DPP-7 - 8 CK -Answer

STUDY  INNOVATIONS
STUDY INNOVATIONSEducator en Study Innovations

DAILY PRACTICE PROBLEMS ( DPP) Subject : Physical/Inorganic Chemistry Date : DPP No. 7 Class : XII Course : DPP No. -1 Total Marks : 42 Max. Time : 42 min. Single choice Objective ('–1' negative marking) Q.1 to Q.6 (3 marks 3 min.) [18, 18] Subjective Questions ('–1' negative marking) Q.7 to Q.12 (4 marks 4 min.) [24, 24] Integer Type Questions ('–1' negative marking) Q.13 (4 marks 4 min.) [4, 4] ANSWER KEY DPP No.7 1. (B) 2. (C) 3. (B) 4. (D) 5. (B) 1  P0  6. (D) 7. Rate = k [A]1 [B]2, k = 5 × 10–2 M–2 hr–1 8. k = t ln  P   t  1  P0  1  P  1  3P  9. k = t ln  2P – P  10. k = t ln  P – P  11. 3 12. k = t ln  5(P  P )   0 t    t    t  13. (i) 3. (ii) 5 (iii) 1 1. Which of the following leads to bonding? s-orbital p-orbital (A) (B*) s-orbital p-orbital (C) p-orbital p-orbital (D) fuEufyf[kresalsdkSuca/kcukusdsi{kesagS& (A) (B*) (C) (D) 2. Which one of the following is the correct set with respect to molecule, hybridization and shape? (A) BeCl , sp2, linear (B) BeCl , sp2, triangular planar 2 2 (C*) BCl , sp2, triangular planar (D) BCl , sp3, tetrahedral 3 3 fuEufyf[kresalsdkSulklewgv.kq]ladj.krFk vkd`frdslanHkZesalghgS& (A)BeCl ,sp2,js[kh; (B) BeCl ,sp2,f=kdks.kh; leryh; 2 2 (C*) BCl ,sp2, f=kdks.kh; leryh; (D) BCl , sp3, prq"Qydh; 3 3 Sol. Cl–Be–Cl (sp, linear) ; (sp2, triangular planar) 3. Number of natural life times (Tav) required for a first-order reaction to achieve 99.9% level of completion is : izFkedksfVdhvfHkfØ;kdsfy,99.9%rdvfHkfØ;kdsiw.kZgksusdsfy,vko';dizkd`frdvk;qdky(Tav)dhla[;kgS (A) 2.3 (B*) 6.9 (C) 9.2 (D) 0.105 2.303 Sol. We know, k = t log a (a – x) 99.9% completion a = 100 a – x = (100 – 99.90) = .10 2.303 Then t = k  100  log  .10     1 t = 2.303 × 3 × k  ; t = 6.9 × tav  2.303 Sol. getkursgS] k = t  log a (a – x) 99.9%iw.kZrkdsfy, a = 100 a – x = (100 – 99.90) = .10 2.303 rks t = k  100  log  .10     1 t = 2.303 × 3 × k  ; t = 6.9 × tav   4. Consider the plots for the types of reaction nA  B + C d [A] – dt [A] 1 [A] These plots respectively correspond to the reaction orders : nA B+CvfHkfØ;kdsfofHkUuçdkjksadsfy,fuEuvkjs[k sijfopkjdhft,% d [A] – dt [A] 1 [A] ;gvkjs[kØe'k%fdldksfVdhvfHkfØ;klslEcaf/krgSA (A) 0, 2, 1 (B) 0, 1, 2 (C) 1, 1, 2, (D*) 1, 0, 2 Sol. nA d[A]  B + C dt  [A] (Ist order) [A]  t (zero order) 1 [A]t  t (2nd order) 5. Reaction A + B  C + D follows rate law, r = k[A]1/2 [B]1/2 starting with 1 M of A and B each. What is the time taken for concentration of A become 0.1 M ? Given k = 2.303 × 10–2 sec–1. (A) 10 sec (B*) 100 sec (C) 1000 sec (D) 434 sec vfHkfØ;kA+BC+Dnjfu;er=k[A]1/2 [B]1/2 dkvuqlj.kdjrhgSA;fnArFkkBçR;sd dks1MlkanzrkdslkFk vfHkfØ;k çkjEHkdhtkrhgSAdhlkanzrk0.1Mgksusesafdrukle;yxsxk\ Given k = 2.303 × 10–2 sec–1. (A) 10 lSd.M (B*) 100 lSd.M (C) 1000 l

DPP No. -1
Total Marks : 42 Max. Time : 42 min.
Single choice Objective ('–1' negative marking) Q.1 to Q.6 (3 marks 3 min.) [18, 18]
Subjective Questions ('–1' negative marking) Q.7 to Q.12 (4 marks 4 min.) [24, 24]
Integer Type Questions ('–1' negative marking) Q.13 (4 marks 4 min.) [4, 4]
ANSWER KEY DPP No.7
1. (B) 2. (C) 3. (B) 4. (D) 5. (B)
6. (D) 7. Rate = k [A]1
[B]2
, k = 5 × 10–2
M–2
hr–1
8. k =
t
1
ln 







t
0
P
P
9. k =
t
1
ln 







t
0
0
P
–
P
2
P
10. k =
t
1
ln 









t
P
–
P
P
11. 3 12. k =
t
1
ln 










)
P
P
(
5
P
3
t
13. (i) 3. (ii) 5 (iii) 1
1. Which of the following leads to bonding?
(A) +
–
s-orbital p-orbital
(B*) + –
s-orbital p-orbital
(C)
+
+ –
–
p-orbital
p-orbital
(D)
f
u
E
u
f
y
f
[
k
re
s
al
sd
k
S
uc
a
/
kc
u
k
u
sd
si
{
ke
s
ag
S
&
(A) (B*)
(C) (D)
2. Which one of the following is the correct set with respect to molecule, hybridization and shape?
(A) BeCl2
, sp2
, linear (B) BeCl2
, sp2
, triangular planar
(C*) BCl3
, sp2
, triangular planar (D) BCl3
, sp3
, tetrahedral
f
u
E
u
f
y
f
[
k
re
s
al
sd
k
S
u
l
kl
e
w
gv
.
k
q
]l
a
d
j
.
kr
F
k
kv
k
d
`
f
rd
sl
a
n
H
k
Ze
s
al
g
hg
S
&
(A)BeCl2
,sp2
,js[kh; (B)BeCl2
,sp2
,f=kdks.kh;leryh;
(C*)BCl3
,sp2
, f=kdks.kh;leryh; (D)BCl3
,sp3
, prq"Qydh;
Sol. Cl–Be–Cl (sp, linear) ; (sp2
, triangular planar)
3. Number of natural life times (Tav
) required for a first-order reaction to achieve 99.9% level of completion is :
i
z
F
k
ed
k
s
f
Vd
hv
f
H
k
f
Ø
;
kd
sf
y
,99.9%r
dv
f
H
k
f
Ø
;
kd
si
w
.
k
Zg
k
s
u
sd
sf
y
,v
k
o
'
;
di
z
k
d
`
f
r
dv
k
;
q
d
k
y(Tav
)d
hl
a
[
;
kg
S
(A) 2.3 (B*) 6.9 (C) 9.2 (D) 0.105
Sol. We know, k =
t
303
.
2
log )
x
–
a
(
a
99.9% completion
a = 100
a – x = (100 – 99.90) = .10
DAILY PRACTICE PROBLEMS (DPP)
Subject : Physical/Inorganic Chemistry Date : DPP No. 7 Class : XII Course :
Then t =
k
303
.
2
log 





10
.
100
t = 2.303 × 3 × 





k
1
; t = 6.9 × tav
Sol. g
et
k
u
r
sg
S
] k =
t
303
.
2
log )
x
–
a
(
a
99.9%i
w
.
k
Z
r
kd
sf
y
,
a = 100
a – x = (100 – 99.90) = .10
r
k
s t =
k
303
.
2
log 





10
.
100
t = 2.303 × 3 × 





k
1
; t = 6.9 × tav
4. Consider the plots for the types of reaction nA  B + C
–
dt
]
A
[
d
[A]
]
A
[
1
These plots respectively correspond to the reaction orders :
nAB+Cv
f
H
k
f
Ø
;
kd
sf
o
f
H
k
U
uç
d
k
j
k
s
ad
sf
y
,f
u
E
uv
k
j
s
[
k
k
si
jf
o
p
k
jd
h
f
t
,%
–
dt
]
A
[
d
[A]
]
A
[
1
;
gv
k
j
s
[
kØ
e
'
k
%f
d
ld
k
s
f
Vd
hv
f
H
k
f
Ø
;
kl
sl
E
c
a
f
/
k
rg
S
A
(A) 0, 2, 1 (B) 0, 1, 2 (C) 1, 1, 2, (D*) 1, 0, 2
Sol. nA 
 B + C
dt
]
A
[
d

 [A] (Ist
order)
[A]t
 t (zero order)
t
]
A
[
1
 t (2nd
order)
5. Reaction A + B  C + D follows rate law, r = k[A]1/2
[B]1/2
starting with 1 M of A and B each. What is the time taken
for concentration of A become 0.1 M ?
Given k = 2.303 × 10–2
sec–1
.
(A) 10 sec (B*) 100 sec (C) 1000 sec (D) 434 sec
vfHkfØ;kA+BC+Dnjfu;er=k[A]1/2
[B]1/2
dkvuqlj.kdjrhgSA;fnArFkkBçR;sddks1MlkanzrkdslkFk vfHkfØ;k
ç
k
j
E
H
kd
ht
k
r
hg
SAd
hl
k
a
n
z
r
k0.1Mg
k
s
u
se
s
af
d
r
u
kl
e
;y
x
s
x
k
Given k = 2.303 × 10–2
sec–1
.
(A)10lSd.M (B*)100lSd.M (C)1000lSd.M (D)434lSd.M
Sol. A + B  C + D
t = 0 1 1 0 0
t = t 1 – x 1 – x x x
r = k[A]1/2
[B]1/2

dt
dx
= k (1 – x)1/2
(1 – x)1/2
.
or
dt
dx
= k (1 – x).
 t =
k
1
ln 





x
–
1
1
; t = 2
–
10
303
.
2
303
.
2

log 





1
.
0
1
= 100 sec.
6. At high temperature (504ºC) dimethyl ether decomposes as per the reaction
(CH3)2 O (g) 
 CH4(g) + H2(g) + CO(g)
time (sec.) : 0 400 1200 
ptotal (mm) : 312 412 560 935
Determine the half life of the reaction during this run. (ln 





523
623
= 0.175, ln 





375
623
= 0.5076)
m
P
pr
k
i(504ºC)i
jM
k
b
e
s
f
F
k
yb
Z
F
k
jf
u
E
uv
f
H
k
f
Ø
;
kd
sv
u
q
l
k
jf
o
;
k
s
f
t
rg
k
s
r
kg
S
A
(CH3)2 O (g) 
 CH4(g) + H2(g) + CO(g)
l
e
;(l
S
d
.
M
-e
s
a
) : 0 400 1200 
pdqy
(mm) : 312 412 560 935
bliz;ksxdsnkSjkuvfHkfØ;kdhv)Z&vk;qKkrdjksA(ln 





523
623
=0.175,ln 





375
623
=0.5076)
(A)1311sec¼lSd.M½ (B)1411sec¼lSd.M½ (C)1511sec¼lSd.M½ (D*)1611sec¼lSd.M½
Sol. (CH3
)2
O (g) — CH4
(g) + H2
(g) + CO(g)
t=0 a 0 0 0 a  P
º
= 312 mm
t=400 sec a–x x x x a+2x  p
400
= 412mn
t=1200 sec a – y y y y a+2y  p
1200
= 560 mm
t= 0 a a a 3a P

