SlideShare a Scribd company logo
Enviar búsqueda
Cargar
Best Practices for Oracle Exadata and the Oracle Optimizer
Denunciar
Compartir
Edgar Alejandro Villegas
Audit Mgr en Citigroup - Banamex
Seguir
•
10 recomendaciones
•
4,756 vistas
1
de
44
Best Practices for Oracle Exadata and the Oracle Optimizer
•
10 recomendaciones
•
4,756 vistas
Denunciar
Compartir
Descargar ahora
Descargar para leer sin conexión
Datos y análisis
Best Practices for Oracle Exadata and the Oracle Optimizer Presentation Slides Jul 2014
Leer más
Edgar Alejandro Villegas
Audit Mgr en Citigroup - Banamex
Seguir
Recomendados
Tuning SQL for Oracle Exadata: The Good, The Bad, and The Ugly Tuning SQL fo... por
Tuning SQL for Oracle Exadata: The Good, The Bad, and The Ugly Tuning SQL fo...
Enkitec
13.5K vistas
•
57 diapositivas
Exadata Performance Optimization por
Exadata Performance Optimization
Enkitec
1.9K vistas
•
12 diapositivas
Parallel Query on Exadata por
Parallel Query on Exadata
Enkitec
3.7K vistas
•
38 diapositivas
Extreme Replication - Performance Tuning Oracle GoldenGate por
Extreme Replication - Performance Tuning Oracle GoldenGate
Bobby Curtis
9.8K vistas
•
60 diapositivas
Oracle GoldenGate 21c New Features and Best Practices por
Oracle GoldenGate 21c New Features and Best Practices
Bobby Curtis
2.1K vistas
•
45 diapositivas
Exadata and the Oracle Optimizer: The Untold Story por
Exadata and the Oracle Optimizer: The Untold Story
Enkitec
6.6K vistas
•
45 diapositivas
Más contenido relacionado
La actualidad más candente
Oracle AHF Insights 23c: Deeper Diagnostic Insights for your Oracle Database por
Oracle AHF Insights 23c: Deeper Diagnostic Insights for your Oracle Database
Sandesh Rao
226 vistas
•
46 diapositivas
Oracle RAC 19c and Later - Best Practices #OOWLON por
Oracle RAC 19c and Later - Best Practices #OOWLON
Markus Michalewicz
2.9K vistas
•
32 diapositivas
Ash architecture and advanced usage rmoug2014 por
Ash architecture and advanced usage rmoug2014
John Beresniewicz
16.8K vistas
•
67 diapositivas
Enable GoldenGate Monitoring with OEM 12c/JAgent por
Enable GoldenGate Monitoring with OEM 12c/JAgent
Bobby Curtis
4.4K vistas
•
29 diapositivas
Oracle RAC Virtualized - In VMs, in Containers, On-premises, and in the Cloud por
Oracle RAC Virtualized - In VMs, in Containers, On-premises, and in the Cloud
Markus Michalewicz
2.7K vistas
•
28 diapositivas
Understanding oracle rac internals part 1 - slides por
Understanding oracle rac internals part 1 - slides
Mohamed Farouk
4.3K vistas
•
48 diapositivas
La actualidad más candente
(20)
Oracle AHF Insights 23c: Deeper Diagnostic Insights for your Oracle Database por Sandesh Rao
Oracle AHF Insights 23c: Deeper Diagnostic Insights for your Oracle Database
Sandesh Rao
•
226 vistas
Oracle RAC 19c and Later - Best Practices #OOWLON por Markus Michalewicz
Oracle RAC 19c and Later - Best Practices #OOWLON
Markus Michalewicz
•
2.9K vistas
Ash architecture and advanced usage rmoug2014 por John Beresniewicz
Ash architecture and advanced usage rmoug2014
John Beresniewicz
•
16.8K vistas
Enable GoldenGate Monitoring with OEM 12c/JAgent por Bobby Curtis
Enable GoldenGate Monitoring with OEM 12c/JAgent
Bobby Curtis
•
4.4K vistas
Oracle RAC Virtualized - In VMs, in Containers, On-premises, and in the Cloud por Markus Michalewicz
Oracle RAC Virtualized - In VMs, in Containers, On-premises, and in the Cloud
Markus Michalewicz
•
2.7K vistas
Understanding oracle rac internals part 1 - slides por Mohamed Farouk
Understanding oracle rac internals part 1 - slides
Mohamed Farouk
•
4.3K vistas
Oracle RAC 19c - the Basis for the Autonomous Database por Markus Michalewicz
Oracle RAC 19c - the Basis for the Autonomous Database
Markus Michalewicz
•
11.5K vistas
New Generation Oracle RAC Performance por Anil Nair
New Generation Oracle RAC Performance
Anil Nair
•
2.2K vistas
Migration to Oracle Multitenant por Jitendra Singh
Migration to Oracle Multitenant
Jitendra Singh
•
398 vistas
監査ログをもっと身近に!〜統合監査のすすめ〜 por Michitoshi Yoshida
監査ログをもっと身近に!〜統合監査のすすめ〜
Michitoshi Yoshida
•
2.4K vistas
Stop the Chaos! Get Real Oracle Performance by Query Tuning Part 1 por SolarWinds
Stop the Chaos! Get Real Oracle Performance by Query Tuning Part 1
SolarWinds
•
1.5K vistas
Oracle RAC Internals - The Cache Fusion Edition por Markus Michalewicz
Oracle RAC Internals - The Cache Fusion Edition
Markus Michalewicz
•
11.9K vistas
Exadata master series_asm_2020 por Anil Nair
Exadata master series_asm_2020
Anil Nair
•
762 vistas
Oracle Real Application Clusters 19c- Best Practices and Internals- EMEA Tour... por Sandesh Rao
Oracle Real Application Clusters 19c- Best Practices and Internals- EMEA Tour...
