SlideShare una empresa de Scribd logo
1 de 23
Descargar para leer sin conexión
Problemario
Ingeniería de Control
Adalberto Cortés Ruiz
Instructor: Dr. Eliseo Hernández Martínez
Noviembre 2016
Problema 1: Diagramas de Bloques
Simplifique el diagrama de bloques que aparece en la Figura 1 y obtenga la función de
transferencia en lazo cerrado C(s)/R(s).B-2-3 de (Ogata, 2010)
Figura 1. Diagrama de Bloques propuesto
1. Agrupación de los lazos de retroalimentación:
2. Reducción de los lazos de retroalimentación:
3. Multiplicación de bloques en serie
G1
H2
G3_++
+
+G2
H3
__+
( )R s ( )C s
G1
G3_+
H3
_+
( )R s ( )C s
4. Reducción de la retroalimentación y multiplicación de la serie
Problema 2: Estimación de la constante de tiempo
Un termómetro requiere de un minuto para alcanzar el 98% del valor final de la respuesta a una
entrada escalón. Suponiendo que el termómetro es un sistema de primer orden, encuentre la
constante de tiempo.
Partiendo de las ecuaciones de primer orden y del cambio en escalón:
Primer Orden Cambio escalón
( )
( )
1
ku s
y s
s


( )
u
u s
s


 
( )
1
k u
y s
s s



 
 
 
11
1 1 1
A s BsA B
s s s s s s

  
 
  
  
Determinando las constantes A y B por fracciones parciales:
1,A B   
G1 _+
H3
_+
( )R s
( )R s
_+
( )R s ( )R s
1 1
1
1
t
e
s s




  
   
 
L
( ) 1
t
y s e 

 
Ahora sustituyendo ( ) 0.98y s  y 1 min 60 st  
Control de nivel de agua en un tanque
Al analizar sistemas que implican el flujo de líquidos, resulta necesario dividir los regímenes de flujo
en laminar y turbulento, de acuerdo con la magnitud del número de Reynolds. Si el número de
Reynolds es mayor que entre 3000 y 4000, el flujo es turbulento. El flujo es laminar si el número de
Reynolds es menor que unos 2000. En el caso laminar, tiene lugar un flujo estable en las corrientes,
sin turbulencia. Los sistemas que contienen un flujo laminar se pueden representar mediante
ecuaciones diferenciales lineales, (Ogata, 2010).
60
60
( ) 1
1 0.98 0.02
60
ln(0.02)
60
15.33 s
ln(0.02)
y s e
e






 
  



 
Altura máxima:
3m
Radio:
0.5m
Caso laminar
Modelo
Tomando en cuenta el balance general de materia [entradas-salidas=acumulación]
dV
Fe Fs
dt
 
El flujo de salida tiene una resistencia al caudal (la válvula) que es lineal debido a que el flujo es de
régimen laminar (constante) y es el cambio del nivel del tanque sobre el cambio del caudal (Flujo
volumétrico de salida).
dh h
R
dFs Fs
 
El volumen del líquido en el tanque está dado por:
V Ah
Donde 2
A r y es constante. Sustituyendo las dos ecuaciones anteriores en el balance general
de materia, se obtiene el modelo matemático del proceso:
dh Fe h
dt A AR
 
Parámetros
 Capacidad del tanque: 2.3562 m3
(altura de 3 m y radio de 0.5m)
Fe Flujo volumétrico de alimentación 4 m3
/s
r Radio del tanque 0.5 m
R Resistencia que ejerce la válvula de carga en el flujo de salida 0.6 s/m2
Condición inicial
Al inicio del proceso, el tanque está vacío, es decir:
0 0h t 
Lazo abierto
Figura 2. modelo del tanque en simulink (lazo abierto).
Determinación de los parámetros de control
A partir del modelo, se realiza un cambio escalón del flujo de entrada y se observa la respuesta de
y de la altura.
Inicio Final
Cambio escalón de Fe 3 m3
/s 4 m3
/s
Respuesta de h 1.8 m 2.4 m
Figura 3. Respuesta de y (altura) ante un cambio escalón de u (flujo de entrada)
Ganancia ( K ) 0.6
Tiempo característico del proceso ( 63.2%
 ) 0.467
Control PI
Para el control PI, las reglas de sintonizado que se emplearon están descritas por (Skogestad, 2002),
donde la estructura del controlador es:
0
1
c
I
u u K e e d

 
   
 

Donde 0u , cK , e , I y  son el valor nominal del flujo, la ganancia del controlador, la señal del
error, la constante de tiempo integral y el tiempo en el controlador, respectivamente.
El sintonizado sugiere que los parámetros del controlador sean el inverso de la ganancia del sistema
para la ganancia del controlador y el tiempo característico del proceso sea el tiempo integral, Esto
para cuando no se toma en cuenta el tiempo muerto.
63.2%
1
c IK
K
  
Figura 4. Propuesta del controlador PI
cK 1.6667
I 0.467
Figura 5. Modelo con la implementación del control PI
Figura 6. Lazo cerrado, control PI
En la Figura 5 la referencia comienza a partir del tiempo de control (tcontrol=4s), para ese
sintonizado se llega a la referencia en un tiempo aproximado de 6 segundos.
Parámetros de
Control
Figura 7. Prueba del controlador a una referencia cercana al límite de la altura del tanque, a partir de lazo abierto (línea
amarilla) y sin lazo abierto (azul)
Cuando se requiere una referencia cercana a el valor máximo permitido por la física del proceso, es
posible que el controlador exija al actuador un aumento drástico generando así un sobrepico en la
respuesta del sistema que posiblemente pueda causar resultados no deseados en el proceso. Para
este caso, un sobrepico en el nivel del líquido en el tanque puede causar que el líquido se derrame
si el tanque es abierto, o que se estropee el equipo de bombeo o alguna tubería en un punto crítico
si el tanque es cerrado, es por ello que es importante tomar en cuenta estas consideraciones en el
controlador agregando límites en la variable de control.
Figura 8. Controlador PI con límites. Para este caso el límite máximo es Fe=5, cuando se tenga este flujo, la altura será de
3m
Figura 9. Resultado de la corrección del controlador (cotas para el controlador en nivel máximo y mínimo)
Aun así, se observa otro problema, pero no tan grave como el primero y consiste en el tiempo que
el controlador se demora en llegar a la referencia. Aunque el sintonizado realizado hace que sea
rápido, la cota superior (sólo permitir un máximo de una altura de 3m), retrasa al controlador de tal
forma que llega a la referencia al cabo de 50 segundos.
Figura 10. Proceso con nuevos parámetros de sintonizado.
A diferencia de la Figura 6, la Figura 10 no presenta un sobrepico tan pronunciado y es más suave al
momento de llegar a la referencia. Pero se tiene la ventaja de ser más rápido cuando la referencia
se encuentra cerca del límite máximo.
cK 0.13826667
I 0.467
Figura 11. Acción suave del controlador cercano al límite máximo
Figura 12. Perturbación en el proceso (se retiran del tanque 0.2m3/s)
Al comparar con un controlador PID (Figura 13), con un tiempo diferencial de 7 (Td) y la misma
ganancia de 0.13826667, se observa mayor velocidad en el PID al comparar la simulación del
proceso (Figura 14) y sus errores acumulados (Figura 15).
Figura 13. Controlador PID
Figura 14. Comparación del proceso bajo un controlador PI y PID
Figura 15. Comparación del error acumulado generado por un control PI y un PID para este proceso.
Uso de Simulink: Definir un modelo matemático
Entorno
Simulink es un entorno de diagrama de bloques para el diseño de sistemas basados en modelos.
Al abrir Simulink, se despliega su librería de bloques (Figura 1) y en la esquina superior-derecha se
halla el botón para abrir un nuevo modelo Al seleccionar New model, se despliega una
Figura 1. Librería de Simulink, aquí se encuentran los bloques integradores para el
diseño de una simulación, Además se tiene la capacidad de instalar paqueterías para
el uso de Hardware.
Tabla 1. Bloques comunes usados en simulaciones básicas
(constant) Define una constante
(sum) operación matemática de suma
(integrator) integra la señal de entrada respecto al tiempo
(step) genera un cambio en escalón de una constante en un tiempo determinado
(To Workspace) guarda una variable en el workspace de MATLAB, aquí es utilizado
cuando se requiere analizar una variable en el SDI de gran tamaño
(Mux) combina dos o más señales en una sola
(scope) visualiza una variable como una gráfica contra el tiempo
La Tabla 1 muestra algunos de los bloques comunes que se requieren para la simulación de modelos
matemáticos simples, siendo de mayor uso la paquetería de Math Operations de la librería de Simulink.
Simulink, además de su uso para la simulación de modelos matemáticos, puede ser usado para el
diseño y control de procesos, para la programación de hardware (ie, tarjetas Arduino, Raspberry Pi,
National Instruments, etc), adquisición y análisis de imágenes, etc.
Tiempo de la simulación
Con la característica de que
las simulaciones pueden ir
hasta tiempo infinito (inf)
Botón de grabación
Graba los datos de la simulación y permite su posterior
análisis. No es posible utilizarlo cuando el tiempo es
inf. Además, si el tiempo de simulación es grande,
requiere el uso del bloque To Workspace conectado a
la señal que se desea analizar.Ejecutar
Corre la simulación
Solve
Indica la función empleada para la resolución de EDOs,
puede cambiarse en la parte de configuración
según sea la necesidad. Por defecto es ode45
ENTRADAS SALIDAS
Las entradas y salidas de los
bloques se identifican a
partir de la dirección de las
flechas
Definiendo una ecuación Diferencial (modelo matemático)
Tomando como ejemplo 1 el sistema de ecuaciones diferenciales:
( )
( )
dx
a y x
dt
dy
x b z y
dt
dz
xy cz
dt