= 935 mm
Kt = ln 







t
o
C
C
= ln 





x
–
a
a
 Kt = ln 









t
o
p
–
p
p
–
p
(t = 400sec) K1
=
400
1
ln 





412
–
935
312
–
935
=
400
1
ln 





523
623
sec–1
= 0.175 ×
400
1
(t = 1200sec) K2
=
1200
1
ln 





560
–
935
312
–
935
=
1200
1
ln 





375
623
sec–1
= 0.5076 ×
1200
1
2
1
t =
2
k
k
2
ln
2
1 
= )
k
k
(
2
ln
2
2
1  =
2
1638
1584 
= 1611 sec.
7. A reaction between A and B is represented stoichiometrically by A + B  C. Observations on the rate of this
reaction are obtained in three separate experiments as follows :
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
initial concentrations final concentration
[A]0
, M [B]0
, M duration of experiment t, hr [A]f
, M
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
(1) 0.1000 1.0 0.5 0.0975
(2) 0.1000 2.0 0.5 0.0900
(3) 0.0500 1.0 2.0 0.0450
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
What is the order of the reaction with respect to each reactant and what is the value of the rate constant?
Ar
F
kkBd
se
/
;v
fH
k
f
Ø;
kd
k
sj
l
l
eh
d
j.
k
f
er
h}
k
j
kA+BCl
sç
n
f'
k
Zrf
d;
kt
k
rkg
S]blv
fH
k
fØ
;
kd
sf
y
,n
jd
kç
s
{
k.
k
r
h
ui
`
F
k
dç
;
k
s
x
k
s
ae
s
af
u
E
uç
d
k
jç
k
I
rd
j
r
sg
S
a
A
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
ç
k
j
f
E
H
k
dl
k
U
n
z
r
k v
f
U
r
el
k
U
n
z
r
k
[A]0
, M [B]0
, M ç;ksxdsnkSjku t,hr [A]f
, M
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
(1) 0.1000 1.0 0.5 0.0975
(2) 0.1000 2.0 0.5 0.0900
(3) 0.0500 1.0 2.0 0.0450
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
ç
R
;
s
s
dv
f
H
k
d
k
j
dd
sl
k
i
s
{
kv
f
H
k
f
Ø
;
kd
hd
k
s
V
hD
;
kg
S
a
]r
F
k
kn
jf
u
;
r
k
a
dd
ke
k
uD
;
kg
S
a
A
Ans. Rate = k [A]1
[B]2
, k = 5 × 10–2
M–2
hr–1
Sol. Initial conc. duration of experiment (hr) final conc. [A]f
Rate
[A]0
,M [B]0
, M
0.1000 1.0 0.5 0.0975 5 × 10–3
M hr–1
0.1000 2.0 0.5 0.0900 20 × 10–3
M hr–1
0.0500 1.0 2.0 0.0450 2.5 × 10–3
M hr–1
A + B — C
Rate = –
dt
]
A
[
d
= –
dt
]
B
[
d
=
dt
]
C
[
d
Rate = K[A]a
[B]b
R1
= K [0.1]a
[1]b
= 5 × 10–3
M hr–1
R2
= K [0.1]a
[2]b
= 20 × 10–3
M hr–1
2
1
R
R
=
b
2
1






=
4
1
 b = 2
R3
= K [0.05]a
[1]2
= 2.5 × 10–3
M hr–1
R1
= K [0.1]a
[1]2
= 5 × 10–3
M hr–1
1
3
R
R
=
a
2
1






=
2
1
 a = 1
R1
= K [0.1] [1]2
= 5 × 10–3
M hr–1
K =
1
.
0
10
5 3
–

= 5 × 10–2
M–2
hr–1
8. Let there be as first-order reaction of the type, A 
 B + C. Let us assume that all the three species are gases.
We are required to calculate the value of rate constant based on the following data.
0 T 
P0 Pt –
Time
Partial pressure of A
e
k
u
kf
dA 
 B+C,
dç
F
k
ed
k
s
f
Vç
d
k
jv
f
H
k
f
Ø
;
kg
S
a
]v
cg
e;
gt
k
u
r
sg
S
af
dr
h
u
k
s
aç
t
k
f
rx
S
l
h
;g
S
a
Ag
e
s
af
u
E
uv
k
W
d
M
k
si
j
v
k/
kk
fj
rnjf
u;
rk
add
kek
ui
fj
df
yrd
ju
kvk
o'
;dg
Sa
A
Ans. k =
t
1
ln 







t
0
P
P
Sol. A 
 B + C
t=0 a 0 0 a  P0
t=t a-x x x (a–x)  Pt
Kt = ln 





 x
a
a
 k =
t
1
ln 







t
0
P
P
9. Let there be a first order reaction, A 
 B + C. Let us assume all three are gases. We are required to calculate
the value of rate constant based on the following data
0 t 
P0 Pt –
Time
Total pressure
Calculate the expression of rate constant.
e
k
u
kf
dA 
 B+Cç
F
k
ed
k
s
V
hd
hv
f
H
k
f
Ø
;
kg
S
a
Av
c;
ge
k
u
r
sg
Sf
dr
h
u
k
s
aç
t
k
f
rx
S
l
h
;g
S
a
]g
e
s
af
u
E
uv
k
W
d
M
k
s
ai
jv
k
/
k
k
f
j
r
njfu;rkaddkekuifjdfyrdjukvko';dgSaA
njfu;arkddkO;tadKkrdhft,A
Ans. k =
t
1
ln 







t
0
0
P
–
P
2
P
Sol. A 
 B + C
t=0 a 0 0 a  P0
t=t a-x x x (a+x)  Pt
 x  (Pt
– P0
)
Kt = ln 





 x
a
a
 k =
t
1
ln 








 )
P
P
(
P
P
0
t
0
0
 k =
t
1
ln 







t
0
0
P
–
P
2
P
10. A(g) 
 B(g) + C(g)
Calculate the expression of rate constant.
A(g) 
 B(g) + C(g)
njfu;arkddkO;tadKkrdhft,A
Ans. k =
t
1
ln 









t
P
–
P
P
Sol. A 
 B + C
t=0 a 0 0
t=t a-x x x 2x  Pt
 x 
2
Pt
t=  0 a a 2a  P   a 
2
P
Kt = ln 





 x
a
a
 k =
t
1
ln 









t
P
–
P
P
11. For the reaction, 2NO + H2

 N2
O + H2
O the value of -dp/dt was found to be 1.50 Torr s–1
for a pressure of 359
Torr of NO and 0.25 Torr s-1
for a pressure of 152 Torr, the pressure of H2
being constant. On the other hand, when
the pressure of NO was kept constant, –dp/dt was 1.60 Torr s–1
for a hydrogen pressure of 289 Torr and 0.79
Torr s–1
for a pressure of 147 Torr. Determine the order of the reaction.
vfHkfØ;k 2NO+H2

 N2
O+H2
Ods fy, H2
ds fu;r nkc ij -dp/dtds eku NOds 359Vksj nkc ij 1.50Vksj
lSd.M–1
,oaNOds152Vksjnkcij0.25VksjlSd.M–1
ik;sx;stcfd;fnNOdkfu;rnkcfy;ktkrkrks –dp/dtdseku
H2
ds289Vk
sji
j1.60Vks
jlSd
.M
–1
,o
aH2
ds147Vksjij0.79Vks
jlsd
.M
–1
ik;
sx;sAblvfH
kfØ;
kdhdksf
VKk
rdj
ksA
Ans. 3
Sol. rate = K [NO]a
[H2
]b
a
2
1
152
359
25
.
0
5
.
1
r
r







 
1
6
= (2.36)a
 a = 2
b
4
3
147
289
79
.
0
6
.
1
r
r







  2 = (1.966)b
 b = 1
order of the reaction = 1 + 2 = 3
12. Decomposition of N2
O5
follows first-order kinetics, 2N2
O5
(g) 
 4NO2
(g) + O2
(g). If pressure of the system at
time, t and  are Pt
and 
P respectively, find the expression of rate contant (k).
N2
O5
dkfo;kstuizFkedksfVcyxfrdhdkvuqlj.kdjrkgS,2N2
O5
(g) 
 4NO2
(g)+O2
(g);fnle;trFkk  ijfudk;
dsnk
cØe
'k%Pt
rF
kk 
P gk
s]rksnjfu;
rkad(k)dkO;
atdKk
rd
hft
,A
Ans. k =
t
1
ln 










)
P
P
(
5
P
3
t
Sol. 2N2
O5
(g) 
 4NO2
(g) + O2
(g)
t = 0 a 0 0
t = t a – x 2x
2
x







2
x
3
a  Pt
t=  0 2a
2
a
2
a
5
 P
kt = ln 





 x
a
a
a 
5
2
P
& x 
3
2






 
P
3
2
Pt
k =
t
1
ln





















 


P
5
2
P
3
2
P
5
2
P
5
2
t
=
t
1
ln 










)
P
P
(
5
P
3
t
13.
Integer Answer Type
This section contains 3 questions. The answer to each of the questions is a single digit integer, ranging from 0 to 9.
i
w
.
k
k
±
dm
Ù
k
ji
z
d
k
j
b
l[
k
.
Me
s
a3i
z
'
ug
S
a
Ai
z
R
;
s
di
z
'
ud
km
Ù
k
j0l
s9r
di
w
.
k
k
±
dg
S
A
(i) The number of lone pairs of electrons present on the central atom in IBr2
–
is
IBr2
–
d
sd
s
U
n
z
h
;i
j
e
k
.
k
qi
jm
i
f
L
F
k
rb
y
s
D
V
ª
k
s
u
k
s
ad
s,
d
k
d
h;
q
X
e
k
s
ad
hl
a
[
;
kg
S&
Ans.
So answer is 3.
(ii) How many B—O—B bond are present in the structure of borax ?
c
k
s
j
s
D
ld
hl
a
j
p
u
ke
s
af
d
r
u
sB—O—Bc
a
/
km
i
f
L
F
k
rg
S
Ans. 5
(iii) The number of S–S bond(s) in dithionic acid is/are
M
k
b
ZF
k
k
;
k
s
f
u
dv
E
ye
s
aS–Sc
a
/
k
k
s
ad
hl
a
[
;
kg
S
@
g
S
a
Ans. 1
DPP No. -2
Total Marks : 46 Max. Time : 51 min.
Single choice Objective ('–1' negative marking) Q.1 to Q.5 (3 marks 3 min.) [18, 18]
Multiple choice objective ('–1' negative marking) Q.6 (5 marks 4 min.) [5, 4]
Subjective Questions ('–1' negative marking) Q.7 to Q.11 (4 marks 5 min.) [20, 25]
Match the Following (no negative marking) Q.12 (8 marks 8 min.) [8, 8]
Integer Type Questions ('–1' negative marking) Q.13 (3 marks 3 min.) [3, 3]
ANSWER KEY DPP No.8
1. (A) 2. (C) 3. (D) 4. (B) 5. (B)
6. (A) 7. 4 8. k =
t
1
ln 







t
0
V
V
9. k =
t
1
ln 









t
0
V
–
V
V
–
V
10. k =
t
1
ln 









t
0
V
–
V
V
–
V
11. k =
t
1
ln 









t
0
r
–
r
r
–
r
12. (A) p, q ; (B) p, q, r ; (C) p, q, r, s ; (D) p, q, r, s 13. (i) 8 (ii) 3 (iii) 3
1. The decomposition of N2
O5
in chloroform wasfollowed by measuring the volume of O2
gasevolved : 2N2
O5
(CCI4
) 
2N2
O4
(CCI4
) + O2
(g). The maximum volume of O2
gas obtained was 100 cm3
. In 500 minutes, 90 cm3
of O2
were
evolved. The first order rate constant (in min–1
) for the disappearance of N2
O5
is :
DyksjksQkeZesaN2
O5
dsfo;kstu 2N2
O5
(CCI4
)2N2
O4
(CCI4
)+O2
(g)dksfu"dkflrO2
dsvk;rudsekiuesaç;qDrfd;k
t
k
r
kg
SO2
x
S
ld
kv
f
/
k
d
r
ev
k
;
r
u100cm3
ç
k
I
rg
k
s
r
kg
Sr
F
k
k500f
e
u
Ve
s
a90cm3
O2
f
u
"
d
k
f
l
rg
k
s
r
hg
S
AN2
O5
d
sf
o
y
q
I
rg
k
s
u
s
d
sf
y
,ç
F
k
ed
k
s
f
Vd
ko
s
xf
u
;
r
k
a
d(f
e
u
V
–1
e
s
a
)g
k
s
x
k
A
(A*)
500
303
.
2
(B)
90
100
log
500
303
.
2
(C)
100
90
log
500
303
.
2
(D)
500
10
100