Sandesh Rao
•
3.4K vistas
Anil nair rac_internals_sangam_2016 por Anil Nair
Anil nair rac_internals_sangam_2016
Anil Nair
•
1.4K vistas
[Oracle DBA & Developer Day 2012] 高可用性システムに適した管理性と性能を向上させるASM と RMAN の魅力 por オラクルエンジニア通信
[Oracle DBA & Developer Day 2012] 高可用性システムに適した管理性と性能を向上させるASM と RMAN の魅力
オラクルエンジニア通信
•
529 vistas
MAA Best Practices for Oracle Database 19c por Markus Michalewicz
MAA Best Practices for Oracle Database 19c
Markus Michalewicz
•
3.7K vistas
My First 100 days with an Exadata (PPT) por Gustavo Rene Antunez
My First 100 days with an Exadata (PPT)
Gustavo Rene Antunez
•
10.5K vistas
All of the Performance Tuning Features in Oracle SQL Developer por Jeff Smith
All of the Performance Tuning Features in Oracle SQL Developer
Jeff Smith
•
17.9K vistas
Hybrid Data Guard to Cloud GEN2 ExaCS.pdf por ALI ANWAR, OCP®
Hybrid Data Guard to Cloud GEN2 ExaCS.pdf
ALI ANWAR, OCP®
•
139 vistas
Destacado
HIgh Performance Messaging App Development with Oracle Advance Queuing por
HIgh Performance Messaging App Development with Oracle Advance Queuing
Jeff Jacobs
3.2K vistas
•
63 diapositivas
Best Practices – Extreme Performance with Data Warehousing on Oracle Databa... por
Best Practices – Extreme Performance with Data Warehousing on Oracle Databa...
Edgar Alejandro Villegas
1.2K vistas
•
47 diapositivas
Oracle Exadata Performance: Latest Improvements and Less Known Features por
Oracle Exadata Performance: Latest Improvements and Less Known Features
Tanel Poder
31.7K vistas
•
26 diapositivas
RMAN in 12c: The Next Generation (WP) por
RMAN in 12c: The Next Generation (WP)
Gustavo Rene Antunez
2.4K vistas
•
25 diapositivas
Oracle Database Appliance X5-2 por
Oracle Database Appliance X5-2
Yasir El Nimr
1.3K vistas
•
44 diapositivas
Oracle Database Appliance Workshop por
Oracle Database Appliance Workshop
MarketingArrowECS_CZ
2.6K vistas
•
58 diapositivas
Destacado
(7)
HIgh Performance Messaging App Development with Oracle Advance Queuing por Jeff Jacobs
HIgh Performance Messaging App Development with Oracle Advance Queuing
Jeff Jacobs
•
3.2K vistas
Best Practices – Extreme Performance with Data Warehousing on Oracle Databa... por Edgar Alejandro Villegas
Best Practices – Extreme Performance with Data Warehousing on Oracle Databa...