 


  


 

Donde 10, 28, 8/ 3a b c  
Y condiciones iniciales (0) 1 (0) 5 (0) 5x y z  
Se puede comenzar definiendo las 3 constantes (a, b y c) del modelo e identificando las entradas y
salidas de los 3 integradores que se requerirán.
En los integradores, las entradas serán igual a el valor de la derivada de cada ecuación, mientras que
por salidas se tendrá el valor de la variable que le corresponde.
Las condiciones iniciales se ingresan haciendo doble click en el bloque integrador que le
corresponda. Se desplegará una pantalla en la que se puede definir la condición inicial.
La primera ecuación diferencial dice que dx será igual a ( )a y x , Para ello se requieren dos
bloques, uno que reste a y y x (Sum) y otro que multiplique a toda la resta por la constante a. (Figura
2).
Dando doble Click al
bloque, se despliega una
ventana especificando
sus propiedades. Ahí es
posible cambiar el valor
de la constante que por
defecto es 1.
En List of signs se puede seleccionar
el signo que se requiere utilizar sea
+ o –
La | indica un espacio vacío o punto
cerrado del bloque
Cada singo que se agrega genera
una nueva entrada en el bloque,
pueden ser desde 1 hasta los que se
requieran.
La parte Icon shape define la forma
geométrica del bloque
Figura 2. Primera ecuación diferencial del sistema en la estructura de Simulink
La segunda ecuación diferencial dice que dy es ( )x b z y  , se sigue el mismo procedimiento
utilizado en la primera ecuación diferencial (dos bloques: Sum y Product).
Para la tercera ecuación, dz igual a xy cz se requieren de tres bloques (dos de Product y uno de
Sum).
Se pueden hacer ramificaciones de
una señal acercándose a ella con el
puntero, dar click derecho y
arrastrarla.
A partir de aquí, el sistema de
ecuaciones diferenciales está
terminado. Ahora se puede
simular y visualizar los
resultados utilizando un
bloque scope para cada señal
(x, y y z).
Es posible cambiar el color de
las líneas de señal de cada
bloque dando click derecho,
seleccionar Format, después
Foreground Color y después el
color que se desee.
Ésta herramienta tiene la
finalidad de identificar las
señales de manera visual.
Para la visualización, se puede utilizar
un bloque Scope. Por defecto, Scope
tiene una sola entrada, se puede
modificar el no. de entradas dando
doble click en el bloque y luego en
Parameters.
Ahí se puede ajustar el no. de
entradas en la parte de Number of
Axes.
También se pueden visualizar gráficas de
X vs Y con XY Graph. La primera entrada
corresponde a X y la segunda a Y.
Para ésta simulación se utilizó un tiempo de 50
Simulation Data Inspector (Botón de grabación)
El botón de grabación, además de la visualización de los resultados de la simulación, sirve para
comparar los resultados cuando se hacen modificaciones en el modelo matemático.
Al abrir SDI, se despliega una ventana en la que se pueden analizar los resultados por cada corrida
del modelo (Figura 3). Por defecto, se nombran por el número de corrida realizada, en la Figura 4 se
compara la corrida 1 con la corrida 2, en la cual, se varió el valor de la constante b=20.
Para simulaciones con tiempos
mayores de 10, es necesario el uso
del bloque To Workspace. Éste
bloque tiene distintas maneras de
guardar los datos en el Workspace,
por defecto es Timeseries, pero
comúnmente se maneja en Array
(arreglos de vectores) y se puede
modificar dando doble click en el
bloque.
Al habilitar el botón de grabación se
despliega el siguiente cuadro de
diálogo y al finalizar la simulación, se
despliega una barra en la que se abre
el SDI (Simulation Data Inspector).
Figura 3. SDI inspector de señales
Figura 4. Comparación de corridas. En Compare Runs se pueden comparar las señales de una misma variable y visualizar
su grado de diferencia y tolerancia.
Subsistema
Los subsistemas son agrupaciones de bloques y señales en un solo bloque y pueden poseer las
entradas y salidas que se deseen o sean necesarias.
Crear un subsistema:
Hacer doble Click en alguna esquina y
arrastrar la flecha hasta encerrar a todo
el conjunto de bloques que se desea
agrupar en un subsistema
Después se debe hacer Click derecho sobre
cualquier bloque que se haya seleccionado.
En seguida, seleccionar Create Subsystem
from Selection.

