8 15 (C) 16 8 (B) 7 16 (D) 15 7. In an experiment the speeds of any five molecules of an ideal gas are recorded. The experiment is repeated N times where N is very large. The average of recorded values, is : (A) (B) (C) (D) 8. Temperature at which Fahrenheit and Kelvin pair of scales give the same reading will be: (A) = –40 (B) = 40 (C) = 574.25 (D) 512.45 9. 20 gm ice at –10 ºC is mixed with m gm steam at 100 ºC. The minimum value of m so that finally all ice and steam converts into water is : (Use sice=0.5 cal/gmºC,swater =1 cal/gmºC,L (melting)=80 cal/gm and L (vaporization)=540 cal/gm) 185 135 85 113 (A) 27 gm (B) 17 gm (C) 32 gm (D) 17 gm 10. An ice block at 0°C is dropped from height ‘h’ above the ground. What should be the value of ‘h’ so that it melts completely by the time it reaches the bottom assuming the loss of whole gravitational potential energy is used as heat by the ice ? [Given : Lf = 80 cal/gm] (A) 33.6 m (B) 33.6 km (C) 8 m (D) 8 km 11. n moles of a gas f illed in a container at temperature T is in thermodynamic equilibrium initially. If the gas is compr
PART TEST - 1 (PT-1) TOPIC : HEAT AND THERMODYNAMICS (PHYSICS) Duration : 1 Hour Max. Marks : 90 GENERAL INSTRUCTIONS 1. This Question Paper contains 30 objective type questions. 2. Each question has 4 choices (A), (B), (C) and (D), out of which only one is correct. 3. For each question, you will be awarded 3 Marks if you give the correct answer and zero Mark if no answer is given. In all other cases, minus one (–1) Mark will be awarded. Straight Objective Type This section contains 30 Single choice questions. Each question has choices (A), (B), (C) and (D), out of which ONLY ONE is correct. 1. A gas mixture consists of 2 moles of oxygen and 4 moles of argon at temperature T. Neglecting all vibrational modes, the total internal energy of the system is: (A) 4 R T (B) 5 R T (C) 15 R T (D) 11 R T 2. Maxwell’s velocity distribution curve is given for two different temperatures. For the given curves. (A) T1 > T2 (B) T1 < T2 (C) T1 T2 (D) T1 = T2 3. The ratio of translational and rotational kinetic energies at 100 K temperature is 3 : 2. Then the internal energy of one mole gas at that temperature is[R = 8.3 J/mol-K] (A) 1175J (B) 1037.5 J (C) 2075 J (D) 4150J 4. 12 gm He and 4 gm H2 is filled in a container of volume 20 litre maintained at temperature 300 K. The pressure of the mixture is nearly : (A) 3 atm (B) 5 atm (C) 6.25 atm (D) 12.5 atm 5. Which of the following will have maximum total kinetic energy at temperature 300 K. (A) 1 kg H2 (B) 1 kg He (C) 1 kg H + 2 2 1 kg He (D) 2 1 kg H + 4 2 3 kg He 4 6. A ring shaped tube contains two ideal gases with equal masses and atomic mass numbers M1 = 32 and M2 = 28. The gases are separated by one fixed partition P and another movable conducting partition S which can move freely without friction inside the ring. The angle as shown in the figure in equilibrium is: 7 (A) 8 15 (C) 16 8 (B) 7 16 (D) 15 7. In an experiment the speeds of any five molecules of an ideal gas are recorded. The experiment is repeated N times where N is very large. The average of recorded values, is : (A) (B) (C) (D) 8. Temperature at which Fahrenheit and Kelvin pair of scales give the same reading will be: (A) = –40 (B) = 40 (C) = 574.25 (D) 512.45 9. 20 gm ice at –10 ºC is mixed with m gm steam at 100 ºC. The minimum value of m so that finally all ice and steam converts into water is : (Use sice=0.5 cal/gmºC,swater =1 cal/gmºC,L (melting)=80 cal/gm and L (vaporization)=540 cal/gm) 185 135 85 113 (A) 27 gm (B) 17 gm (C) 32 gm (D) 17 gm 10. An ice block at 0°C is dropped from height ‘h’ above the ground. What should be the value of ‘h’ so that it melts completely by the time it reaches the bottom assuming the loss of whole gravitational potential energy is used as heat by the ice ? [Given : Lf = 80 cal/gm] (A) 33.6 m (B) 33.6 km (C) 8 m (D) 8 km 11. n moles of a gas f illed in a container at temperature T is in thermodynamic equilibrium initially. If the gas is compr