(BRUSH UP YOUR CONCEPTS) 1. Two smooth spheres A and B, of equal radius but mass m and M, are free to move on a horizontal table. A is projected with speed u towards B which is at rest. On impact, the line joining their centres is inclined at an angle to the velocity of A before impact. If e is the coefficient of restitution between the spheres, find the speed with which B begins to move. If A’s path after impact is perpen- dicular to its path before impact, show that tan 2 eM m . M m 2. A man of mass m moves on a plank of mass M with a constant velocity urel . with respect to the plank, as shown in figure. (i) If the plank rests on a smooth horizontal surface, then deter- mine its velocity with respect to ground. (ii) If the man travels a distance L with respect to the plank, then L find the distance traveled by the plank with respect to ground. 3. An imperfectly elastic particle is projected from a point in a horizontal place with velocity u at an angle to the horizon. If e be the coefficient of restitution, then calculate, (i) the time after which it ceases to rebound from the plane (ii) its range (iii) tangent to the angle of projection at the nth rebound. 4. The centres of the spheres 1, 2 and 3 lie on a single straight line. Sphere 1 is moving with an (initial) velocity v1 directed along this line and hits sphere 2. Sphere 2, acquiring after collision a velocity v2 , hits sphere 3. Both collisions are absolutely elastic . What must be the mass of sphere 2 for the sphere 3 to acquire maximum V1 1 2 m3 m1 2 velocity (the masses m1 and m3 of spheres 1 and 3 are known)? 5. A small empty bucket of mass M is attached to a long inextensible cord of length l. The bucket is released from rest when the cord is in a horizontal position. In its lowest position the bucket scoops up a mass m of water, what is the height of the swing about the lowest position? 6. Two particles A and B lighter particle has mass m, are released from infinity. They move towards each other under their mutual force of attraction. If their speeds are v and 2v respectively find the K.E. of the system. 7. A steel ball with a mass of m = 20 g falls from a height of h1 = 1 m onto a steel plate and rebounds to a height of h2 = 81 cm. Find: the impulse of the force received by the plate during the impact. 8. Two identical blocks A and B of mass M each are kept on each other on a smooth horizontal plane. There exists friction between A and B. If a bullet of mass m hits the lower block with a horizontal velocity v and gets embedded into it. Find the work done by friction between A and B. 9. A ball is dropped from a height h above the landing and bounces down the flight of stairs. Denoting by e the coefficient of restitu- tion, determine the value of h for which the ball will bounce the same height above each step. 10. A wedge of mass M and angle can move freely on a smooth horizontal plane. A smooth sphere of mass m strikes it in a directio