Más contenido relacionado

La actualidad más candente

Amplificadores operacionales con funciones de transferencia
Amplificadores operacionales con funciones de transferenciaAmplificadores operacionales con funciones de transferencia
Amplificadores operacionales con funciones de transferenciaMartín E
 
TEORIA PID CONTROL EN TIEMPO DISCRETO
TEORIA PID CONTROL EN TIEMPO DISCRETOTEORIA PID CONTROL EN TIEMPO DISCRETO
TEORIA PID CONTROL EN TIEMPO DISCRETOcesarcesitar
 
Sistema de normalización europeo y americano
Sistema de normalización europeo y americanoSistema de normalización europeo y americano
Sistema de normalización europeo y americanoDaniel Mendoza
 
Sistemas de segundo orden
Sistemas de segundo  ordenSistemas de segundo  orden
Sistemas de segundo ordenHenry Alvarado
 
Unidad III: Polos y Ceros de una función de transferencia.
Unidad III: Polos y Ceros de una función de transferencia.Unidad III: Polos y Ceros de una función de transferencia.
Unidad III: Polos y Ceros de una función de transferencia.Mayra Peña
 
motor de inducción de corriente alterna, exposición
 motor de inducción de corriente alterna, exposición motor de inducción de corriente alterna, exposición
motor de inducción de corriente alterna, exposiciónAngélica Barraza Sánchez
 
Sistemas de primer orden, segundo orden y orden superior
Sistemas de primer orden,  segundo orden y orden superiorSistemas de primer orden,  segundo orden y orden superior
Sistemas de primer orden, segundo orden y orden superiorMichelleAlejandroLeo
 
Maquinas Eléctricas sincronas o sincrónicas - Universidad Nacional de Loja
Maquinas Eléctricas sincronas o sincrónicas - Universidad Nacional de LojaMaquinas Eléctricas sincronas o sincrónicas - Universidad Nacional de Loja
Maquinas Eléctricas sincronas o sincrónicas - Universidad Nacional de LojaUniversidad Nacional de Loja
 
Respuesta Transitoria (Ejercicios resueltos)
Respuesta Transitoria (Ejercicios resueltos)Respuesta Transitoria (Ejercicios resueltos)
Respuesta Transitoria (Ejercicios resueltos)johnkiki
 
91769788 modelo-y-control-de-motor-d-c-con-engranajes-2011-2
91769788 modelo-y-control-de-motor-d-c-con-engranajes-2011-291769788 modelo-y-control-de-motor-d-c-con-engranajes-2011-2
91769788 modelo-y-control-de-motor-d-c-con-engranajes-2011-2Felipe Salazar
 
Analisis de error en estado estacionario
Analisis de error en estado estacionarioAnalisis de error en estado estacionario
Analisis de error en estado estacionarioHenry Alvarado
 
control de velocidad de un motor cd en derivacion
control de velocidad de un motor cd en derivacioncontrol de velocidad de un motor cd en derivacion
control de velocidad de un motor cd en derivacionsorzua
 
Sistemas de control distribuido (dcs)
Sistemas de control distribuido (dcs)Sistemas de control distribuido (dcs)
Sistemas de control distribuido (dcs)alleonchile
 
Arranque de Motores con PLC
Arranque de Motores con PLCArranque de Motores con PLC
Arranque de Motores con PLCUtp arequipa
 
Tiristores, características, aplicaciones y funcionamiento.
Tiristores, características, aplicaciones y funcionamiento.Tiristores, características, aplicaciones y funcionamiento.
Tiristores, características, aplicaciones y funcionamiento.J Luis Salguero Fioratti
 
Rectificador de media onda
Rectificador de media ondaRectificador de media onda
Rectificador de media ondaTensor
 
Análisis básico de sistemas de control y ecuaciones
Análisis básico de sistemas de control y ecuacionesAnálisis básico de sistemas de control y ecuaciones
Análisis básico de sistemas de control y ecuacionesYair Alexis Muñoz Rojas
 

La actualidad más candente (20)

Laboratorio 28
Laboratorio 28Laboratorio 28
Laboratorio 28
 
Amplificadores operacionales con funciones de transferencia
Amplificadores operacionales con funciones de transferenciaAmplificadores operacionales con funciones de transferencia
Amplificadores operacionales con funciones de transferencia
 
TEORIA PID CONTROL EN TIEMPO DISCRETO
TEORIA PID CONTROL EN TIEMPO DISCRETOTEORIA PID CONTROL EN TIEMPO DISCRETO
TEORIA PID CONTROL EN TIEMPO DISCRETO
 
Sistema de normalización europeo y americano
Sistema de normalización europeo y americanoSistema de normalización europeo y americano
Sistema de normalización europeo y americano
 
Sistemas de segundo orden
Sistemas de segundo  ordenSistemas de segundo  orden
Sistemas de segundo orden
 
Unidad III: Polos y Ceros de una función de transferencia.
Unidad III: Polos y Ceros de una función de transferencia.Unidad III: Polos y Ceros de una función de transferencia.
Unidad III: Polos y Ceros de una función de transferencia.
 
motor de inducción de corriente alterna, exposición
 motor de inducción de corriente alterna, exposición motor de inducción de corriente alterna, exposición
motor de inducción de corriente alterna, exposición
 
Sistemas de primer orden, segundo orden y orden superior
Sistemas de primer orden,  segundo orden y orden superiorSistemas de primer orden,  segundo orden y orden superior
Sistemas de primer orden, segundo orden y orden superior
 
Maquinas Eléctricas sincronas o sincrónicas - Universidad Nacional de Loja
Maquinas Eléctricas sincronas o sincrónicas - Universidad Nacional de LojaMaquinas Eléctricas sincronas o sincrónicas - Universidad Nacional de Loja
Maquinas Eléctricas sincronas o sincrónicas - Universidad Nacional de Loja
 
Respuesta Transitoria (Ejercicios resueltos)
Respuesta Transitoria (Ejercicios resueltos)Respuesta Transitoria (Ejercicios resueltos)
Respuesta Transitoria (Ejercicios resueltos)
 
91769788 modelo-y-control-de-motor-d-c-con-engranajes-2011-2
91769788 modelo-y-control-de-motor-d-c-con-engranajes-2011-291769788 modelo-y-control-de-motor-d-c-con-engranajes-2011-2
91769788 modelo-y-control-de-motor-d-c-con-engranajes-2011-2
 
Generadores en derivacion
Generadores en derivacionGeneradores en derivacion
Generadores en derivacion
 
Analisis de error en estado estacionario
Analisis de error en estado estacionarioAnalisis de error en estado estacionario
Analisis de error en estado estacionario
 
control de velocidad de un motor cd en derivacion
control de velocidad de un motor cd en derivacioncontrol de velocidad de un motor cd en derivacion
control de velocidad de un motor cd en derivacion
 
Sistemas de control distribuido (dcs)
Sistemas de control distribuido (dcs)Sistemas de control distribuido (dcs)
Sistemas de control distribuido (dcs)
 
Arranque de Motores con PLC
Arranque de Motores con PLCArranque de Motores con PLC
Arranque de Motores con PLC
 
acciones basicas-de-control
acciones basicas-de-controlacciones basicas-de-control
acciones basicas-de-control
 
Tiristores, características, aplicaciones y funcionamiento.
Tiristores, características, aplicaciones y funcionamiento.Tiristores, características, aplicaciones y funcionamiento.
Tiristores, características, aplicaciones y funcionamiento.
 