Sol. k t = In 







t
O
C
C
2 N2
O5

 2N2
O4
+ O2
t=0 200 cm3
0 0
t=t 20 cm3
180cm3
90 cm3
t=  0 200cm3
100 cm3
Initial volume of N2
O5
= 200 cm3
.
because Max. volume of O2
= 100 cm3
.
 K × 500 = In 





20
200
 k =
500
10
In
=
500
303
.
2
.
2. The reaction A(g) + 2B(g)  C(g) is an elementary reaction. In an experiment involving this reaction, the initial
partial pressures of A and B are PA
= 0.40 atm and PB
= 1.0 atm respectively. When pressure of
C becomes 0.3 atm in the reaction the rate of the reaction relative to the initial rate is :
(A)
12
1
(B)
50
1
(C*)
25
1
(D) none of these
vfHk
fØ;kA(g)+2B(g)C(g),dljy¼
,dyin½v
fHkfØ
;kg
Saft
ls,dç;ks
xes
aç;q
Drfd
;kt
krkg
S]ArF
kkBdkçk
jfEH
kd
nkcØ
e'k%PA
=0.40ok;
qe.My
h;rF
kkPB
=1.0ok;
qe.Myh
;gSAtcPC
=0.3ok;
qe.Myh
;gkstkrkgSAç
kjfEHk
dnjdslki
s{k
v
f
H
k
f
Ø
;
kd
hn
jg
k
s
x
h
(A)
12
1
(B)
50
1
(C*)
25
1
(D)m
i
j
k
s
D
re
s
al
sd
k
s
b
Zu
g
h
a
DAILY PRACTICE PROBLEMS (DPP)
Subject : Physical/Inorganic Chemistry Date : DPP No. 8 Class : XII Course :
Sol. A(g) + 2B(g)  C(g)
t = 0 0.4 atm 1 atm 0 atm
t = t (0.4 –0.3)atm (1 – 0.6)atm 0.3 atm
Since reaction is elementary.
So, Rate of reaction w.r.t. A & B will be of order equal to stoichiometric coefficient
Rate = K [A] [B]2
Rate(Initial)
= K [0.4] [1]2
Rate(aftar t = t)
= K [0.1][0.4]2
)
o
t
(
)
t
t
(
R
R


=
]
1
[
]
4
.
0
[
K
]
4
.
0
[
]
1
.
0
[
K 2
=
25
1
3. A reaction is catalysed by H+
ion;and in the rate law the dependence of rate is of first order with respect to the
concentration of H+
ions, in presence of HA rate constant is 2 × 10–3
min–1
and in presence of HB rate constant is
1 × 10–3
min–1
. HA and HB (both strong acids) have relative strength as :
,
dv
f
H
k
f
Ø
;
kH+
v
k
;
u}
k
j
km
R
i
z
s
f
j
rd
ht
k
r
hg
Sr
F
k
kb
l
e
s
ao
s
xf
u
;
eH+
v
k
;
ud
hl
k
U
n
z
r
kd
sl
k
i
s
{
ki
z
F
k
ed
k
s
f
Vd
hv
f
H
k
f
Ø
;
kg
S
A
HAd
hm
if
L
F
k
f
re
san
jf
u
;
rk
a
d2×10–3
min–1
g
Sr
Fk
kHBd
hm
i
f
LF
k
f
re
s
an
jf
u;
r
k
a
d1×10–3
min–1
g
SrcHAr
F
kkHB(n
k
s
u
k
s
a
i
z
c
yv
E
yg
S
)v
k
i
s
f
{
k
dl
k
e
F
;
Zg
S:
(A) 0.5 (B) 0.002 (C) 0.001 (D*) 2
Sol. We know
Rate = k [conc.]
Given Rxn catalysed by HA and HB
Rate constant kA
= k1
[H+
]A
kB
= k1
[H+
]B
Then relative strength of acidsA and B is
B
A
k
k
=
B
A
]
H
[
]
H
[


1
2
=
B
A
]
H
[
]
H
[


= strength of
]
B
Acid
[
]
A
Acid
[
Sol. g
et
k
u
rsg
Sf
d
nj=k[lkUnzrk]
f
n
;
kx
;
kg
Sf
dv
f
H
k
f
Ø
;
kHAr
F
k
kHBl
sm
R
i
z
s
f
j
rg
S
A
n
jf
u
;
r
k
a
d kA
= k1
[H+
]A
kB
= k1
[H+
]B
v
cv
E
y
k
s
aAr
F
k
kBd
hv
k
i
s
f
{
k
dl
k
e
F
;
Z
B
A
k
k
=
B
A
]
H
[
]
H
[


1
2
=
B
A
]
H
[
]
H
[


= ]
B
[
]
A
[
vEy
vEy
dhlkeF;ZrkA
4. The gaseous decomposition reaction, A(g) 
 2B(g) + C(g) is observed to first order over the excess of liquid
water at 25ºC. It is found that after 10 minutes the total pressure of system is 188 torr and after very long time it is
388 torr. The rate constant of the reaction (in hr–1
) is : [Given : vapour pressure of H2
O at 25º is 28 torr (ln 2 = 0.7, ln
3 = 1.1, ln 10 = 2.3)]
(A) 0.02 (B*) 1.2 (C) 0.2 (D) none of these.
25ºCijn
zotydsvk
f/
kD;es
axSl
h;fo
;ks
tuvf
Hkf
Ø;
kA(g) 
 2B(g)+C(g)dsf
y,çF
kedk
sfVç
sf{
krdhtk
rhgS
A;g
ik;kx;kgSfd 10feuVi'pkr~ra=kdkdqynkc188torr rFkkdkQhyEcsle;i'pkr~;g388torrgSArksvfH
kfØ;kdsfy,
njfu;rkad(hr–1
esa)gS%[fn;kx;kgS: 25ºCijH2
O dkok"inkc28torrgSA
[(ln 2 = 0.7, ln 3 = 1.1, ln 10 = 2.3)]
(A) 0.02 (B*) 1.2 (C) 0.2 (D)m
i
j
k
s
D
re
s
al
sd
k
s
b
Zu
g
h
a
A
Sol. A(g) 
 2B(g) + C(g)
Let initial pressure P0
0 0
After 10 min. (P0
– x) 2x x
After long time )
t
( 
 0 2P0
P0
as per given (P0
– x) + 2x + x + vaour pressure of H2
O = 188
P0
+ 2x = 160 and 3P0
+ 28 = 388
so, P0
= 120 and x = 20 torr
k = 







 x
P
P
ln
t
1
0
0
 10
1
100
120
ln
10
1







× (ln 4 + ln 3 – ln 10)
= 0.02 min–1
= 1.2 hr–1
5. The hydrolysis of cane sugar was studied using an optical polarimeter and the following readings were taken:
time (min.) : 0 84 min 
observed rotation (degrees) : 50 20 –10
When was the mixture optically inactive? (log 2 = 0.3, log 3 = 0.48)
x
U
u
sd
h'
k
d
Z
j
kd
st
y
&
v
i
?
k
V
ud
sv
/
;
;
ui
z
d
k
'
k
h
;i
k
s
y
s
j
h
e
h
V
jd
sm
i
;
k
s
x}
k
j
kf
d
;
kt
k
r
kg
S
]v
k
S
jf
u
E
ui
k
B
~
;
k
a
df
y
;
sx
;
sg
S
A
le; (feuV): 0 84 min 
i
z
s
f
{
k
r?
k
w
.
k
Z
u(f
M
x
z
h
): 50 20 –10
feJ.kizdk'kh;vlfØ;dcgksrkgSA(log2=0.3,log3=0.48)
(A) 118 min (B*) 218 min (C) 318 min (D) 418 min
Sol. Kt = ln 











t
0
r
r
r
r
K =
84
1
ln 









20
10
50
10
=
84
1
ln (2)
Solution is optically inactive i.e. optical rotation is zero.






2
ln
84
1
t = ln 









0
10
50
10
t = 84
2
ln
6
ln
= 218 min.
6. For a certain reaction A 
 products, the t½ as a function of [A]0 is given as below :
[A]0 (M) : 0.1 0.025
t1/2 (min.) : 100 50
Which of the following is/are true ?
(A*) The order is
2
1
(B*) t½ would be min
10
100 for [A]0 = 1 M
(C) The order is 1 (D) t½ would be 100 min for [A]0 = 1 M
,dfuf'prvfHkfØ;kA 
 mRikn]dsfy;st½ dks[A]0 dsQyuds:iesafuEuçdkjlsfn;kx;kgSA
[A]0 (M) : 0.1 0.025
t1/2 (min.) : 100 50
f
u
E
ue
s
al
sd
k
S
u
l
kl
R
;g
S
A
(A*)
2
1
d
k
s
f
Vg
S
A (B*) [A]0 =1Mdsfy;s t½, min
10
100 gksxkA
(C)ç
F
k
ed
k
s
f
Vg
S
A (D)[A]0 = 1 Mijt½, 100min gksxkA
Sol. A  Products.
t1/2
= [conc.]1 – n
n  order of reaction.
50
100
=
n
–
1
025
.
0
1
.
0






2 = 2 – 2n
 2n = 1.
 n =
2
1
.
order of reaction is
2
1
.
2
/
1
t
100
=
2
/
1
1
1
.
0






 t1/2
= min
10
100 for [A0
] = 1M.
7. The plot of log (V – V) versus t (where V is the volume of nitrogen
collected under constant temperature and pressure conditions)
for the decomposition of C6H5N2Cl is given at 50°C with an amount
of C6H5N2Cl equivalent to 58.3 cc N2.
5 10 15 20 25 30
1.0
1.75
time(min.)
log(V – V)

Calculate the rate constant for the reaction in hr–1 expressing
your answer in a single significant digit.
log(V –V)dktdslkis{kvkjs[k(tgk¡fu;rrkionkcifjfLFkfre
sa
ukbVªkstudkvk;ruV fy;kx;kgS½C6H5N2Cldsfo;kstudsfy,50°C
rkifn;kx;kgSAftlijC6H5N2Cldhek=kk58.3ccN2dslekugSA
n
jf
u
;
r
k
a
dd
hx
.
k
u
k?
k
.
V
s
–1e
s
ad
j
k
som
Ù
k
jd
s
o
y,
dv
a
de
s
an
k
s
A
5 10 15 20 25 30
1.0
1.75
time(min.)
log(V – V)

