DPP. NO.-31 Select the correct alternative : (Only one is correct) 10 Q.190/-1 The value of cot 7 2 10 + tan 67 2 10 – cot 67 2 10 – tan7 2 is : (A) a rational number (B*) irrational number (C) 2(3 + 2 ) (D) 2 (3 – ) Q.2 817/ph-1 x R the greatest and the least values of y = 1 cos 2x + sin x are respectively 2 (A) 3 , 1 (B*) 3 , 3 (C) 1 , 3 (D) 1 , - 3 4 2 4 2 2 2 2 cos 2x + 2 sin x [Sol. E = 2 1 2 sin 2 x + 2 sin x = 2 2 sin 2 x 2 sin x +1 = 2 1 2 3 3 1 2 = sin x 2 4 = sin x 4 2 Emax = 3/4 Emin = 3/4 – (–3/2)2 = 3/4 –9/4 = – 3/2 ] x2 x 1 Q.370/-1 If tan = x2 x +1 and tan = 2x2 2x +1 (x 0, 1), where 0 < , < 2 , then tan ( + ) has the value equal to : 3 (A*) 1 (B) – 1 (C) 2 (D) 4 [Sol. x2 – x = t ; tan = t t +1 ; tan = 1 2t +1 tan ( + ) = tan + tan t + 1 = t +1 2t +1 = t(2t + 1) + t +1 2t 2 + 2t +1 = 2 = 1 1 tan tan tan ( + ) = 1 ] 1 t . t +1 1 2t +1 (2t + 1) (t +1) t 2t + 2t +1 Q.4100/-1 In a triangle ABC, angle A is greater than angle B . If the measures of angles A & B satisfy the equation, 3 sin x 4 sin3 x K = 0, 0 < K < 1, then the measure of angle C is (A) /3 (B) /2 (C*) 2/3 (D) 5/6 [ JEE ’90 , 2 ] [Sol. k = sin3A = sin3B 3A = – 3B A+ B = /3 C = 2/3 Ans ] Q.5 The values of x smaller than 3 in absolute value which satisfy the inequality log (x 2ax) > 1 for (2ax ) all a > 5 is (A) –2 < x < 3 (B) –3 < x < 3 (C) –3 < x < 0 (D*) –3 < x < –1 [Hint: log 2 (x 2ax) > 1, a > 5 & –3 < x < 3 note that 2a – x2 > 1 for all a > 5 & x ( –3, 3) Hence the above inequality will be true if (x – 2ax) > 2a – x2 or x – 2ax + x2 – 2a > 0 x(1+x) –2a (1 + x) > 0 (x + 1) (x – 2a) > 0 x (–3, –1) D ] Q.6 The exact value of cos 2 cosec 3 + cos 6 cosec 9 + cos 18 cosec 27 is equal to 8/-1 28 28 28 28 28 28 (A) – 1/2 (B) 1/2 (C) 1 (D*) 0 cos2x cos2x sin x 1 Lsin 3x sin x 1 [Hint: put 28 = x , T1 = sin 3x = sin 3x sin x = 2 sin 3x sin x = 2 cosecx cosec 3x etc. ] 1ab b = log605 log12x = 2(1 b) = 2(1 log60 5) log12x = log1444 = log122 x = 2 Ans. ] Q.820 Smallest positive x satisfying the equation cos33x + cos35x = 8 cos34x · cos3x is (A) 15° (B*) 18° (C) 22.5° (D) 30° [Sol. cos33x + cos35x = (cos 5x + cos 3x)3 cos33x + cos35x = cos35x + cos33x + 3 cos 5x cos 3x (cos 5x + cos 3x) (3 cos 3x · cos 5x) (2 cos 4x · cos x) = 0 cos x · cos 3x · cos 4x · cos 5x = 0 x = (2n + 1) 2 , (2n + 1) 6 , (2n + 1) 8 , (2n + 1) 10 smallest + ve values of x is 10 i.e. 18° Ans. ] AB AF Q.920 Let ABCDEFGHIJKL be a regular dodecagon, then the value of AF + AB is (A*) 4 (B) 2 (C) 2 (D) 2 [Sol. In OAB = 2R ....(1) (AB = a) AB = a = 2R sin 12 again In OAF = 2R