Rectificador de media onda
Rectificador de media ondaRectificador de media onda
Rectificador de media onda
 
Análisis básico de sistemas de control y ecuaciones
Análisis básico de sistemas de control y ecuacionesAnálisis básico de sistemas de control y ecuaciones
Análisis básico de sistemas de control y ecuaciones
 

Destacado

Práctica 5 Destilación fraccionada
Práctica 5 Destilación fraccionadaPráctica 5 Destilación fraccionada
Práctica 5 Destilación fraccionadaAdalberto C
 
Programación lineal
Programación linealProgramación lineal
Programación linealAdalberto C
 
Modelo de Biorreactor simple, análisis de estabilidad y esquema de control en...
Modelo de Biorreactor simple, análisis de estabilidad y esquema de control en...Modelo de Biorreactor simple, análisis de estabilidad y esquema de control en...
Modelo de Biorreactor simple, análisis de estabilidad y esquema de control en...Adalberto C
 
Serie de problemas de transferencia de calor
Serie de problemas de transferencia de calorSerie de problemas de transferencia de calor
Serie de problemas de transferencia de calorAdalberto C
 
Aplicaciones de la ley de Newton de la viscosidad
Aplicaciones de la ley de Newton de la viscosidadAplicaciones de la ley de Newton de la viscosidad
Aplicaciones de la ley de Newton de la viscosidadAdalberto C
 
Heat and mass transfer model for diseccant solution
Heat and mass transfer model for diseccant solutionHeat and mass transfer model for diseccant solution
Heat and mass transfer model for diseccant solutionAdalberto C
 
Conceptos básicos de ingeniería de control
Conceptos básicos de ingeniería de controlConceptos básicos de ingeniería de control
Conceptos básicos de ingeniería de controlAlejandro Flores
 
Aplicación de la ley de la viscosidad de Newton
Aplicación de la ley de la viscosidad de NewtonAplicación de la ley de la viscosidad de Newton
Aplicación de la ley de la viscosidad de NewtonAdalberto C
 
Fundamentosdesistematemaii 141010211602-conversion-gate02 (1)
Fundamentosdesistematemaii 141010211602-conversion-gate02 (1)Fundamentosdesistematemaii 141010211602-conversion-gate02 (1)
Fundamentosdesistematemaii 141010211602-conversion-gate02 (1)AngieC23
 
Ingenieria de-control-moderna-ogata-5ed
Ingenieria de-control-moderna-ogata-5edIngenieria de-control-moderna-ogata-5ed
Ingenieria de-control-moderna-ogata-5edpepito pepote
 
Desarrollo de ejercicios básicos en matlab
Desarrollo de ejercicios básicos en matlabDesarrollo de ejercicios básicos en matlab
Desarrollo de ejercicios básicos en matlabAdalberto C
 
SUBSISTEMAS DE CONTROL
SUBSISTEMAS DE CONTROL SUBSISTEMAS DE CONTROL
SUBSISTEMAS DE CONTROL innovalabcun
 
Manual simulink
Manual simulinkManual simulink
Manual simulinkcosococo
 
Simplificacion+diagramas
Simplificacion+diagramasSimplificacion+diagramas
Simplificacion+diagramasUNEFA
 

Destacado (18)

Práctica 5 Destilación fraccionada
Práctica 5 Destilación fraccionadaPráctica 5 Destilación fraccionada
Práctica 5 Destilación fraccionada
 
Programación lineal
Programación linealProgramación lineal
Programación lineal
 
Modelo de Biorreactor simple, análisis de estabilidad y esquema de control en...
Modelo de Biorreactor simple, análisis de estabilidad y esquema de control en...Modelo de Biorreactor simple, análisis de estabilidad y esquema de control en...
Modelo de Biorreactor simple, análisis de estabilidad y esquema de control en...
 
Serie de problemas de transferencia de calor
Serie de problemas de transferencia de calorSerie de problemas de transferencia de calor
Serie de problemas de transferencia de calor
 
Aplicaciones de la ley de Newton de la viscosidad
Aplicaciones de la ley de Newton de la viscosidadAplicaciones de la ley de Newton de la viscosidad
Aplicaciones de la ley de Newton de la viscosidad
 
Heat and mass transfer model for diseccant solution
Heat and mass transfer model for diseccant solutionHeat and mass transfer model for diseccant solution
Heat and mass transfer model for diseccant solution
 
Conceptos básicos de ingeniería de control
Conceptos básicos de ingeniería de controlConceptos básicos de ingeniería de control
Conceptos básicos de ingeniería de control
 
Aplicación de la ley de la viscosidad de Newton
Aplicación de la ley de la viscosidad de NewtonAplicación de la ley de la viscosidad de Newton
Aplicación de la ley de la viscosidad de Newton
 
Fundamentosdesistematemaii 141010211602-conversion-gate02 (1)
Fundamentosdesistematemaii 141010211602-conversion-gate02 (1)Fundamentosdesistematemaii 141010211602-conversion-gate02 (1)
Fundamentosdesistematemaii 141010211602-conversion-gate02 (1)
 
Ingenieria de-control-moderna-ogata-5ed
Ingenieria de-control-moderna-ogata-5edIngenieria de-control-moderna-ogata-5ed
Ingenieria de-control-moderna-ogata-5ed
 
Desarrollo de ejercicios básicos en matlab
Desarrollo de ejercicios básicos en matlabDesarrollo de ejercicios básicos en matlab
Desarrollo de ejercicios básicos en matlab
 
Cap 14 fundamentos de control
Cap 14 fundamentos de controlCap 14 fundamentos de control
Cap 14 fundamentos de control
 
SUBSISTEMAS DE CONTROL
SUBSISTEMAS DE CONTROL SUBSISTEMAS DE CONTROL
SUBSISTEMAS DE CONTROL
 
Diagrama de bloques
Diagrama de bloquesDiagrama de bloques
Diagrama de bloques
 
Manual simulink
Manual simulinkManual simulink
Manual simulink
 
Modelos.diagramabloques
Modelos.diagramabloquesModelos.diagramabloques
Modelos.diagramabloques
 
Simplificacion+diagramas
Simplificacion+diagramasSimplificacion+diagramas
Simplificacion+diagramas
 
Problemario
ProblemarioProblemario
Problemario
 

Similar a Control del nivel de un tanque en régimen laminar

Controladores no lineales ON-OFF - Controladores lineales P, PI, PD, PID - Pr...
Controladores no lineales ON-OFF - Controladores lineales P, PI, PD, PID - Pr...Controladores no lineales ON-OFF - Controladores lineales P, PI, PD, PID - Pr...
Controladores no lineales ON-OFF - Controladores lineales P, PI, PD, PID - Pr...Matías Gabriel Krujoski
 
Sistemas ecuacion simulink
Sistemas ecuacion simulinkSistemas ecuacion simulink
Sistemas ecuacion simulinkAlex Santos
 
Ctrl discreto de un motor de cc en velocidad
Ctrl discreto de un motor de cc en velocidadCtrl discreto de un motor de cc en velocidad
Ctrl discreto de un motor de cc en velocidadMiguel sosa
 
Modelación de sistemas - Función de transferencia y digramas de bloque
Modelación de sistemas - Función de transferencia y digramas de bloqueModelación de sistemas - Función de transferencia y digramas de bloque
Modelación de sistemas - Función de transferencia y digramas de bloqueMatías Gabriel Krujoski
 
Control automatico
Control automaticoControl automatico
Control automaticopaurc27
 
Funcion de transferencia.ppt
Funcion de transferencia.pptFuncion de transferencia.ppt
Funcion de transferencia.pptaraguilera
 
Control digital: Introducción a control digital
Control digital: Introducción a control digital Control digital: Introducción a control digital
Control digital: Introducción a control digital SANTIAGO PABLO ALBERTO
 
Detector de secuencia no solapada 1011 empleando PLA
Detector de secuencia no solapada 1011 empleando PLADetector de secuencia no solapada 1011 empleando PLA
Detector de secuencia no solapada 1011 empleando PLAMarc Tena Gil
 
Control digital: Problemario de la unidad 1 de control digital
Control digital: Problemario de la unidad 1 de control digital Control digital: Problemario de la unidad 1 de control digital
Control digital: Problemario de la unidad 1 de control digital SANTIAGO PABLO ALBERTO
 

Similar a Control del nivel de un tanque en régimen laminar (20)

Pid
PidPid
Pid
 
Controladores no lineales ON-OFF - Controladores lineales P, PI, PD, PID - Pr...
Controladores no lineales ON-OFF - Controladores lineales P, PI, PD, PID - Pr...Controladores no lineales ON-OFF - Controladores lineales P, PI, PD, PID - Pr...
Controladores no lineales ON-OFF - Controladores lineales P, PI, PD, PID - Pr...
 