Ans. 4
Sol. Slope =
0
25
)
75
.
1
1
(


= – 0.03
k = – 2.303 (slope) min–1
= – 2.303 (– 0.03) min–1 = 0.06909 min–1 = 4.14 hr–1  4 hr–1
8. Now, let us assume a first-order reaction, A 
 B + C, such that A, B and C, such that A, B and C are in
solution. At time zero, a small amount of the solution is taken, cooled (to stop the reaction from proceeding) and
titrated with a suitable reagent. Let us assume that the reagent reacts only with A and not with B and C. The same
process is repeated at time t.
0 t
V0 Vt
Time
Volume of reagent
Calculate the expression of rate constant.
v
cg
e
u
se
k
u
kf
df
u
E
uv
f
H
k
f
Ø
;
kç
F
k
ed
k
s
f
Vd
hg
S
a
]
A 
 B+C,blç
dkjdhv
fHkfØ;kesaA,BrFkkCfoy;
uesag
SsA'kw
U;le;ijfoy
;udhd
eek=kkyhtkr
hgSa]ftls
B
.
M
+
k¼
v
f
H
k
f
Ø
;
kd
k
sv
k
s
jv
k
x
sj
k
s
d
u
sd
sf
y
,
½r
F
k
k,
dm
i
;
q
D
rv
f
H
k
d
e
Z
dd
sl
k
F
kv
u
q
e
k
f
i
rf
d
;
kt
k
r
kg
S
a
Av
cg
e;
ge
k
u
r
sg
S
a
fdvfH
kde
ZddsoyAdslk
FkfØ;
kdj
rkgSa
]BrF
kkCdslk
Fku
gha
Al
ekuçØedht le
;i
ji
quj
ko`
frd
ht
krhgS
aA
njfu;arkddkO;tadKkrdhft,A
Ans. k =
t
1
ln 







t
0
V
V
Sol. A 
 B + C
t=0 a 0 0 a  V0
t=t a-x x x (a–x)  Vt
Kt = ln 





 x
a
a
 k =
t
1
ln 







t
0
V
V
9. A(soln.) 
 B(soln.) + C(soln.)
Reagent reacts with all species A, B and C.
0 t 
V
Vt
V0
Time
Volume of reagent
The n factor of A, B and C with the reagent and that of the reagent with A, B and C are not known. Calculate the
expression of rate constant.
A¼foy;u½ 
 B¼foy;u½+C¼foy;u½
v
f
H
k
d
e
Z
dl
H
k
hç
t
k
f
r
;
k
s
a
A,Br
F
k
kCd
sl
k
F
kf
Ø
;
kd
j
r
sg
S
a
A
v
fH
kd
eZ
ddsl
kF
kA,Br
Fk
kCdsnx
q.
kk
ad rF
kkA,Br
Fk
kCd
slk
Fkm
lvf
Hk
de
Z
ddsK
kru
ghg
Sa
A
njfu;rkaddkO;tadKkrdhft,A
Ans. k =
t
1
ln 









t
0
V
–
V
V
–
V
Sol. A(soln.) 
 B(soln.) + C(soln.)
t=0 a 0 0
t=t a-x x x
t=  0 a a
Let n-factor of A, B & C are n1
, n2
& n3
& that of reagent is n & molarity of reagent is M
At t= 0,
meq. of A= meq. of reagent
n1
× a = M × n × V0
....... (i)
At t= t,
meq. of reagent = meq. of A + meq of B + meq of C
MVt
n = (a – x)n1
+ xn2
+ xn3
....... (ii)
At t=  ,
meq. of reagent = meq of B + meq of C
MV  n = an2
+ an3
....... (iii)
From (iii) & (i)
(n2
+ n3
) =
a
n
MV
& n1
=
a
n
MV0
 MVt
n = (a – x)
a
n
MV0
+ x
a
n
MV
 










 

t
0
V
V
V
V
x
a
a
Kt = ln
x
a
a

 K =
t
1
ln 











t
0
V
V
V
V
10. A(soln.) 

 

.)
ln
so
(
D
B(soln.) + C(soln.)
D is catalyst present in the solution whose n-factor is not known. Catalyst have a constant concentration through-
out the reaction.
0 t 
V
Vt
V0
Time
Volume of reagent
Calculate the expression of rate constant.
A¼foy;u½ 

 

.)
ln
so
(
D
B¼foy;u½+C¼foy;u½
Df
o
y
;
ud
sm
i
f
L
F
k
rm
R
ç
s
j
dg
S
a]f
t
l
d
knx
q
.
k
k
a
dK
k
ru
g
hg
S
a
Am
R
ç
s
j
dd
hi
w
j
hv
f
H
k
f
Ø
;
kd
sn
k
S
j
k
ul
k
U
n
z
r
kf
u
;
rj
[
k
r
kg
S
a
A
njfu;rkaddkO;tadKkrdhft,A
Ans. k =
t
1
ln 









t
0
V
–
V
V
–
V
Sol. Same as of question 9.
11. Now, let us assume that A, B and C are optically active compounds, which rotate the plane polarized light in the
clockwise or anticlockwise direction.
A(soln.) 
 B(soln.) + C(soln.)
0 t 
r
rt
r0
Time
Total rotation in degrees
Calculate the expression of rate constant.
v
ce
k
u
kf
d
A,Br
F
k
kCç
d
k
'
k
h
;:
il
sl
f
Ø
;;
k
S
f
x
dg
S
a
]t
k
sf
dl
e
r
y/
k
z
q
o
.
kç
d
k
'
kd
hv
k
S
jn
f
{
k
.
k
k
o
r
Zv
F
k
o
ko
k
e
k
o
r
Zf
n
'
k
ke
s
a
?
k
q
.
k
Z
u
d
j
k
r
s
g
S
a
A
A¼foy;u½ 
 B¼foy;u½+ C¼foy;u½
njO;atdfu;arkddkO;atdKkrdhft,A
Ans. k =
t
1
ln 









t
0
r
–
r
r
–
r
Sol. A(soln.) 
 B(soln.) + C(soln.)
t=0 a 0 0
t=t a-x x x
t=  0 a a
Let ,  &  are specific rotation of A, B & C respectively.
At t=0,
r0
= a ........... (i)
At t=t,
rt
= (a–x) + x+ x ........... (ii)
At t=  ,
r  = a+ a ........... (iii)
From (i) & (iii)
=
a
r0
& (+ ) =
a
r
Putting in (ii)
rt
= (a – x)
a
r0
+
a
r
x 
t
0
r
r
r
r
x
a
a



 

Kt = ln
x
a
a

 k =
t
1
ln 









t
0
r
–
r
r
–
r
12. Match the pair of species given in column-I with the identical characteristic(s)/type of hybridisation given in
column-II :
Column - Column -
(Pair of species) (Identical Property in pairs of species)
(A) PCl3
F2
and PCl2
F3
(p) Hybridisation of central atom
(B) BF3
and BCl3
(q) Shape of molecule/ion
(C) CO2
and CN2
–2
(r)  (dipole moment)
(D) C6
H6
and B3
N3
H6
(s) Total number of electrons
L
r
E
H
k
-Ie
s
an
hx
;
h
si
z
t
k
f
r
;
k
s
a¼
L
i
h
'
k
h
t
½d
s;
q
X
e
k
s
ad
k
sm
u
d
sl
g
hx
q
.
k
k
s
a
@
i
z
d
k
jd
sl
a
d
j
.
kt
k
sL
r
E
H
k
-IIe
s
af
n
;
sx
;
sg
Sd
sl
k
F
kl
q
e
s
f
y
rd
h
f
t
,
A
dkWye& dkWye&
¼
L
i
h
'
k
h
td
k;
q
X
e
½ ¼
L
i
h
'
k
h
td
s;
q
X
ee
s
al
e
k
ux
q
.
k
½
(A) PCl3
F2
rFkkPCl2
F3
(p) d
s
U
n
z
h
;i
j
e
k
.
k
qd
kl
a
Ø
e
.
k
(B) BF3
rFkkBCl3
(q) v
.
k
q
@
v
k
;
ud
hv
k
d
`
f
r
(C) CO2
rFkkCN2
–2
(r) ¼
f
}
/
k
z
q
o
v
k
?
k
w
.
k
Z
½
(D) C6
H6
rFkkB3
N3
H6
(s) b
y
s
D
V
ª
k
W
ud
hd
q
yl
a
[
;
k
Ans. (A) p, q ; (B) p, q, r ; (C) p, q, r, s ; (D) p, q, r, s
Sol. (A) PCl3
F2
& PCl2
F3
Hybridisation sp3
d sp3
d
shape TBP TBP
Dipole
moment
Total no. of
electrons 84 76
(B) BF3
BCl3
Hybridisation sp2
sp2
Shape Trigonal planar Trigonal planar
Dipole moment
Total no. of
electrons 32 56
(C) CO2
CN2
2–
Hybridisation sp sp
Shape linear linear
 O = C = O –
N = C = N–
 = 0  = 0
Total no. of
electrons 22 22
13.
Integer Answer Type
This section contains 3 questions. The answer to each of the questions is a single digit integer, ranging from 0 to 9.
i
w
.
k
k
±
dm
Ù
k
ji
z
d
k
j
b
l[
k
.
Me
s
a3i
z
'
ug
S
a
Ai
z
R
;
s
di
z
'
ud
km
Ù
k
j0l
s9r
di
w
.
k
k
±
dg
S
A
(i) Find the sum of average oxidation number of S in H2
SO5
(peroxy monosulphuric acid) and Na2
S2
O3
(sodium
thiosulphate).
H2
SO5
(ijvkWDlheksukslY¶;wfjd vEy) rFkk Na2
S2
O3
(lksMh;e Fkk;kslYQsV) esa S ds
vkSlr vkWDlhdj.k vadks dk ;ksx Kkr dhft;sA
Ans. 8
Sol. H2
SO5
and Na2
S2
O3
(+6) (+2)
(ii) The equilibrium N2
(g) + 3H2
(g) 2NH3
(g) is established in a closed container by initially taking only NH3
. Find
out the number of moles of H2
present in 102 g of the equilibrium mixture if the molar massof the equilibrium mixture
is observed to be
4
51
g/mole.
,
dc
a
ni
k
=
ke
s
ai
z
k
j
E
H
ke
s
ad
s
o
y
]NH3
d
k
sy
s
d
j
]l
k
E
;N2
(g)+3H2
(g) 2NH3
(g)d
k
sL
F
k
k
f
i
rf
d
;
kx
;
k
Al
k
E
;f
e
J
.
kd
s102
ge
s
am
i
f
L
F
k
rH2
d
se
k
s
y
k
s
ad
hl
a
[
;
kK
k
rd
h
f
t
,;
f
nf
e
J
.
kd
ke
k
s
y
jn
z
O
;
e
k
u
4
51
g/molei
z
s
f
{
k
rf
d
;
kx
;
k
A
Ans. 3
Sol. Mobs
=


 )
1
n
(
1
MTh

4
51
=


 )
1
2
(
1
17
  =
3
1
Mass of eq. mixture = Initial mass = 102 g
l
kE
;f
eJ
.
kd
kn
zO
;e
k
u=i
zk
j
f
EH
k
dn
zO
;
e
ku=102g
 i
zk
j
E
Hkes
afy
;
sx
;
s 3
NH
n =
17
102
=6moles
N2
(g) + 3H2
(g) 2NH3
(g)
t = 0 6moles
eq. 6(/2) 6(3/2) 6(1 – )
 2
H
n present = 6 




 
2
3
= 9 = 9 ×
3
1
= 3 moles
(iii) Let Z be the compressibility factor for a real gas at critical conditions and Vander Waal constant be is dependent as
b = 







C
C
P
T
m
R
, then find the product (Z × m).
e
k
u
kd
h
]Ø
a
k
f
r
di
f
j
f
L
F
k
f
ri
j
],
do
k
L
r
f
o
dx
S
ld
sf
y
,
]l
E
i
h
M
~
;
r
kx
q
.
k
k
a
dZg
Sr
F
k
ko
k
.
M
j
o
k
yf
u
;
r
k
a
db,f
u
E
uç
d
k
jl
sf
u
H
k
Z
j
djrk gS]b= 







C
C
P
T
m
R
,rc(Z×m)dkxq.kuQyKkrdhft;s
Ans. 3
Sol. For a real gas at critical point, Z =
C
C
C
RT
V
P
=
8
3
Also, b = 







C
C
P
T
8
R
 m = 8
 Product (Z × m) =
8
3
× 8 = 3.
g
y
- ØkafrdfcUnqij,dokLrfodxSldsfy,]Z=
C
C
C
RT
V
P
=
8
3
rFkk,b= 







C
C
P
T
8
R
 m = 8
 (Z × m)dk xq.kuQy=
8
3
× 8= 3.

