OBJECTIVE UNSOLVED LEVEL - I 1. The flux linked with a coil changes with time according to the equation at2 bt c . Then S I unit of a is : (a) Volt (b) Volt / sec (c) Volt. sec (d) Weber. 2. Lenz’s law is consistent with law of conservation of (a) current (b) emf (c) energy (d) all of the above. 3. A charged particle entering into a uniform magnetic field from outside in a direction perpendicular to the field (a) can never complete one rotation inside the field (b) may or may not complete one rotation in the field depending on its angle of entry into the field (c) will always complete exactly half of a rotation before leaving the field (d) may follow a helical path depending on its angle of entry into the field. 4. The magnetic flux linked with a coil is and the emf induced in it is . (a) If = 0, must be 0 (b) If 0 , cannot be 0 (c) If is not 0, may or may not be 0 (d) None of the above is correct. 5. A metal ring is placed in a uniform magnetic field, with its plane to the field. If the magnitude of the field begins to change with time, the ring will experience (a) a net force (b) a torque about its axis (c) a torque about a diameter (d) a tension along its length. 6. There will be no induced emf in a straight conductor moving in a uniform magnetic field, if : (a) it is moving parallel to magnetic field (b) it is moving along its length (c) it is moving in the magnetic field with its length parallel to field then correct statement (s) is / are : (a) a only (b) a, b only (c) a, c only (d) a, b, c. x 7. Consider the situation shown in figure. If the current I in the long straight wire xy is increased at a steady rate the induced current in loop A and B will be : (a) clockwise in A and anticlockwise in B (b) anticlockwise in A and clockwise in B y (c) clockwise in both A and B (d) anticlockwise in both A and B. 8. A metallic ring is held horizontal and a magnet is allowed to fall vertically through it with N-pole pointing upwards. The acceleration of magnet near the ring is a. Then (a) a = g (b) a < g while approaching but a > g while receding (c) a < g while approaching as well as receding (d) a > g while approaching but a < g while receding. 9. The current in a L – R circuit in a time t = 2L/R reduces to (a) 36.5% of maximum (b) 13.5% of maximum (c) 0.50% of maximum (d) 63.2% of maximum. 10. A field of 5104 / ampere-turns / meter acts at right angle to a coil of 50 turns of area 102 m2 . The coil is removed from the field in 0.1 second. Then the induced emf in the coil is : (a) 0.1 V (b) 80 KV (c) 7.96 V (d) none of the above. 11. The flux linked with a coil is 0.8 Wb when 2A current flows through it. If this current begins to increase at the rate of 0.4 A/s, the emf induced in the coil will be (a) 0.02 V (b) 0.04 V (c) 0.08 V (d) 0.16 V. 12. A non-conducting ring of radius r has charge Q. A magnetic field perpendicular to the plane of the dB ring changes at the rate dt . The to
OBJECTIVE UNSOLVED LEVEL - I 1. The flux linked with a coil changes with time according to the equation at2 bt c . Then S I unit of a is : (a) Volt (b) Volt / sec (c) Volt. sec (d) Weber. 2. Lenz’s law is consistent with law of conservation of (a) current (b) emf (c) energy (d) all of the above. 3. A charged particle entering into a uniform magnetic field from outside in a direction perpendicular to the field (a) can never complete one rotation inside the field (b) may or may not complete one rotation in the field depending on its angle of entry into the field (c) will always complete exactly half of a rotation before leaving the field (d) may follow a helical path depending on its angle of entry into the field. 4. The magnetic flux linked with a coil is and the emf induced in it is . (a) If = 0, must be 0 (b) If 0 , cannot be 0 (c) If is not 0, may or may not be 0 (d) None of the above is correct. 5. A metal ring is placed in a uniform magnetic field, with its plane to the field. If the magnitude of the field begins to change with time, the ring will experience (a) a net force (b) a torque about its axis (c) a torque about a diameter (d) a tension along its length. 6. There will be no induced emf in a straight conductor moving in a uniform magnetic field, if : (a) it is moving parallel to magnetic field (b) it is moving along its length (c) it is moving in the magnetic field with its length parallel to field then correct statement (s) is / are : (a) a only (b) a, b only (c) a, c only (d) a, b, c. x 7. Consider the situation shown in figure. If the current I in the long straight wire xy is increased at a steady rate the induced current in loop A and B will be : (a) clockwise in A and anticlockwise in B (b) anticlockwise in A and clockwise in B y (c) clockwise in both A and B (d) anticlockwise in both A and B. 8. A metallic ring is held horizontal and a magnet is allowed to fall vertically through it with N-pole pointing upwards. The acceleration of magnet near the ring is a. Then (a) a = g (b) a < g while approaching but a > g while receding (c) a < g while approaching as well as receding (d) a > g while approaching but a < g while receding. 9. The current in a L – R circuit in a time t = 2L/R reduces to (a) 36.5% of maximum (b) 13.5% of maximum (c) 0.50% of maximum (d) 63.2% of maximum. 10. A field of 5104 / ampere-turns / meter acts at right angle to a coil of 50 turns of area 102 m2 . The coil is removed from the field in 0.1 second. Then the induced emf in the coil is : (a) 0.1 V (b) 80 KV (c) 7.96 V (d) none of the above. 11. The flux linked with a coil is 0.8 Wb when 2A current flows through it. If this current begins to increase at the rate of 0.4 A/s, the emf induced in the coil will be (a) 0.02 V (b) 0.04 V (c) 0.08 V (d) 0.16 V. 12. A non-conducting ring of radius r has charge Q. A magnetic field perpendicular to the plane of the dB ring changes at the rate dt . The to