Sistemas ecuacion simulink
Sistemas ecuacion simulinkSistemas ecuacion simulink
Sistemas ecuacion simulink
 
Lg transferencia
Lg transferenciaLg transferencia
Lg transferencia
 
Ctrl discreto de un motor de cc en velocidad
Ctrl discreto de un motor de cc en velocidadCtrl discreto de un motor de cc en velocidad
Ctrl discreto de un motor de cc en velocidad
 
Modelación de sistemas - Función de transferencia y digramas de bloque
Modelación de sistemas - Función de transferencia y digramas de bloqueModelación de sistemas - Función de transferencia y digramas de bloque
Modelación de sistemas - Función de transferencia y digramas de bloque
 
Buck converter ecuaciones dinamicas
Buck converter ecuaciones dinamicasBuck converter ecuaciones dinamicas
Buck converter ecuaciones dinamicas
 
4 modelado
4 modelado4 modelado
4 modelado
 
Modelamiento
ModelamientoModelamiento
Modelamiento
 
Ceduvirt simulink
Ceduvirt simulinkCeduvirt simulink
Ceduvirt simulink
 
Unidad 3
Unidad 3Unidad 3
Unidad 3
 
Control automatico
Control automaticoControl automatico
Control automatico
 
Funcion de transferencia.ppt
Funcion de transferencia.pptFuncion de transferencia.ppt
Funcion de transferencia.ppt
 
Control digital: Introducción a control digital
Control digital: Introducción a control digital Control digital: Introducción a control digital
Control digital: Introducción a control digital
 
C03.pdf
C03.pdfC03.pdf
C03.pdf
 
Matlab2
Matlab2Matlab2
Matlab2
 
Matlab2
Matlab2Matlab2
Matlab2
 
Sc capitulo5
Sc capitulo5Sc capitulo5
Sc capitulo5
 
Detector de secuencia no solapada 1011 empleando PLA
Detector de secuencia no solapada 1011 empleando PLADetector de secuencia no solapada 1011 empleando PLA
Detector de secuencia no solapada 1011 empleando PLA
 
Control digital: Problemario de la unidad 1 de control digital
Control digital: Problemario de la unidad 1 de control digital Control digital: Problemario de la unidad 1 de control digital
Control digital: Problemario de la unidad 1 de control digital
 

Último

Responsabilidad de padres con sus hijos (1).pptx
Responsabilidad de padres con sus hijos (1).pptxResponsabilidad de padres con sus hijos (1).pptx
Responsabilidad de padres con sus hijos (1).pptxROSARIODELPILARMERIN
 
Energia primero de bachillerato, con trabajo
Energia primero de bachillerato, con trabajoEnergia primero de bachillerato, con trabajo
Energia primero de bachillerato, con trabajodenniscarrillo10
 
Deilybeth Alaña - Operaciones Básicas - Construcción
Deilybeth Alaña - Operaciones Básicas - ConstrucciónDeilybeth Alaña - Operaciones Básicas - Construcción
Deilybeth Alaña - Operaciones Básicas - ConstrucciónDeilybethAinellAlaaY
 
707555966-El-Libro-de-La-Inteligencia-Artificial-Version-11-Alfredovela.pdf
707555966-El-Libro-de-La-Inteligencia-Artificial-Version-11-Alfredovela.pdf707555966-El-Libro-de-La-Inteligencia-Artificial-Version-11-Alfredovela.pdf
707555966-El-Libro-de-La-Inteligencia-Artificial-Version-11-Alfredovela.pdfErnestoCano12
 
Presentación PISC Préstamos ISC Final.pdf
Presentación PISC Préstamos ISC Final.pdfPresentación PISC Préstamos ISC Final.pdf
Presentación PISC Préstamos ISC Final.pdfEmanuelMuoz11
 
Ergonomía_MÉTODO_ROSA. Evaluación de puesto de trabajo de oficina - coworking
Ergonomía_MÉTODO_ROSA. Evaluación de puesto de trabajo de oficina - coworkingErgonomía_MÉTODO_ROSA. Evaluación de puesto de trabajo de oficina - coworking
Ergonomía_MÉTODO_ROSA. Evaluación de puesto de trabajo de oficina - coworkingGonzalo141557
 
EXPOSICION CIENCIA E INGENIERIA DE LOS MATERIALES.doc.pptx
EXPOSICION CIENCIA E INGENIERIA DE LOS MATERIALES.doc.pptxEXPOSICION CIENCIA E INGENIERIA DE LOS MATERIALES.doc.pptx
EXPOSICION CIENCIA E INGENIERIA DE LOS MATERIALES.doc.pptxalejandroagarcia2336
 
Tema 4 Elementos y circuitos de neumática e hidráulica curso 2023_24.ppt
Tema 4 Elementos y circuitos de neumática e hidráulica curso 2023_24.pptTema 4 Elementos y circuitos de neumática e hidráulica curso 2023_24.ppt
Tema 4 Elementos y circuitos de neumática e hidráulica curso 2023_24.pptManuelAngelGil1
 
ACT MECANISMO DE 4 BARRAS ARTICULADAS.PDF
ACT MECANISMO DE 4 BARRAS ARTICULADAS.PDFACT MECANISMO DE 4 BARRAS ARTICULADAS.PDF
ACT MECANISMO DE 4 BARRAS ARTICULADAS.PDFDavidMorales257484
 
GUIA II SUSTANCIA MATERIALES PELIGROSOS.pdf
GUIA II SUSTANCIA MATERIALES PELIGROSOS.pdfGUIA II SUSTANCIA MATERIALES PELIGROSOS.pdf
GUIA II SUSTANCIA MATERIALES PELIGROSOS.pdfElybe Hernandez
 
TABLA DE ROSCAS invetiga las rescas . milimetricas , en pulgada
TABLA DE ROSCAS invetiga las rescas . milimetricas , en pulgadaTABLA DE ROSCAS invetiga las rescas . milimetricas , en pulgada
TABLA DE ROSCAS invetiga las rescas . milimetricas , en pulgadaMarlnAlexanderCardon
 
TERRENO DE FUNDACION - CURSO DE PAVIMENTOS
TERRENO DE FUNDACION - CURSO DE PAVIMENTOSTERRENO DE FUNDACION - CURSO DE PAVIMENTOS
TERRENO DE FUNDACION - CURSO DE PAVIMENTOSELIAS RAMIREZ JUAREZ
 