Recomendados

DPP-27 – 28 Faculty Copy por
DPP-27 – 28 Faculty CopyDPP-27 – 28 Faculty Copy
DPP-27 – 28 Faculty CopySTUDY INNOVATIONS
2 vistas10 diapositivas
DPP-37 to 38 With Answer Physical Chemistry por
DPP-37 to 38 With Answer Physical ChemistryDPP-37 to 38 With Answer Physical Chemistry
DPP-37 to 38 With Answer Physical ChemistrySTUDY INNOVATIONS
6 vistas8 diapositivas
DPP-5 – 6 CK-Answer por
DPP-5 – 6 CK-AnswerDPP-5 – 6 CK-Answer
DPP-5 – 6 CK-AnswerSTUDY INNOVATIONS
5 vistas8 diapositivas
DPP-5 – 6 CK-Answer por
DPP-5 – 6 CK-AnswerDPP-5 – 6 CK-Answer
DPP-5 – 6 CK-AnswerSTUDY INNOVATIONS
3 vistas8 diapositivas
DPP-33 to 34 Physical Chemistry with Answer por
DPP-33 to 34 Physical Chemistry with AnswerDPP-33 to 34 Physical Chemistry with Answer
DPP-33 to 34 Physical Chemistry with AnswerSTUDY INNOVATIONS
7 vistas5 diapositivas
Chemial kinetic problem. por
Chemial kinetic problem.Chemial kinetic problem.
Chemial kinetic problem.nysa tutorial
5K vistas33 diapositivas

Más contenido relacionado

Similar a DPP-7 - 8 CK -Answer

DPP-29 – 30- Faculty Copy por
DPP-29 – 30- Faculty CopyDPP-29 – 30- Faculty Copy
DPP-29 – 30- Faculty CopySTUDY INNOVATIONS
4 vistas10 diapositivas
DPP-11 - 12 CK & CB-Faculty Copy por
DPP-11 - 12 CK & CB-Faculty CopyDPP-11 - 12 CK & CB-Faculty Copy
DPP-11 - 12 CK & CB-Faculty CopySTUDY INNOVATIONS
2 vistas10 diapositivas
DPP-11 – 12 -PT-Answer por
DPP-11 – 12 -PT-AnswerDPP-11 – 12 -PT-Answer
DPP-11 – 12 -PT-AnswerSTUDY INNOVATIONS
3 vistas6 diapositivas
DPP-58– 60 G.S-Faculty Copy por
DPP-58– 60 G.S-Faculty CopyDPP-58– 60 G.S-Faculty Copy
DPP-58– 60 G.S-Faculty CopySTUDY INNOVATIONS
4 vistas8 diapositivas
5. Exercise-1 to 3-Sol.-PC-Heat Tran.pdf por
5. Exercise-1 to 3-Sol.-PC-Heat Tran.pdf5. Exercise-1 to 3-Sol.-PC-Heat Tran.pdf
5. Exercise-1 to 3-Sol.-PC-Heat Tran.pdfSTUDY INNOVATIONS
4 vistas10 diapositivas
T.I.M.E. JEE Advanced 2013 Solution Paper2 por
T.I.M.E. JEE Advanced 2013 Solution Paper2T.I.M.E. JEE Advanced 2013 Solution Paper2
T.I.M.E. JEE Advanced 2013 Solution Paper2askiitians
560 vistas10 diapositivas

Similar a DPP-7 - 8 CK -Answer(20)

T.I.M.E. JEE Advanced 2013 Solution Paper2 por askiitians
T.I.M.E. JEE Advanced 2013 Solution Paper2T.I.M.E. JEE Advanced 2013 Solution Paper2
T.I.M.E. JEE Advanced 2013 Solution Paper2
askiitians560 vistas
Ray : modeling dynamic systems por Houw Liong The
Ray : modeling dynamic systemsRay : modeling dynamic systems
Ray : modeling dynamic systems
Houw Liong The936 vistas

Más de STUDY INNOVATIONS

Chemistry-51.Hydrocarbons-Theory & Examples por
Chemistry-51.Hydrocarbons-Theory & Examples        Chemistry-51.Hydrocarbons-Theory & Examples
Chemistry-51.Hydrocarbons-Theory & Examples STUDY INNOVATIONS
0 vistas69 diapositivas
Chemistry-50.Carboxylic acids and its Derivatives por
Chemistry-50.Carboxylic acids and its DerivativesChemistry-50.Carboxylic acids and its Derivatives
Chemistry-50.Carboxylic acids and its DerivativesSTUDY INNOVATIONS
0 vistas46 diapositivas
Chemistry-49.Carbohydrates, Amino Acids & Polymers por
Chemistry-49.Carbohydrates, Amino Acids & PolymersChemistry-49.Carbohydrates, Amino Acids & Polymers
Chemistry-49.Carbohydrates, Amino Acids & PolymersSTUDY INNOVATIONS
0 vistas48 diapositivas
Chemistry-46.Alkyl Halide por
Chemistry-46.Alkyl HalideChemistry-46.Alkyl Halide
Chemistry-46.Alkyl HalideSTUDY INNOVATIONS
0 vistas49 diapositivas
Chemistry-43.Alcohols, Ethers and Phenols por
Chemistry-43.Alcohols, Ethers and PhenolsChemistry-43.Alcohols, Ethers and Phenols
Chemistry-43.Alcohols, Ethers and PhenolsSTUDY INNOVATIONS
0 vistas67 diapositivas
Chemistry-43.Miscellaneous Objective por
Chemistry-43.Miscellaneous ObjectiveChemistry-43.Miscellaneous Objective
Chemistry-43.Miscellaneous ObjectiveSTUDY INNOVATIONS
0 vistas13 diapositivas

Más de STUDY INNOVATIONS(20)

Chemistry-51.Hydrocarbons-Theory & Examples por STUDY INNOVATIONS
Chemistry-51.Hydrocarbons-Theory & Examples        Chemistry-51.Hydrocarbons-Theory & Examples
Chemistry-51.Hydrocarbons-Theory & Examples
Chemistry-50.Carboxylic acids and its Derivatives por STUDY INNOVATIONS
Chemistry-50.Carboxylic acids and its DerivativesChemistry-50.Carboxylic acids and its Derivatives
Chemistry-50.Carboxylic acids and its Derivatives
Chemistry-49.Carbohydrates, Amino Acids & Polymers por STUDY INNOVATIONS
Chemistry-49.Carbohydrates, Amino Acids & PolymersChemistry-49.Carbohydrates, Amino Acids & Polymers
Chemistry-49.Carbohydrates, Amino Acids & Polymers
Chemistry-42.HydrocarbonsSolution to Subjective Problems por STUDY INNOVATIONS
Chemistry-42.HydrocarbonsSolution to Subjective ProblemsChemistry-42.HydrocarbonsSolution to Subjective Problems
Chemistry-42.HydrocarbonsSolution to Subjective Problems
Chemistry-41.Carboxylic acids and its Derivatives-Solution to Subjective Prob... por STUDY INNOVATIONS
Chemistry-41.Carboxylic acids and its Derivatives-Solution to Subjective Prob...Chemistry-41.Carboxylic acids and its Derivatives-Solution to Subjective Prob...
Chemistry-41.Carboxylic acids and its Derivatives-Solution to Subjective Prob...
Chemistry-39.Aromatic Chemistry-Solution to Subjective Problems por STUDY INNOVATIONS
Chemistry-39.Aromatic Chemistry-Solution to Subjective Problems Chemistry-39.Aromatic Chemistry-Solution to Subjective Problems
Chemistry-39.Aromatic Chemistry-Solution to Subjective Problems
Chemistry-32.Preparation and Properties Compounds por STUDY INNOVATIONS
Chemistry-32.Preparation and Properties CompoundsChemistry-32.Preparation and Properties Compounds
Chemistry-32.Preparation and Properties Compounds
Chemistry-27-Chemical Bonding-Theory & Examples por STUDY INNOVATIONS
Chemistry-27-Chemical Bonding-Theory & Examples        Chemistry-27-Chemical Bonding-Theory & Examples
Chemistry-27-Chemical Bonding-Theory & Examples
Chemistry-25.Qualitative Analysis-Solution to Subjective Problems por STUDY INNOVATIONS
Chemistry-25.Qualitative Analysis-Solution to Subjective ProblemsChemistry-25.Qualitative Analysis-Solution to Subjective Problems
Chemistry-25.Qualitative Analysis-Solution to Subjective Problems

Último

The Value and Role of Media and Information Literacy in the Information Age a... por
The Value and Role of Media and Information Literacy in the Information Age a...The Value and Role of Media and Information Literacy in the Information Age a...
The Value and Role of Media and Information Literacy in the Information Age a...Naseej Academy أكاديمية نسيج
58 vistas42 diapositivas
Recap of our Class por
Recap of our ClassRecap of our Class
Recap of our ClassCorinne Weisgerber
88 vistas15 diapositivas
Ch. 8 Political Party and Party System.pptx por
Ch. 8 Political Party and Party System.pptxCh. 8 Political Party and Party System.pptx
Ch. 8 Political Party and Party System.pptxRommel Regala
54 vistas11 diapositivas
UNIDAD 3 6º C.MEDIO.pptx por
UNIDAD 3 6º C.MEDIO.pptxUNIDAD 3 6º C.MEDIO.pptx
UNIDAD 3 6º C.MEDIO.pptxMarcosRodriguezUcedo
134 vistas32 diapositivas
ICS3211_lecture 09_2023.pdf por
ICS3211_lecture 09_2023.pdfICS3211_lecture 09_2023.pdf
ICS3211_lecture 09_2023.pdfVanessa Camilleri
115 vistas10 diapositivas
Structure and Functions of Cell.pdf por
Structure and Functions of Cell.pdfStructure and Functions of Cell.pdf
Structure and Functions of Cell.pdfNithya Murugan
719 vistas10 diapositivas

Último(20)

Ch. 8 Political Party and Party System.pptx por Rommel Regala
Ch. 8 Political Party and Party System.pptxCh. 8 Political Party and Party System.pptx
Ch. 8 Political Party and Party System.pptx
Rommel Regala54 vistas
Structure and Functions of Cell.pdf por Nithya Murugan
Structure and Functions of Cell.pdfStructure and Functions of Cell.pdf
Structure and Functions of Cell.pdf
Nithya Murugan719 vistas
Use of Probiotics in Aquaculture.pptx por AKSHAY MANDAL
Use of Probiotics in Aquaculture.pptxUse of Probiotics in Aquaculture.pptx
Use of Probiotics in Aquaculture.pptx
AKSHAY MANDAL119 vistas
AUDIENCE - BANDURA.pptx por iammrhaywood
AUDIENCE - BANDURA.pptxAUDIENCE - BANDURA.pptx
AUDIENCE - BANDURA.pptx
iammrhaywood117 vistas
REPRESENTATION - GAUNTLET.pptx por iammrhaywood
REPRESENTATION - GAUNTLET.pptxREPRESENTATION - GAUNTLET.pptx
REPRESENTATION - GAUNTLET.pptx
iammrhaywood138 vistas
Ch. 7 Political Participation and Elections.pptx por Rommel Regala
Ch. 7 Political Participation and Elections.pptxCh. 7 Political Participation and Elections.pptx
Ch. 7 Political Participation and Elections.pptx
Rommel Regala111 vistas
Psychology KS5 por WestHatch
Psychology KS5Psychology KS5
Psychology KS5
WestHatch119 vistas
11.28.23 Social Capital and Social Exclusion.pptx por mary850239
11.28.23 Social Capital and Social Exclusion.pptx11.28.23 Social Capital and Social Exclusion.pptx
11.28.23 Social Capital and Social Exclusion.pptx
mary850239312 vistas
Pharmaceutical Inorganic chemistry UNIT-V Radiopharmaceutical.pptx por Ms. Pooja Bhandare
Pharmaceutical Inorganic chemistry UNIT-V Radiopharmaceutical.pptxPharmaceutical Inorganic chemistry UNIT-V Radiopharmaceutical.pptx
Pharmaceutical Inorganic chemistry UNIT-V Radiopharmaceutical.pptx
Ms. Pooja Bhandare113 vistas
Pharmaceutical Inorganic Chemistry Unit IVMiscellaneous compounds Expectorant... por Ms. Pooja Bhandare
Pharmaceutical Inorganic Chemistry Unit IVMiscellaneous compounds Expectorant...Pharmaceutical Inorganic Chemistry Unit IVMiscellaneous compounds Expectorant...
Pharmaceutical Inorganic Chemistry Unit IVMiscellaneous compounds Expectorant...
Ms. Pooja Bhandare133 vistas

