Publicidad

CHEMISTRY-13th Paper-II.pdf

Educator en Study Innovations
30 de Mar de 2023
CHEMISTRY-13th Paper-II.pdf
CHEMISTRY-13th Paper-II.pdf
CHEMISTRY-13th Paper-II.pdf
CHEMISTRY-13th Paper-II.pdf
Publicidad
CHEMISTRY-13th Paper-II.pdf
Próximo SlideShare
01-chemical-equlibrium.pdf01-chemical-equlibrium.pdf
Cargando en ... 3
1 de 5
Publicidad

Más contenido relacionado

Publicidad

CHEMISTRY-13th Paper-II.pdf

  1. PAPER-2 PART-A Select the correct alternative. (More than one is/are correct) [3 × 6 = 18] There is NEGATIVE marking. 1 mark will be deducted for eachwrong answer. Q.4 Stepwise hydrolysis of P4O10 takes place viaformation of (A*) Tetrametaphosphoricacid (B*) Tetrapolyphosphoricacid (C*) Pyrophosphoric acid (D*) Orthophosphoricacid Q.5 Monochlorinationof(S)-2-chlorobutanecangive (A) (S)-1,2-dichlorobutane (B*) (R)-1,2- dichlorobutane (C*) (2R, 3S)-2,3-dichlorobutane (D) (2R,3R)-2,3-dichlorobutane [Sol.       h / Cl2 + + + ] Q.6 Select the correct statement about the compound NO[BF4] (A*) It has 5  and 2  bond (B)Nitrogen-oxygen bondlengthis higherthannitricoxide(NO) (C*) It is a diamagnetic specie (D) B–Fbond length in this compound is lower than in BF3.
  2. PART-B MATCH THE COLUMN [3 × 8 = 24] INSTRUCTIONS: Column-Iand column-IIcontainsfour entries each. Entries ofcolumn-Iareto bematchedwith some entriesofcolumn-II.Oneormorethanoneentriesofcolumn-Imayhavethematchingwiththesameentries ofcolumn-IIandoneentryofcolumn-Imayhaveoneormorethanonematchingwithentriesofcolumn-II. Q.4 Matchthecolumn: ColumnI ColumnII (A) (P) Conformationofmaximumtorsionalstrain (B) (Q) Conformationwithstrongintramolecularhydrogenbond (C) (R) Highestboilingpoint (D) (S) ConformationofminimumVanderWaalstrain [Ans. (A) R, (B) Q, (C) P, (D) S ] Q.5 ColumnI ColumnII (Co-ordinationcompound) (Type of isomerism shown) (A) Na2[Pt(SCN)2(Ox)2] (P) Ionizationisomerism (B) [CrCl2(NH3)4]NO3 (Q) Linkageisomerism (C) [Pt(NO2)(Gly)(NH3)] (R) Geometricalisomerism (D) K3[Fe(OH)2(C2O4)2] (S) Opticalisomerism [Ans. (A) Q,R,S (B) P,R (C) Q,R (D) R,S] Q.6 Matchthe names ofcarboxylicacids in columnIwith pka valuein column II. ColumnI ColumnII (A) Benzoicacid (P) 4.17 (B) Ethanoicacid (Q) 4.14 (C) o-methylbenzoicacid (R) 4.74 (D) p-flourobenzoicacid (S) 3.91 [Ans. (A) P, (B) R, (C) S, (D) Q] [Sol. With increase in electronwithdrawing groups acidity(Ka) ofcarboxylic acid increases decreasingthe value of pKa ]
  3. PART-C SUBJECTIVE: [5 × 10 = 50] Q.6 Calculate the Hvaporization [CH3COOH( l )] in kJ/mol Given data Hsolution [KF. CH3COOH(s)] in glacial acetic acid = –3 kJ/mole Hsolution [KF(s)] in glacial acetic acid = +35 kJ/mole The strength of H-bond between F–(g) and CH3COOH (g) = +46 kJ/mole Lattice enthalpyof KF.CH3COOH(s) = +734 kJ/mole Lattice Enthalpyof KF(s) = +797 kJ/mole [Ans. 21 kJ/mole] [Sol. –3 = +734 + 46 –797 + 35 – x x = 21 Hvaporization [CH3COOH( l )]= +21 kJ/mole ] Q.7 Thegaseousdecomposition reaction A(g)  2B(g) + C(g) is observedtofirst orderovertheexcess ofliquidwaterat 25°C, it is found that attheend of10min, the total pressureof system is 188torr and after verylongtime it is 388 torr. Calculate rate constant of the reaction (in hr–1) Given : vapour pressure of H2O at 25° is 28 torr (ln2 = 0.7, ln3 = 1.1, ln10 = 2.3) [Ans. 1.2 hr–1] [Sol. A(g)  2B(g) + C(g) Let initialpressureis P0 P0 0 0 After10min (P0–x) 2x x A.V.L.T. 0 2P0 P0 as per given (P0 – x) + 2x + x + vapour pressure of H2O = 188 P0 + 2x = 160 ...(1) & 3P0 + 28 = 388 3P0 = 360 P0 = 120 ...(2)  2x = 40  x = 20 torr So, K =          x P P n t 1 0 0 l =       100 120 n 10 1 l = 10 1 × (ln 4 + ln 3 – ln 10) = 0.02 min–1 = 1.2 hr–1 ]
  4. Q.8 When1moleofA(g)is introducedinaclosed rigid1litrevesselmaintained atconstanttemperaturethe followingequilibriaareestablished. A(g) l B(g) + C(g) : 1 C K C (g) l D(g) + B(g) : 2 C K The pressure at equilibrium is twicetheinitial pressure.Calculatethevalue of 1 2 C C K K if eq eq ] B [ ] C [ = 5 1 [Ans. 4] [Sol. A(g) l B(g) + C(g) : 1 C K 1–x (x+y) (x–y) C (g) l D(g) + B(g) : 2 C K (x–y) y (y+x) ntotal = (1 – x) + (x + y)(x – y) + y 2 = 1 + x + y  x + y = 1 ...(1) Also, y x y x   = 5 1  5x – 5y = x + y  4x = 6y  x = 1.5 y ...(2) From eq. (1) & (2) 1.5y + y = 1  y = 0.4 So, x = 0.6 Now, 1 C K = ) x 1 ( ) y x )( y x (    = 4 . 0 2 . 0 1 = 2 1 2 C K = ) y x ( ) y x ( y   = 2 . 0 1 4 . 0  = 2 Thus, 1 2 C C K K = 4 ]
  5. Q.9 Total entropychange (system + surrounding) for the process H2O (l ,–8°C) H2O (s, –8°C) at 1 atm and – 8°C is 1 J/K mol. Find Cp,m (H2O, l) in J/K mol. Given : Hmelting(at –8°C) = + 5784.95 J/mol, Hmelting(at 0°C) =6006 J/mol Cp,m(H2O, s) = 36 J/K mol ln       265 273 = 0.03 [Ans. 75 ] [Sol. H2O(l) at –8°C  H2O(s) at –8°C Ssystem = Cp,m(l)       265 273 n l – 273 6006 + Cp,m(s)       273 265 n l Ssystem = (Cp,m(l) – Cp,m(s))       265 273 n l – 22 = (Cp,m(l) – 36) × 0.03 – 22 Ssurr = 265 95 . 5784 = 21.83 Ssystem + Ssurr = Stotal 1 = (Cp,m(l) – 36) × 0.3 – 22 + 21.83 1.17 = (Cp,m(l) – 36) × 0.03 Cp,m(H2O, l) = 75 J/K-mol ] Q.10 Theequilibriumconstant Kp forthe reaction N2O4 (g) l 2NO2(g) is 4.5 at temperature T. What wouldbetheaveragemolarmass (in gm/mol)of anequilibrium mixtureofN2O4 &NO2 formed bythe dissociation of pure N2O4 at a total pressure of 2 atm at temperature T. [Ans. 57.5] [Sol. Let initial mole of N2O4 (g)is one N2O4 (g) l 2NO2 (g) Initialmoles 1 0 Atequilibrium 1 –  2 Total no. ofmoles at equilibrium =1 +  Now, 4 2O N P = P 1 1      ; 2 NO P = P ) 1 ( 2     Hence Kp = 4 2 2 O N 2 NO P P = P ) – 1 ( 4 2 2     4.5 = 2 ) – 1 ( 4 2 2    4.5 – 4.5 2 = 82 ; 12.5 2 = 4.5 2 = 9/25 ;  = 3/5 = 0.6 Mole fractionof N2O4: 4 2O N x =     1 1 = 6 . 1 4 . 0 = 0.25  2 NO x = 0.75 Average molar mass of mixture = 0.25 × 92 + 0.25 × 46 = 57.5 ]
Publicidad