METRADOS EN OBRAS DE PAVIMENTACION- ACTUALIZADA.pptx
METRADOS EN OBRAS DE PAVIMENTACION- ACTUALIZADA.pptxMETRADOS EN OBRAS DE PAVIMENTACION- ACTUALIZADA.pptx
METRADOS EN OBRAS DE PAVIMENTACION- ACTUALIZADA.pptxEdwardRodriguezPalom1
 
TR-514 (3) - BIS copia seguridad DOS COLUMNAS 2024 20.5 PREFERIDO.wbk.wbk SEG...
TR-514 (3) - BIS copia seguridad DOS COLUMNAS 2024 20.5 PREFERIDO.wbk.wbk SEG...TR-514 (3) - BIS copia seguridad DOS COLUMNAS 2024 20.5 PREFERIDO.wbk.wbk SEG...
TR-514 (3) - BIS copia seguridad DOS COLUMNAS 2024 20.5 PREFERIDO.wbk.wbk SEG...FRANCISCOJUSTOSIERRA
 
Procedimeiento y secuencias para el diseño mecánico de ejes
Procedimeiento y secuencias para el diseño mecánico de ejesProcedimeiento y secuencias para el diseño mecánico de ejes
Procedimeiento y secuencias para el diseño mecánico de ejesRubén Cortes Zavala
 
SISTEMA ARTICULADO DE CUATRO BARRAS .pdf
SISTEMA ARTICULADO DE CUATRO BARRAS .pdfSISTEMA ARTICULADO DE CUATRO BARRAS .pdf
SISTEMA ARTICULADO DE CUATRO BARRAS .pdfIvanIsraelPiaColina
 
ESTABILIZACION DE TALUDES CON ESCOLLERAS
ESTABILIZACION DE TALUDES CON ESCOLLERASESTABILIZACION DE TALUDES CON ESCOLLERAS
ESTABILIZACION DE TALUDES CON ESCOLLERASMiguelRojasbrandan1
 
Sistema de 4 barras articuladas bb_2.pdf
Sistema de 4 barras articuladas bb_2.pdfSistema de 4 barras articuladas bb_2.pdf
Sistema de 4 barras articuladas bb_2.pdfLuisMarioMartnez1
 

Último (20)

Responsabilidad de padres con sus hijos (1).pptx
Responsabilidad de padres con sus hijos (1).pptxResponsabilidad de padres con sus hijos (1).pptx
Responsabilidad de padres con sus hijos (1).pptx
 
Energia primero de bachillerato, con trabajo
Energia primero de bachillerato, con trabajoEnergia primero de bachillerato, con trabajo
Energia primero de bachillerato, con trabajo
 
Deilybeth Alaña - Operaciones Básicas - Construcción
Deilybeth Alaña - Operaciones Básicas - ConstrucciónDeilybeth Alaña - Operaciones Básicas - Construcción
Deilybeth Alaña - Operaciones Básicas - Construcción
 
Tasaciones Ñuñoa - La Reina - Las Condes
Tasaciones Ñuñoa - La Reina - Las CondesTasaciones Ñuñoa - La Reina - Las Condes
Tasaciones Ñuñoa - La Reina - Las Condes
 
707555966-El-Libro-de-La-Inteligencia-Artificial-Version-11-Alfredovela.pdf
707555966-El-Libro-de-La-Inteligencia-Artificial-Version-11-Alfredovela.pdf707555966-El-Libro-de-La-Inteligencia-Artificial-Version-11-Alfredovela.pdf
707555966-El-Libro-de-La-Inteligencia-Artificial-Version-11-Alfredovela.pdf
 
Presentación PISC Préstamos ISC Final.pdf
Presentación PISC Préstamos ISC Final.pdfPresentación PISC Préstamos ISC Final.pdf
Presentación PISC Préstamos ISC Final.pdf
 
Ergonomía_MÉTODO_ROSA. Evaluación de puesto de trabajo de oficina - coworking
Ergonomía_MÉTODO_ROSA. Evaluación de puesto de trabajo de oficina - coworkingErgonomía_MÉTODO_ROSA. Evaluación de puesto de trabajo de oficina - coworking
Ergonomía_MÉTODO_ROSA. Evaluación de puesto de trabajo de oficina - coworking
 
EXPOSICION CIENCIA E INGENIERIA DE LOS MATERIALES.doc.pptx
EXPOSICION CIENCIA E INGENIERIA DE LOS MATERIALES.doc.pptxEXPOSICION CIENCIA E INGENIERIA DE LOS MATERIALES.doc.pptx
EXPOSICION CIENCIA E INGENIERIA DE LOS MATERIALES.doc.pptx
 
Tema 4 Elementos y circuitos de neumática e hidráulica curso 2023_24.ppt
Tema 4 Elementos y circuitos de neumática e hidráulica curso 2023_24.pptTema 4 Elementos y circuitos de neumática e hidráulica curso 2023_24.ppt
Tema 4 Elementos y circuitos de neumática e hidráulica curso 2023_24.ppt
 
ACT MECANISMO DE 4 BARRAS ARTICULADAS.PDF
ACT MECANISMO DE 4 BARRAS ARTICULADAS.PDFACT MECANISMO DE 4 BARRAS ARTICULADAS.PDF
ACT MECANISMO DE 4 BARRAS ARTICULADAS.PDF
 
Litio en México y su uso en baterías
Litio en México y su uso en bateríasLitio en México y su uso en baterías
Litio en México y su uso en baterías
 
GUIA II SUSTANCIA MATERIALES PELIGROSOS.pdf
GUIA II SUSTANCIA MATERIALES PELIGROSOS.pdfGUIA II SUSTANCIA MATERIALES PELIGROSOS.pdf
GUIA II SUSTANCIA MATERIALES PELIGROSOS.pdf
 
TABLA DE ROSCAS invetiga las rescas . milimetricas , en pulgada
TABLA DE ROSCAS invetiga las rescas . milimetricas , en pulgadaTABLA DE ROSCAS invetiga las rescas . milimetricas , en pulgada
TABLA DE ROSCAS invetiga las rescas . milimetricas , en pulgada
 
TERRENO DE FUNDACION - CURSO DE PAVIMENTOS
TERRENO DE FUNDACION - CURSO DE PAVIMENTOSTERRENO DE FUNDACION - CURSO DE PAVIMENTOS
TERRENO DE FUNDACION - CURSO DE PAVIMENTOS
 
METRADOS EN OBRAS DE PAVIMENTACION- ACTUALIZADA.pptx
METRADOS EN OBRAS DE PAVIMENTACION- ACTUALIZADA.pptxMETRADOS EN OBRAS DE PAVIMENTACION- ACTUALIZADA.pptx
METRADOS EN OBRAS DE PAVIMENTACION- ACTUALIZADA.pptx
 
TR-514 (3) - BIS copia seguridad DOS COLUMNAS 2024 20.5 PREFERIDO.wbk.wbk SEG...
TR-514 (3) - BIS copia seguridad DOS COLUMNAS 2024 20.5 PREFERIDO.wbk.wbk SEG...TR-514 (3) - BIS copia seguridad DOS COLUMNAS 2024 20.5 PREFERIDO.wbk.wbk SEG...
TR-514 (3) - BIS copia seguridad DOS COLUMNAS 2024 20.5 PREFERIDO.wbk.wbk SEG...
 