DPP-7 - 8 CK -Answer

  • 1. DPP No. -1 Total Marks : 42 Max. Time : 42 min. Single choice Objective ('–1' negative marking) Q.1 to Q.6 (3 marks 3 min.) [18, 18] Subjective Questions ('–1' negative marking) Q.7 to Q.12 (4 marks 4 min.) [24, 24] Integer Type Questions ('–1' negative marking) Q.13 (4 marks 4 min.) [4, 4] ANSWER KEY DPP No.7 1. (B) 2. (C) 3. (B) 4. (D) 5. (B) 6. (D) 7. Rate = k [A]1 [B]2 , k = 5 × 10–2 M–2 hr–1 8. k = t 1 ln         t 0 P P 9. k = t 1 ln         t 0 0 P – P 2 P 10. k = t 1 ln           t P – P P 11. 3 12. k = t 1 ln            ) P P ( 5 P 3 t 13. (i) 3. (ii) 5 (iii) 1 1. Which of the following leads to bonding? (A) + – s-orbital p-orbital (B*) + – s-orbital p-orbital (C) + + – – p-orbital p-orbital (D) f u E u f y f [ k re s al sd k S uc a / kc u k u sd si { ke s ag S & (A) (B*) (C) (D) 2. Which one of the following is the correct set with respect to molecule, hybridization and shape? (A) BeCl2 , sp2 , linear (B) BeCl2 , sp2 , triangular planar (C*) BCl3 , sp2 , triangular planar (D) BCl3 , sp3 , tetrahedral f u E u f y f [ k re s al sd k S u l kl e w gv . k q ]l a d j . kr F k kv k d ` f rd sl a n H k Ze s al g hg S & (A)BeCl2 ,sp2 ,js[kh; (B)BeCl2 ,sp2 ,f=kdks.kh;leryh; (C*)BCl3 ,sp2 , f=kdks.kh;leryh; (D)BCl3 ,sp3 , prq"Qydh; Sol. Cl–Be–Cl (sp, linear) ; (sp2 , triangular planar) 3. Number of natural life times (Tav ) required for a first-order reaction to achieve 99.9% level of completion is : i z F k ed k s f Vd hv f H k f Ø ; kd sf y ,99.9%r dv f H k f Ø ; kd si w . k Zg k s u sd sf y ,v k o ' ; di z k d ` f r dv k ; q d k y(Tav )d hl a [ ; kg S (A) 2.3 (B*) 6.9 (C) 9.2 (D) 0.105 Sol. We know, k = t 303 . 2 log ) x – a ( a 99.9% completion a = 100 a – x = (100 – 99.90) = .10 DAILY PRACTICE PROBLEMS (DPP) Subject : Physical/Inorganic Chemistry Date : DPP No. 7 Class : XII Course :
  • 2. Then t = k 303 . 2 log       10 . 100 t = 2.303 × 3 ×       k 1 ; t = 6.9 × tav Sol. g et k u r sg S ] k = t 303 . 2 log ) x – a ( a 99.9%i w . k Z r kd sf y , a = 100 a – x = (100 – 99.90) = .10 r k s t = k 303 . 2 log       10 . 100 t = 2.303 × 3 ×       k 1 ; t = 6.9 × tav 4. Consider the plots for the types of reaction nA  B + C – dt ] A [ d [A] ] A [ 1 These plots respectively correspond to the reaction orders : nAB+Cv f H k f Ø ; kd sf o f H k U uç d k j k s ad sf y ,f u E uv k j s [ k k si jf o p k jd h f t ,% – dt ] A [ d [A] ] A [ 1 ; gv k j s [ kØ e ' k %f d ld k s f Vd hv f H k f Ø ; kl sl E c a f / k rg S A (A) 0, 2, 1 (B) 0, 1, 2 (C) 1, 1, 2, (D*) 1, 0, 2 Sol. nA   B + C dt ] A [ d   [A] (Ist order) [A]t  t (zero order) t ] A [ 1  t (2nd order) 5. Reaction A + B  C + D follows rate law, r = k[A]1/2 [B]1/2 starting with 1 M of A and B each. What is the time taken for concentration of A become 0.1 M ? Given k = 2.303 × 10–2 sec–1 . (A) 10 sec (B*) 100 sec (C) 1000 sec (D) 434 sec vfHkfØ;kA+BC+Dnjfu;er=k[A]1/2 [B]1/2 dkvuqlj.kdjrhgSA;fnArFkkBçR;sddks1MlkanzrkdslkFk vfHkfØ;k ç k j E H kd ht k r hg SAd hl k a n z r k0.1Mg k s u se s af d r u kl e ;y x s x k Given k = 2.303 × 10–2 sec–1 . (A)10lSd.M (B*)100lSd.M (C)1000lSd.M (D)434lSd.M Sol. A + B  C + D t = 0 1 1 0 0 t = t 1 – x 1 – x x x r = k[A]1/2 [B]1/2  dt dx = k (1 – x)1/2 (1 – x)1/2 .
  • 3. or dt dx = k (1 – x).  t = k 1 ln       x – 1 1 ; t = 2 – 10 303 . 2 303 . 2  log       1 . 0 1 = 100 sec. 6. At high temperature (504ºC) dimethyl ether decomposes as per the reaction (CH3)2 O (g)   CH4(g) + H2(g) + CO(g) time (sec.) : 0 400 1200  ptotal (mm) : 312 412 560 935 Determine the half life of the reaction during this run. (ln       523 623 = 0.175, ln       375 623 = 0.5076) m P pr k i(504ºC)i jM k b e s f F k yb Z F k jf u E uv f H k f Ø ; kd sv u q l k jf o ; k s f t rg k s r kg S A (CH3)2 O (g)   CH4(g) + H2(g) + CO(g) l e ;(l S d . M -e s a ) : 0 400 1200  pdqy (mm) : 312 412 560 935 bliz;ksxdsnkSjkuvfHkfØ;kdhv)Z&vk;qKkrdjksA(ln       523 623 =0.175,ln       375 623 =0.5076) (A)1311sec¼lSd.M½ (B)1411sec¼lSd.M½ (C)1511sec¼lSd.M½ (D*)1611sec¼lSd.M½ Sol. (CH3 )2 O (g) — CH4 (g) + H2 (g) + CO(g) t=0 a 0 0 0 a  P º = 312 mm t=400 sec a–x x x x a+2x  p 400 = 412mn t=1200 sec a – y y y y a+2y  p 1200 = 560 mm t= 0 a a a 3a P  = 935 mm Kt = ln         t o C C = ln       x – a a  Kt = ln           t o p – p p – p (t = 400sec) K1 = 400 1 ln       412 – 935 312 – 935 = 400 1 ln       523 623 sec–1 = 0.175 × 400 1 (t = 1200sec) K2 = 1200 1 ln       560 – 935 312 – 935 = 1200 1 ln       375 623 sec–1 = 0.5076 × 1200 1 2 1 t = 2 k k 2 ln 2 1  = ) k k ( 2 ln 2 2 1  = 2 1638 1584  = 1611 sec. 7. A reaction between A and B is represented stoichiometrically by A + B  C. Observations on the rate of this reaction are obtained in three separate experiments as follows : –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– initial concentrations final concentration [A]0 , M [B]0 , M duration of experiment t, hr [A]f , M –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– (1) 0.1000 1.0 0.5 0.0975 (2) 0.1000 2.0 0.5 0.0900 (3) 0.0500 1.0 2.0 0.0450 –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– What is the order of the reaction with respect to each reactant and what is the value of the rate constant? Ar F kkBd se / ;v fH k f Ø; kd k sj l l eh d j. k f er h} k j kA+BCl sç n f' k Zrf d; kt k rkg S]blv fH k fØ ; kd sf y ,n jd kç s { k. k r h ui ` F k dç ; k s x k s ae s af u E uç d k jç k I rd j r sg S a A –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– ç k j f E H k dl k U n z r k v f U r el k U n z r k [A]0 , M [B]0 , M ç;ksxdsnkSjku t,hr [A]f , M –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– (1) 0.1000 1.0 0.5 0.0975 (2) 0.1000 2.0 0.5 0.0900
  • 4. (3) 0.0500 1.0 2.0 0.0450 –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– ç R ; s s dv f H k d k j dd sl k i s { kv f H k f Ø ; kd hd k s V hD ; kg S a ]r F k kn jf u ; r k a dd ke k uD ; kg S a A Ans. Rate = k [A]1 [B]2 , k = 5 × 10–2 M–2 hr–1 Sol. Initial conc. duration of experiment (hr) final conc. [A]f Rate [A]0 ,M [B]0 , M 0.1000 1.0 0.5 0.0975 5 × 10–3 M hr–1 0.1000 2.0 0.5 0.0900 20 × 10–3 M hr–1 0.0500 1.0 2.0 0.0450 2.5 × 10–3 M hr–1 A + B — C Rate = – dt ] A [ d = – dt ] B [ d = dt ] C [ d Rate = K[A]a [B]b R1 = K [0.1]a [1]b = 5 × 10–3 M hr–1 R2 = K [0.1]a [2]b = 20 × 10–3 M hr–1 2 1 R R = b 2 1       = 4 1  b = 2 R3 = K [0.05]a [1]2 = 2.5 × 10–3 M hr–1 R1 = K [0.1]a [1]2 = 5 × 10–3 M hr–1 1 3 R R = a 2 1       = 2 1  a = 1 R1 = K [0.1] [1]2 = 5 × 10–3 M hr–1 K = 1 . 0 10 5 3 –  = 5 × 10–2 M–2 hr–1 8. Let there be as first-order reaction of the type, A   B + C. Let us assume that all the three species are gases. We are required to calculate the value of rate constant based on the following data. 0 T  P0 Pt – Time Partial pressure of A e k u kf dA   B+C, dç F k ed k s f Vç d k jv f H k f Ø ; kg S a ]v cg e; gt k u r sg S af dr h u k s aç t k f rx S l h ;g S a Ag e s af u E uv k W d M k si j v k/ kk fj rnjf u; rk add kek ui fj df yrd ju kvk o' ;dg Sa A Ans. k = t 1 ln         t 0 P P Sol. A   B + C t=0 a 0 0 a  P0 t=t a-x x x (a–x)  Pt Kt = ln        x a a  k = t 1 ln         t 0 P P 9. Let there be a first order reaction, A   B + C. Let us assume all three are gases. We are required to calculate the value of rate constant based on the following data 0 t  P0 Pt – Time Total pressure Calculate the expression of rate constant. e k u kf dA   B+Cç F k ed k s V hd hv f H k f Ø ; kg S a Av c; ge k u r sg Sf dr h u k s aç t k f rx S l h ;g S a ]g e s af u E uv k W d M k s ai jv k / k k f j r njfu;rkaddkekuifjdfyrdjukvko';dgSaA
  • 5. njfu;arkddkO;tadKkrdhft,A Ans. k = t 1 ln         t 0 0 P – P 2 P Sol. A   B + C t=0 a 0 0 a  P0 t=t a-x x x (a+x)  Pt  x  (Pt – P0 ) Kt = ln        x a a  k = t 1 ln           ) P P ( P P 0 t 0 0  k = t 1 ln         t 0 0 P – P 2 P 10. A(g)   B(g) + C(g) Calculate the expression of rate constant. A(g)   B(g) + C(g) njfu;arkddkO;tadKkrdhft,A Ans. k = t 1 ln           t P – P P Sol. A   B + C t=0 a 0 0 t=t a-x x x 2x  Pt  x  2 Pt t=  0 a a 2a  P   a  2 P Kt = ln        x a a  k = t 1 ln           t P – P P 11. For the reaction, 2NO + H2   N2 O + H2 O the value of -dp/dt was found to be 1.50 Torr s–1 for a pressure of 359 Torr of NO and 0.25 Torr s-1 for a pressure of 152 Torr, the pressure of H2 being constant. On the other hand, when the pressure of NO was kept constant, –dp/dt was 1.60 Torr s–1 for a hydrogen pressure of 289 Torr and 0.79 Torr s–1 for a pressure of 147 Torr. Determine the order of the reaction. vfHkfØ;k 2NO+H2   N2 O+H2 Ods fy, H2 ds fu;r nkc ij -dp/dtds eku NOds 359Vksj nkc ij 1.50Vksj lSd.M–1 ,oaNOds152Vksjnkcij0.25VksjlSd.M–1 ik;sx;stcfd;fnNOdkfu;rnkcfy;ktkrkrks –dp/dtdseku H2 ds289Vk sji j1.60Vks jlSd .M –1 ,o aH2 ds147Vksjij0.79Vks jlsd .M –1 ik; sx;sAblvfH kfØ; kdhdksf VKk rdj ksA Ans. 3 Sol. rate = K [NO]a [H2 ]b a 2 1 152 359 25 . 0 5 . 1 r r          1 6 = (2.36)a  a = 2 b 4 3 147 289 79 . 0 6 . 1 r r          2 = (1.966)b  b = 1 order of the reaction = 1 + 2 = 3
  • 6. 12. Decomposition of N2 O5 follows first-order kinetics, 2N2 O5 (g)   4NO2 (g) + O2 (g). If pressure of the system at time, t and  are Pt and  P respectively, find the expression of rate contant (k). N2 O5 dkfo;kstuizFkedksfVcyxfrdhdkvuqlj.kdjrkgS,2N2 O5 (g)   4NO2 (g)+O2 (g);fnle;trFkk  ijfudk; dsnk cØe 'k%Pt rF kk  P gk s]rksnjfu; rkad(k)dkO; atdKk rd hft ,A Ans. k = t 1 ln            ) P P ( 5 P 3 t Sol. 2N2 O5 (g)   4NO2 (g) + O2 (g) t = 0 a 0 0 t = t a – x 2x 2 x        2 x 3 a  Pt t=  0 2a 2 a 2 a 5  P kt = ln        x a a a  5 2 P & x  3 2         P 3 2 Pt k = t 1 ln                          P 5 2 P 3 2 P 5 2 P 5 2 t = t 1 ln            ) P P ( 5 P 3 t 13. Integer Answer Type This section contains 3 questions. The answer to each of the questions is a single digit integer, ranging from 0 to 9. i w . k k ± dm Ù k ji z d k j b l[ k . Me s a3i z ' ug S a Ai z R ; s di z ' ud km Ù k j0l s9r di w . k k ± dg S A (i) The number of lone pairs of electrons present on the central atom in IBr2 – is IBr2 – d sd s U n z h ;i j e k . k qi jm i f L F k rb y s D V ª k s u k s ad s, d k d h; q X e k s ad hl a [ ; kg S& Ans. So answer is 3. (ii) How many B—O—B bond are present in the structure of borax ? c k s j s D ld hl a j p u ke s af d r u sB—O—Bc a / km i f L F k rg S Ans. 5 (iii) The number of S–S bond(s) in dithionic acid is/are M k b ZF k k ; k s f u dv E ye s aS–Sc a / k k s ad hl a [ ; kg S @ g S a Ans. 1
  • 7. DPP No. -2 Total Marks : 46 Max. Time : 51 min. Single choice Objective ('–1' negative marking) Q.1 to Q.5 (3 marks 3 min.) [18, 18] Multiple choice objective ('–1' negative marking) Q.6 (5 marks 4 min.) [5, 4] Subjective Questions ('–1' negative marking) Q.7 to Q.11 (4 marks 5 min.) [20, 25] Match the Following (no negative marking) Q.12 (8 marks 8 min.) [8, 8] Integer Type Questions ('–1' negative marking) Q.13 (3 marks 3 min.) [3, 3] ANSWER KEY DPP No.8 1. (A) 2. (C) 3. (D) 4. (B) 5. (B) 6. (A) 7. 4 8. k = t 1 ln         t 0 V V 9. k = t 1 ln           t 0 V – V V – V 10. k = t 1 ln           t 0 V – V V – V 11. k = t 1 ln           t 0 r – r r – r 12. (A) p, q ; (B) p, q, r ; (C) p, q, r, s ; (D) p, q, r, s 13. (i) 8 (ii) 3 (iii) 3 1. The decomposition of N2 O5 in chloroform wasfollowed by measuring the volume of O2 gasevolved : 2N2 O5 (CCI4 )  2N2 O4 (CCI4 ) + O2 (g). The maximum volume of O2 gas obtained was 100 cm3 . In 500 minutes, 90 cm3 of O2 were evolved. The first order rate constant (in min–1 ) for the disappearance of N2 O5 is : DyksjksQkeZesaN2 O5 dsfo;kstu 2N2 O5 (CCI4 )2N2 O4 (CCI4 )+O2 (g)dksfu"dkflrO2 dsvk;rudsekiuesaç;qDrfd;k t k r kg SO2 x S ld kv f / k d r ev k ; r u100cm3 ç k I rg k s r kg Sr F k k500f e u Ve s a90cm3 O2 f u " d k f l rg k s r hg S AN2 O5 d sf o y q I rg k s u s d sf y ,ç F k ed k s f Vd ko s xf u ; r k a d(f e u V –1 e s a )g k s x k A (A*) 500 303 . 2 (B) 90 100 log 500 303 . 2 (C) 100 90 log 500 303 . 2 (D) 500 10 100  Sol. k t = In         t O C C 2 N2 O5   2N2 O4 + O2 t=0 200 cm3 0 0 t=t 20 cm3 180cm3 90 cm3 t=  0 200cm3 100 cm3 Initial volume of N2 O5 = 200 cm3 . because Max. volume of O2 = 100 cm3 .  K × 500 = In       20 200  k = 500 10 In = 500 303 . 2 . 2. The reaction A(g) + 2B(g)  C(g) is an elementary reaction. In an experiment involving this reaction, the initial partial pressures of A and B are PA = 0.40 atm and PB = 1.0 atm respectively. When pressure of C becomes 0.3 atm in the reaction the rate of the reaction relative to the initial rate is : (A) 12 1 (B) 50 1 (C*) 25 1 (D) none of these vfHk fØ;kA(g)+2B(g)C(g),dljy¼ ,dyin½v fHkfØ ;kg Saft ls,dç;ks xes aç;q Drfd ;kt krkg S]ArF kkBdkçk jfEH kd nkcØ e'k%PA =0.40ok; qe.My h;rF kkPB =1.0ok; qe.Myh ;gSAtcPC =0.3ok; qe.Myh ;gkstkrkgSAç kjfEHk dnjdslki s{k v f H k f Ø ; kd hn jg k s x h (A) 12 1 (B) 50 1 (C*) 25 1 (D)m i j k s D re s al sd k s b Zu g h a DAILY PRACTICE PROBLEMS (DPP) Subject : Physical/Inorganic Chemistry Date : DPP No. 8 Class : XII Course :
  • 8. Sol. A(g) + 2B(g)  C(g) t = 0 0.4 atm 1 atm 0 atm t = t (0.4 –0.3)atm (1 – 0.6)atm 0.3 atm Since reaction is elementary. So, Rate of reaction w.r.t. A & B will be of order equal to stoichiometric coefficient Rate = K [A] [B]2 Rate(Initial) = K [0.4] [1]2 Rate(aftar t = t) = K [0.1][0.4]2 ) o t ( ) t t ( R R   = ] 1 [ ] 4 . 0 [ K ] 4 . 0 [ ] 1 . 0 [ K 2 = 25 1 3. A reaction is catalysed by H+ ion;and in the rate law the dependence of rate is of first order with respect to the concentration of H+ ions, in presence of HA rate constant is 2 × 10–3 min–1 and in presence of HB rate constant is 1 × 10–3 min–1 . HA and HB (both strong acids) have relative strength as : , dv f H k f Ø ; kH+ v k ; u} k j km R i z s f j rd ht k r hg Sr F k kb l e s ao s xf u ; eH+ v k ; ud hl k U n z r kd sl k i s { ki z F k ed k s f Vd hv f H k f Ø ; kg S A HAd hm if L F k f re san jf u ; rk a d2×10–3 min–1 g Sr Fk kHBd hm i f LF k f re s an jf u; r k a d1×10–3 min–1 g SrcHAr F kkHB(n k s u k s a i z c yv E yg S )v k i s f { k dl k e F ; Zg S: (A) 0.5 (B) 0.002 (C) 0.001 (D*) 2 Sol. We know Rate = k [conc.] Given Rxn catalysed by HA and HB Rate constant kA = k1 [H+ ]A kB = k1 [H+ ]B Then relative strength of acidsA and B is B A k k = B A ] H [ ] H [   1 2 = B A ] H [ ] H [   = strength of ] B Acid [ ] A Acid [ Sol. g et k u rsg Sf d nj=k[lkUnzrk] f n ; kx ; kg Sf dv f H k f Ø ; kHAr F k kHBl sm R i z s f j rg S A n jf u ; r k a d kA = k1 [H+ ]A kB = k1 [H+ ]B v cv E y k s aAr F k kBd hv k i s f { k dl k e F ; Z B A k k = B A ] H [ ] H [   1 2 = B A ] H [ ] H [   = ] B [ ] A [ vEy vEy dhlkeF;ZrkA 4. The gaseous decomposition reaction, A(g)   2B(g) + C(g) is observed to first order over the excess of liquid water at 25ºC. It is found that after 10 minutes the total pressure of system is 188 torr and after very long time it is 388 torr. The rate constant of the reaction (in hr–1 ) is : [Given : vapour pressure of H2 O at 25º is 28 torr (ln 2 = 0.7, ln 3 = 1.1, ln 10 = 2.3)] (A) 0.02 (B*) 1.2 (C) 0.2 (D) none of these. 25ºCijn zotydsvk f/ kD;es axSl h;fo ;ks tuvf Hkf Ø; kA(g)   2B(g)+C(g)dsf y,çF kedk sfVç sf{ krdhtk rhgS A;g ik;kx;kgSfd 10feuVi'pkr~ra=kdkdqynkc188torr rFkkdkQhyEcsle;i'pkr~;g388torrgSArksvfH kfØ;kdsfy, njfu;rkad(hr–1 esa)gS%[fn;kx;kgS: 25ºCijH2 O dkok"inkc28torrgSA [(ln 2 = 0.7, ln 3 = 1.1, ln 10 = 2.3)] (A) 0.02 (B*) 1.2 (C) 0.2 (D)m i j k s D re s al sd k s b Zu g h a A Sol. A(g)   2B(g) + C(g) Let initial pressure P0 0 0
  • 9. After 10 min. (P0 – x) 2x x After long time ) t (   0 2P0 P0 as per given (P0 – x) + 2x + x + vaour pressure of H2 O = 188 P0 + 2x = 160 and 3P0 + 28 = 388 so, P0 = 120 and x = 20 torr k =          x P P ln t 1 0 0  10 1 100 120 ln 10 1        × (ln 4 + ln 3 – ln 10) = 0.02 min–1 = 1.2 hr–1 5. The hydrolysis of cane sugar was studied using an optical polarimeter and the following readings were taken: time (min.) : 0 84 min  observed rotation (degrees) : 50 20 –10 When was the mixture optically inactive? (log 2 = 0.3, log 3 = 0.48) x U u sd h' k d Z j kd st y & v i ? k V ud sv / ; ; ui z d k ' k h ;i k s y s j h e h V jd sm i ; k s x} k j kf d ; kt k r kg S ]v k S jf u E ui k B ~ ; k a df y ; sx ; sg S A le; (feuV): 0 84 min  i z s f { k r? k w . k Z u(f M x z h ): 50 20 –10 feJ.kizdk'kh;vlfØ;dcgksrkgSA(log2=0.3,log3=0.48) (A) 118 min (B*) 218 min (C) 318 min (D) 418 min Sol. Kt = ln             t 0 r r r r K = 84 1 ln           20 10 50 10 = 84 1 ln (2) Solution is optically inactive i.e. optical rotation is zero.       2 ln 84 1 t = ln           0 10 50 10 t = 84 2 ln 6 ln = 218 min. 6. For a certain reaction A   products, the t½ as a function of [A]0 is given as below : [A]0 (M) : 0.1 0.025 t1/2 (min.) : 100 50 Which of the following is/are true ? (A*) The order is 2 1 (B*) t½ would be min 10 100 for [A]0 = 1 M (C) The order is 1 (D) t½ would be 100 min for [A]0 = 1 M ,dfuf'prvfHkfØ;kA   mRikn]dsfy;st½ dks[A]0 dsQyuds:iesafuEuçdkjlsfn;kx;kgSA [A]0 (M) : 0.1 0.025 t1/2 (min.) : 100 50 f u E ue s al sd k S u l kl R ;g S A (A*) 2 1 d k s f Vg S A (B*) [A]0 =1Mdsfy;s t½, min 10 100 gksxkA (C)ç F k ed k s f Vg S A (D)[A]0 = 1 Mijt½, 100min gksxkA Sol. A  Products. t1/2 = [conc.]1 – n n  order of reaction. 50 100 = n – 1 025 . 0 1 . 0      