Procedimeiento y secuencias para el diseño mecánico de ejes
Procedimeiento y secuencias para el diseño mecánico de ejesProcedimeiento y secuencias para el diseño mecánico de ejes
Procedimeiento y secuencias para el diseño mecánico de ejes
 
SISTEMA ARTICULADO DE CUATRO BARRAS .pdf
SISTEMA ARTICULADO DE CUATRO BARRAS .pdfSISTEMA ARTICULADO DE CUATRO BARRAS .pdf
SISTEMA ARTICULADO DE CUATRO BARRAS .pdf
 
ESTABILIZACION DE TALUDES CON ESCOLLERAS
ESTABILIZACION DE TALUDES CON ESCOLLERASESTABILIZACION DE TALUDES CON ESCOLLERAS
ESTABILIZACION DE TALUDES CON ESCOLLERAS
 
Sistema de 4 barras articuladas bb_2.pdf
Sistema de 4 barras articuladas bb_2.pdfSistema de 4 barras articuladas bb_2.pdf
Sistema de 4 barras articuladas bb_2.pdf
 

Control del nivel de un tanque en régimen laminar

  • 1. Problemario Ingeniería de Control Adalberto Cortés Ruiz Instructor: Dr. Eliseo Hernández Martínez Noviembre 2016
  • 2. Problema 1: Diagramas de Bloques Simplifique el diagrama de bloques que aparece en la Figura 1 y obtenga la función de transferencia en lazo cerrado C(s)/R(s).B-2-3 de (Ogata, 2010) Figura 1. Diagrama de Bloques propuesto 1. Agrupación de los lazos de retroalimentación: 2. Reducción de los lazos de retroalimentación: 3. Multiplicación de bloques en serie G1 H2 G3_++ + +G2 H3 __+ ( )R s ( )C s G1 G3_+ H3 _+ ( )R s ( )C s
  • 3. 4. Reducción de la retroalimentación y multiplicación de la serie Problema 2: Estimación de la constante de tiempo Un termómetro requiere de un minuto para alcanzar el 98% del valor final de la respuesta a una entrada escalón. Suponiendo que el termómetro es un sistema de primer orden, encuentre la constante de tiempo. Partiendo de las ecuaciones de primer orden y del cambio en escalón: Primer Orden Cambio escalón ( ) ( ) 1 ku s y s s   ( ) u u s s     ( ) 1 k u y s s s          11 1 1 1 A s BsA B s s s s s s             Determinando las constantes A y B por fracciones parciales: 1,A B    G1 _+ H3 _+ ( )R s ( )R s _+ ( )R s ( )R s
  • 4. 1 1 1 1 t e s s              L ( ) 1 t y s e     Ahora sustituyendo ( ) 0.98y s  y 1 min 60 st   Control de nivel de agua en un tanque Al analizar sistemas que implican el flujo de líquidos, resulta necesario dividir los regímenes de flujo en laminar y turbulento, de acuerdo con la magnitud del número de Reynolds. Si el número de Reynolds es mayor que entre 3000 y 4000, el flujo es turbulento. El flujo es laminar si el número de Reynolds es menor que unos 2000. En el caso laminar, tiene lugar un flujo estable en las corrientes, sin turbulencia. Los sistemas que contienen un flujo laminar se pueden representar mediante ecuaciones diferenciales lineales, (Ogata, 2010). 60 60 ( ) 1 1 0.98 0.02 60 ln(0.02) 60 15.33 s ln(0.02) y s e e                 Altura máxima: 3m Radio: 0.5m
  • 5. Caso laminar Modelo Tomando en cuenta el balance general de materia [entradas-salidas=acumulación] dV Fe Fs dt   El flujo de salida tiene una resistencia al caudal (la válvula) que es lineal debido a que el flujo es de régimen laminar (constante) y es el cambio del nivel del tanque sobre el cambio del caudal (Flujo volumétrico de salida). dh h R dFs Fs   El volumen del líquido en el tanque está dado por: V Ah Donde 2 A r y es constante. Sustituyendo las dos ecuaciones anteriores en el balance general de materia, se obtiene el modelo matemático del proceso: dh Fe h dt A AR   Parámetros  Capacidad del tanque: 2.3562 m3 (altura de 3 m y radio de 0.5m) Fe Flujo volumétrico de alimentación 4 m3 /s r Radio del tanque 0.5 m R Resistencia que ejerce la válvula de carga en el flujo de salida 0.6 s/m2 Condición inicial Al inicio del proceso, el tanque está vacío, es decir: 0 0h t 
  • 6. Lazo abierto Figura 2. modelo del tanque en simulink (lazo abierto). Determinación de los parámetros de control A partir del modelo, se realiza un cambio escalón del flujo de entrada y se observa la respuesta de y de la altura. Inicio Final Cambio escalón de Fe 3 m3 /s 4 m3 /s Respuesta de h 1.8 m 2.4 m
  • 7. Figura 3. Respuesta de y (altura) ante un cambio escalón de u (flujo de entrada) Ganancia ( K ) 0.6 Tiempo característico del proceso ( 63.2%  ) 0.467 Control PI Para el control PI, las reglas de sintonizado que se emplearon están descritas por (Skogestad, 2002), donde la estructura del controlador es: 0 1 c I u u K e e d           Donde 0u , cK , e , I y  son el valor nominal del flujo, la ganancia del controlador, la señal del error, la constante de tiempo integral y el tiempo en el controlador, respectivamente. El sintonizado sugiere que los parámetros del controlador sean el inverso de la ganancia del sistema para la ganancia del controlador y el tiempo característico del proceso sea el tiempo integral, Esto para cuando no se toma en cuenta el tiempo muerto. 63.2% 1 c IK K    Figura 4. Propuesta del controlador PI
  • 8. cK 1.6667 I 0.467 Figura 5. Modelo con la implementación del control PI Figura 6. Lazo cerrado, control PI En la Figura 5 la referencia comienza a partir del tiempo de control (tcontrol=4s), para ese sintonizado se llega a la referencia en un tiempo aproximado de 6 segundos. Parámetros de Control
  • 9. Figura 7. Prueba del controlador a una referencia cercana al límite de la altura del tanque, a partir de lazo abierto (línea amarilla) y sin lazo abierto (azul) Cuando se requiere una referencia cercana a el valor máximo permitido por la física del proceso, es posible que el controlador exija al actuador un aumento drástico generando así un sobrepico en la respuesta del sistema que posiblemente pueda causar resultados no deseados en el proceso. Para este caso, un sobrepico en el nivel del líquido en el tanque puede causar que el líquido se derrame si el tanque es abierto, o que se estropee el equipo de bombeo o alguna tubería en un punto crítico si el tanque es cerrado, es por ello que es importante tomar en cuenta estas consideraciones en el controlador agregando límites en la variable de control. Figura 8. Controlador PI con límites. Para este caso el límite máximo es Fe=5, cuando se tenga este flujo, la altura será de 3m
  • 10. Figura 9. Resultado de la corrección del controlador (cotas para el controlador en nivel máximo y mínimo) Aun así, se observa otro problema, pero no tan grave como el primero y consiste en el tiempo que el controlador se demora en llegar a la referencia. Aunque el sintonizado realizado hace que sea rápido, la cota superior (sólo permitir un máximo de una altura de 3m), retrasa al controlador de tal forma que llega a la referencia al cabo de 50 segundos. Figura 10. Proceso con nuevos parámetros de sintonizado.
  • 11. A diferencia de la Figura 6, la Figura 10 no presenta un sobrepico tan pronunciado y es más suave al momento de llegar a la referencia. Pero se tiene la ventaja de ser más rápido cuando la referencia se encuentra cerca del límite máximo. cK 0.13826667 I 0.467 Figura 11. Acción suave del controlador cercano al límite máximo Figura 12. Perturbación en el proceso (se retiran del tanque 0.2m3/s)
  • 12. Al comparar con un controlador PID (Figura 13), con un tiempo diferencial de 7 (Td) y la misma ganancia de 0.13826667, se observa mayor velocidad en el PID al comparar la simulación del proceso (Figura 14) y sus errores acumulados (Figura 15). Figura 13. Controlador PID
  • 13. Figura 14. Comparación del proceso bajo un controlador PI y PID Figura 15. Comparación del error acumulado generado por un control PI y un PID para este proceso.
  • 14. Uso de Simulink: Definir un modelo matemático Entorno Simulink es un entorno de diagrama de bloques para el diseño de sistemas basados en modelos. Al abrir Simulink, se despliega su librería de bloques (Figura 1) y en la esquina superior-derecha se halla el botón para abrir un nuevo modelo Al seleccionar New model, se despliega una Figura 1. Librería de Simulink, aquí se encuentran los bloques integradores para el diseño de una simulación, Además se tiene la capacidad de instalar paqueterías para el uso de Hardware. Tabla 1. Bloques comunes usados en simulaciones básicas (constant) Define una constante (sum) operación matemática de suma (integrator) integra la señal de entrada respecto al tiempo (step) genera un cambio en escalón de una constante en un tiempo determinado (To Workspace) guarda una variable en el workspace de MATLAB, aquí es utilizado cuando se requiere analizar una variable en el SDI de gran tamaño (Mux) combina dos o más señales en una sola (scope) visualiza una variable como una gráfica contra el tiempo
  • 15. La Tabla 1 muestra algunos de los bloques comunes que se requieren para la simulación de modelos matemáticos simples, siendo de mayor uso la paquetería de Math Operations de la librería de Simulink. Simulink, además de su uso para la simulación de modelos matemáticos, puede ser usado para el diseño y control de procesos, para la programación de hardware (ie, tarjetas Arduino, Raspberry Pi, National Instruments, etc), adquisición y análisis de imágenes, etc. Tiempo de la simulación Con la característica de que las simulaciones pueden ir hasta tiempo infinito (inf) Botón de grabación Graba los datos de la simulación y permite su posterior análisis. No es posible utilizarlo cuando el tiempo es inf. Además, si el tiempo de simulación es grande, requiere el uso del bloque To Workspace conectado a la señal que se desea analizar.Ejecutar Corre la simulación Solve Indica la función empleada para la resolución de EDOs, puede cambiarse en la parte de configuración según sea la necesidad. Por defecto es ode45 ENTRADAS SALIDAS Las entradas y salidas de los bloques se identifican a partir de la dirección de las flechas
  • 16. Definiendo una ecuación Diferencial (modelo matemático) Tomando como ejemplo 1 el sistema de ecuaciones diferenciales: ( ) ( ) dx a y x dt dy x b z y dt dz xy cz dt              Donde 10, 28, 8/ 3a b c   Y condiciones iniciales (0) 1 (0) 5 (0) 5x y z   Se puede comenzar definiendo las 3 constantes (a, b y c) del modelo e identificando las entradas y salidas de los 3 integradores que se requerirán. En los integradores, las entradas serán igual a el valor de la derivada de cada ecuación, mientras que por salidas se tendrá el valor de la variable que le corresponde. Las condiciones iniciales se ingresan haciendo doble click en el bloque integrador que le corresponda. Se desplegará una pantalla en la que se puede definir la condición inicial. La primera ecuación diferencial dice que dx será igual a ( )a y x , Para ello se requieren dos bloques, uno que reste a y y x (Sum) y otro que multiplique a toda la resta por la constante a. (Figura 2).
  • 17. Dando doble Click al bloque, se despliega una ventana especificando sus propiedades. Ahí es posible cambiar el valor de la constante que por defecto es 1. En List of signs se puede seleccionar el signo que se requiere utilizar sea + o – La | indica un espacio vacío o punto cerrado del bloque Cada singo que se agrega genera una nueva entrada en el bloque, pueden ser desde 1 hasta los que se requieran. La parte Icon shape define la forma geométrica del bloque
  • 18. Figura 2. Primera ecuación diferencial del sistema en la estructura de Simulink La segunda ecuación diferencial dice que dy es ( )x b z y  , se sigue el mismo procedimiento utilizado en la primera ecuación diferencial (dos bloques: Sum y Product). Para la tercera ecuación, dz igual a xy cz se requieren de tres bloques (dos de Product y uno de Sum). Se pueden hacer ramificaciones de una señal acercándose a ella con el puntero, dar click derecho y arrastrarla.
  • 19. A partir de aquí, el sistema de ecuaciones diferenciales está terminado. Ahora se puede simular y visualizar los resultados utilizando un bloque scope para cada señal (x, y y z). Es posible cambiar el color de las líneas de señal de cada bloque dando click derecho, seleccionar Format, después Foreground Color y después el color que se desee. Ésta herramienta tiene la finalidad de identificar las señales de manera visual.
  • 20. Para la visualización, se puede utilizar un bloque Scope. Por defecto, Scope tiene una sola entrada, se puede modificar el no. de entradas dando doble click en el bloque y luego en Parameters. Ahí se puede ajustar el no. de entradas en la parte de Number of Axes. También se pueden visualizar gráficas de X vs Y con XY Graph. La primera entrada corresponde a X y la segunda a Y. Para ésta simulación se utilizó un tiempo de 50
  • 21. Simulation Data Inspector (Botón de grabación) El botón de grabación, además de la visualización de los resultados de la simulación, sirve para comparar los resultados cuando se hacen modificaciones en el modelo matemático. Al abrir SDI, se despliega una ventana en la que se pueden analizar los resultados por cada corrida del modelo (Figura 3). Por defecto, se nombran por el número de corrida realizada, en la Figura 4 se compara la corrida 1 con la corrida 2, en la cual, se varió el valor de la constante b=20. Para simulaciones con tiempos mayores de 10, es necesario el uso del bloque To Workspace. Éste bloque tiene distintas maneras de guardar los datos en el Workspace, por defecto es Timeseries, pero comúnmente se maneja en Array (arreglos de vectores) y se puede modificar dando doble click en el bloque. Al habilitar el botón de grabación se despliega el siguiente cuadro de diálogo y al finalizar la simulación, se despliega una barra en la que se abre el SDI (Simulation Data Inspector).
  • 22. Figura 3. SDI inspector de señales Figura 4. Comparación de corridas. En Compare Runs se pueden comparar las señales de una misma variable y visualizar su grado de diferencia y tolerancia.
  • 23. Subsistema Los subsistemas son agrupaciones de bloques y señales en un solo bloque y pueden poseer las entradas y salidas que se deseen o sean necesarias. Crear un subsistema: Hacer doble Click en alguna esquina y arrastrar la flecha hasta encerrar a todo el conjunto de bloques que se desea agrupar en un subsistema Después se debe hacer Click derecho sobre cualquier bloque que se haya seleccionado. En seguida, seleccionar Create Subsystem from Selection.