  • 10. 2 = 2 – 2n  2n = 1.  n = 2 1 . order of reaction is 2 1 . 2 / 1 t 100 = 2 / 1 1 1 . 0        t1/2 = min 10 100 for [A0 ] = 1M. 7. The plot of log (V – V) versus t (where V is the volume of nitrogen collected under constant temperature and pressure conditions) for the decomposition of C6H5N2Cl is given at 50°C with an amount of C6H5N2Cl equivalent to 58.3 cc N2. 5 10 15 20 25 30 1.0 1.75 time(min.) log(V – V)  Calculate the rate constant for the reaction in hr–1 expressing your answer in a single significant digit. log(V –V)dktdslkis{kvkjs[k(tgk¡fu;rrkionkcifjfLFkfre sa ukbVªkstudkvk;ruV fy;kx;kgS½C6H5N2Cldsfo;kstudsfy,50°C rkifn;kx;kgSAftlijC6H5N2Cldhek=kk58.3ccN2dslekugSA n jf u ; r k a dd hx . k u k? k . V s –1e s ad j k som Ù k jd s o y, dv a de s an k s A 5 10 15 20 25 30 1.0 1.75 time(min.) log(V – V)  Ans. 4 Sol. Slope = 0 25 ) 75 . 1 1 (   = – 0.03 k = – 2.303 (slope) min–1 = – 2.303 (– 0.03) min–1 = 0.06909 min–1 = 4.14 hr–1  4 hr–1 8. Now, let us assume a first-order reaction, A   B + C, such that A, B and C, such that A, B and C are in solution. At time zero, a small amount of the solution is taken, cooled (to stop the reaction from proceeding) and titrated with a suitable reagent. Let us assume that the reagent reacts only with A and not with B and C. The same process is repeated at time t. 0 t V0 Vt Time Volume of reagent Calculate the expression of rate constant. v cg e u se k u kf df u E uv f H k f Ø ; kç F k ed k s f Vd hg S a ] A   B+C,blç dkjdhv fHkfØ;kesaA,BrFkkCfoy; uesag SsA'kw U;le;ijfoy ;udhd eek=kkyhtkr hgSa]ftls B . M + k¼ v f H k f Ø ; kd k sv k s jv k x sj k s d u sd sf y , ½r F k k, dm i ; q D rv f H k d e Z dd sl k F kv u q e k f i rf d ; kt k r kg S a Av cg e; ge k u r sg S a fdvfH kde ZddsoyAdslk FkfØ; kdj rkgSa ]BrF kkCdslk Fku gha Al ekuçØedht le ;i ji quj ko` frd ht krhgS aA njfu;arkddkO;tadKkrdhft,A Ans. k = t 1 ln         t 0 V V Sol. A   B + C t=0 a 0 0 a  V0 t=t a-x x x (a–x)  Vt
  • 11. Kt = ln        x a a  k = t 1 ln         t 0 V V 9. A(soln.)   B(soln.) + C(soln.) Reagent reacts with all species A, B and C. 0 t  V Vt V0 Time Volume of reagent The n factor of A, B and C with the reagent and that of the reagent with A, B and C are not known. Calculate the expression of rate constant. A¼foy;u½   B¼foy;u½+C¼foy;u½ v f H k d e Z dl H k hç t k f r ; k s a A,Br F k kCd sl k F kf Ø ; kd j r sg S a A v fH kd eZ ddsl kF kA,Br Fk kCdsnx q. kk ad rF kkA,Br Fk kCd slk Fkm lvf Hk de Z ddsK kru ghg Sa A njfu;rkaddkO;tadKkrdhft,A Ans. k = t 1 ln           t 0 V – V V – V Sol. A(soln.)   B(soln.) + C(soln.) t=0 a 0 0 t=t a-x x x t=  0 a a Let n-factor of A, B & C are n1 , n2 & n3 & that of reagent is n & molarity of reagent is M At t= 0, meq. of A= meq. of reagent n1 × a = M × n × V0 ....... (i) At t= t, meq. of reagent = meq. of A + meq of B + meq of C MVt n = (a – x)n1 + xn2 + xn3 ....... (ii) At t=  , meq. of reagent = meq of B + meq of C MV  n = an2 + an3 ....... (iii) From (iii) & (i) (n2 + n3 ) = a n MV & n1 = a n MV0  MVt n = (a – x) a n MV0 + x a n MV                t 0 V V V V x a a Kt = ln x a a   K = t 1 ln             t 0 V V V V 10. A(soln.)      .) ln so ( D B(soln.) + C(soln.) D is catalyst present in the solution whose n-factor is not known. Catalyst have a constant concentration through- out the reaction.
  • 12. 0 t  V Vt V0 Time Volume of reagent Calculate the expression of rate constant. A¼foy;u½      .) ln so ( D B¼foy;u½+C¼foy;u½ Df o y ; ud sm i f L F k rm R ç s j dg S a]f t l d knx q . k k a dK k ru g hg S a Am R ç s j dd hi w j hv f H k f Ø ; kd sn k S j k ul k U n z r kf u ; rj [ k r kg S a A njfu;rkaddkO;tadKkrdhft,A Ans. k = t 1 ln           t 0 V – V V – V Sol. Same as of question 9. 11. Now, let us assume that A, B and C are optically active compounds, which rotate the plane polarized light in the clockwise or anticlockwise direction. A(soln.)   B(soln.) + C(soln.) 0 t  r rt r0 Time Total rotation in degrees Calculate the expression of rate constant. v ce k u kf d A,Br F k kCç d k ' k h ;: il sl f Ø ;; k S f x dg S a ]t k sf dl e r y/ k z q o . kç d k ' kd hv k S jn f { k . k k o r Zv F k o ko k e k o r Zf n ' k ke s a ? k q . k Z u d j k r s g S a A A¼foy;u½   B¼foy;u½+ C¼foy;u½ njO;atdfu;arkddkO;atdKkrdhft,A Ans. k = t 1 ln           t 0 r – r r – r Sol. A(soln.)   B(soln.) + C(soln.) t=0 a 0 0 t=t a-x x x t=  0 a a Let ,  &  are specific rotation of A, B & C respectively. At t=0, r0 = a ........... (i) At t=t, rt = (a–x) + x+ x ........... (ii) At t=  , r  = a+ a ........... (iii) From (i) & (iii) = a r0 & (+ ) = a r Putting in (ii) rt = (a – x) a r0 + a r x  t 0 r r r r x a a      
  • 13. Kt = ln x a a   k = t 1 ln           t 0 r – r r – r 12. Match the pair of species given in column-I with the identical characteristic(s)/type of hybridisation given in column-II : Column - Column - (Pair of species) (Identical Property in pairs of species) (A) PCl3 F2 and PCl2 F3 (p) Hybridisation of central atom (B) BF3 and BCl3 (q) Shape of molecule/ion (C) CO2 and CN2 –2 (r)  (dipole moment) (D) C6 H6 and B3 N3 H6 (s) Total number of electrons L r E H k -Ie s an hx ; h si z t k f r ; k s a¼ L i h ' k h t ½d s; q X e k s ad k sm u d sl g hx q . k k s a @ i z d k jd sl a d j . kt k sL r E H k -IIe s af n ; sx ; sg Sd sl k F kl q e s f y rd h f t , A dkWye& dkWye& ¼ L i h ' k h td k; q X e ½ ¼ L i h ' k h td s; q X ee s al e k ux q . k ½ (A) PCl3 F2 rFkkPCl2 F3 (p) d s U n z h ;i j e k . k qd kl a Ø e . k (B) BF3 rFkkBCl3 (q) v . k q @ v k ; ud hv k d ` f r (C) CO2 rFkkCN2 –2 (r) ¼ f } / k z q o v k ? k w . k Z ½ (D) C6 H6 rFkkB3 N3 H6 (s) b y s D V ª k W ud hd q yl a [ ; k Ans. (A) p, q ; (B) p, q, r ; (C) p, q, r, s ; (D) p, q, r, s Sol. (A) PCl3 F2 & PCl2 F3 Hybridisation sp3 d sp3 d shape TBP TBP Dipole moment Total no. of electrons 84 76 (B) BF3 BCl3 Hybridisation sp2 sp2 Shape Trigonal planar Trigonal planar Dipole moment Total no. of electrons 32 56 (C) CO2 CN2 2– Hybridisation sp sp Shape linear linear  O = C = O – N = C = N–  = 0  = 0 Total no. of electrons 22 22 13. Integer Answer Type This section contains 3 questions. The answer to each of the questions is a single digit integer, ranging from 0 to 9. i w . k k ± dm Ù k ji z d k j b l[ k . Me s a3i z ' ug S a Ai z R ; s di z ' ud km Ù k j0l s9r di w . k k ± dg S A (i) Find the sum of average oxidation number of S in H2 SO5 (peroxy monosulphuric acid) and Na2 S2 O3 (sodium thiosulphate).
  • 14. H2 SO5 (ijvkWDlheksukslY¶;wfjd vEy) rFkk Na2 S2 O3 (lksMh;e Fkk;kslYQsV) esa S ds vkSlr vkWDlhdj.k vadks dk ;ksx Kkr dhft;sA Ans. 8 Sol. H2 SO5 and Na2 S2 O3 (+6) (+2) (ii) The equilibrium N2 (g) + 3H2 (g) 2NH3 (g) is established in a closed container by initially taking only NH3 . Find out the number of moles of H2 present in 102 g of the equilibrium mixture if the molar massof the equilibrium mixture is observed to be 4 51 g/mole. , dc a ni k = ke s ai z k j E H ke s ad s o y ]NH3 d k sy s d j ]l k E ;N2 (g)+3H2 (g) 2NH3 (g)d k sL F k k f i rf d ; kx ; k Al k E ;f e J . kd s102 ge s am i f L F k rH2 d se k s y k s ad hl a [ ; kK k rd h f t ,; f nf e J . kd ke k s y jn z O ; e k u 4 51 g/molei z s f { k rf d ; kx ; k A Ans. 3 Sol. Mobs =    ) 1 n ( 1 MTh  4 51 =    ) 1 2 ( 1 17   = 3 1 Mass of eq. mixture = Initial mass = 102 g l kE ;f eJ . kd kn zO ;e k u=i zk j f EH k dn zO ; e ku=102g  i zk j E Hkes afy ; sx ; s 3 NH n = 17 102 =6moles N2 (g) + 3H2 (g) 2NH3 (g) t = 0 6moles eq. 6(/2) 6(3/2) 6(1 – )  2 H n present = 6        2 3 = 9 = 9 × 3 1 = 3 moles (iii) Let Z be the compressibility factor for a real gas at critical conditions and Vander Waal constant be is dependent as b =         C C P T m R , then find the product (Z × m). e k u kd h ]Ø a k f r di f j f L F k f ri j ], do k L r f o dx S ld sf y , ]l E i h M ~ ; r kx q . k k a dZg Sr F k ko k . M j o k yf u ; r k a db,f u E uç d k jl sf u H k Z j djrk gS]b=         C C P T m R ,rc(Z×m)dkxq.kuQyKkrdhft;s Ans. 3 Sol. For a real gas at critical point, Z = C C C RT V P = 8 3 Also, b =         C C P T 8 R  m = 8  Product (Z × m) = 8 3 × 8 = 3. g y - ØkafrdfcUnqij,dokLrfodxSldsfy,]Z= C C C RT V P = 8 3 rFkk,b=         C C P T 8 R  m = 8  (Z × m)dk xq.kuQy= 8 3 × 8= 3.