Edgar Alejandro Villegas
•
1.2K vistas
Oracle Exadata Performance: Latest Improvements and Less Known Features por Tanel Poder
Oracle Exadata Performance: Latest Improvements and Less Known Features
Tanel Poder
•
31.7K vistas
RMAN in 12c: The Next Generation (WP) por Gustavo Rene Antunez
RMAN in 12c: The Next Generation (WP)
Gustavo Rene Antunez
•
2.4K vistas
Oracle Database Appliance X5-2 por Yasir El Nimr
Oracle Database Appliance X5-2
Yasir El Nimr
•
1.3K vistas
Oracle Database Appliance Workshop por MarketingArrowECS_CZ
Oracle Database Appliance Workshop
MarketingArrowECS_CZ
•
2.6K vistas
ODA X6-2 family por MarketingArrowECS_CZ
ODA X6-2 family
MarketingArrowECS_CZ
•
1.5K vistas
Similar a Best Practices for Oracle Exadata and the Oracle Optimizer
Part2 Best Practices for Managing Optimizer Statistics por
Part2 Best Practices for Managing Optimizer Statistics
Maria Colgan
6K vistas
•
107 diapositivas
Presentación Oracle Database Migración consideraciones 10g/11g/12c por
Presentación Oracle Database Migración consideraciones 10g/11g/12c
Ronald Francisco Vargas Quesada
5.6K vistas
•
55 diapositivas
Oracle Query Optimizer - An Introduction por
Oracle Query Optimizer - An Introduction
adryanbub
1.6K vistas
•
22 diapositivas
Improve speed & performance of informix 11.xx part 1 por
Improve speed & performance of informix 11.xx part 1
am_prasanna
765 vistas
•
65 diapositivas
Beginners guide to_optimizer por
Beginners guide to_optimizer
Maria Colgan
431 vistas
•
47 diapositivas
How to analyze and tune sql queries for better performance por
How to analyze and tune sql queries for better performance
oysteing
294 vistas
•
70 diapositivas
Similar a Best Practices for Oracle Exadata and the Oracle Optimizer
(20)
Part2 Best Practices for Managing Optimizer Statistics por Maria Colgan
Part2 Best Practices for Managing Optimizer Statistics
Maria Colgan
•
6K vistas
Presentación Oracle Database Migración consideraciones 10g/11g/12c por Ronald Francisco Vargas Quesada
Presentación Oracle Database Migración consideraciones 10g/11g/12c
Ronald Francisco Vargas Quesada
•
5.6K vistas
Oracle Query Optimizer - An Introduction por adryanbub
Oracle Query Optimizer - An Introduction
adryanbub
•
1.6K vistas
Improve speed & performance of informix 11.xx part 1 por am_prasanna
Improve speed & performance of informix 11.xx part 1
am_prasanna
•
765 vistas
Beginners guide to_optimizer por Maria Colgan
Beginners guide to_optimizer
Maria Colgan
•
431 vistas
How to analyze and tune sql queries for better performance por oysteing
How to analyze and tune sql queries for better performance
oysteing
•
294 vistas
Oracle Data Redaction por Alex Zaballa
Oracle Data Redaction
Alex Zaballa
•
437 vistas
Machine Learning and AI at Oracle por Sandesh Rao
Machine Learning and AI at Oracle
Sandesh Rao
•
514 vistas
Optimizing Alert Monitoring with Oracle Enterprise Manager por Datavail
Optimizing Alert Monitoring with Oracle Enterprise Manager
Datavail
•
9.1K vistas
05_DP_300T00A_Optimize.pptx por KareemBullard1
05_DP_300T00A_Optimize.pptx
KareemBullard1
•
22 vistas
New Performance Benchmarks: Apache Impala (incubating) Leads Traditional Anal... por Cloudera, Inc.
New Performance Benchmarks: Apache Impala (incubating) Leads Traditional Anal...
Cloudera, Inc.
•
3.4K vistas
Explain the explain_plan por Maria Colgan
Explain the explain_plan
Maria Colgan
•
1.7K vistas
MySQL: Know more about open Source Database por Mahesh Salaria
MySQL: Know more about open Source Database
Mahesh Salaria
•
1.1K vistas
Unifying your data management with Hadoop por Jayant Shekhar
Unifying your data management with Hadoop
Jayant Shekhar
•
1.5K vistas
Nose Dive into Apache Spark ML por Ahmet Bulut
Nose Dive into Apache Spark ML
Ahmet Bulut
•
110 vistas
Whats New on SAP HANA SPS 11 Core Database Capabilities por SAP Technology
Whats New on SAP HANA SPS 11 Core Database Capabilities
SAP Technology
•
3.7K vistas
Sql and PL/SQL Best Practices I por Carlos Oliveira
Sql and PL/SQL Best Practices I
Carlos Oliveira
•
2.3K vistas
How to Analyze and Tune MySQL Queries for Better Performance por oysteing
How to Analyze and Tune MySQL Queries for Better Performance
oysteing
•
1.9K vistas
Data Redaction - OTN TOUR LA 2015 por Alex Zaballa
Data Redaction - OTN TOUR LA 2015
Alex Zaballa
•
721 vistas
Getting optimal performance from oracle e business suite por aioughydchapter
Getting optimal performance from oracle e business suite
aioughydchapter
•
1.6K vistas
Más de Edgar Alejandro Villegas
What's New in Predictive Analytics IBM SPSS - Apr 2016 por
What's New in Predictive Analytics IBM SPSS - Apr 2016
Edgar Alejandro Villegas
486 vistas
•
37 diapositivas
Oracle big data discovery 994294 por
Oracle big data discovery 994294
Edgar Alejandro Villegas
752 vistas
•
23 diapositivas
Actian Ingres10.2 Datasheet por
Actian Ingres10.2 Datasheet
Edgar Alejandro Villegas
478 vistas
•
2 diapositivas
Actian Matrix Datasheet por
Actian Matrix Datasheet
Edgar Alejandro Villegas
270 vistas
•
2 diapositivas
Actian Matrix Whitepaper por
Actian Matrix Whitepaper
Edgar Alejandro Villegas
451 vistas
•
28 diapositivas
Actian Vector Whitepaper por
Actian Vector Whitepaper
Edgar Alejandro Villegas
650 vistas
•
12 diapositivas
Más de Edgar Alejandro Villegas
(20)
What's New in Predictive Analytics IBM SPSS - Apr 2016 por Edgar Alejandro Villegas
What's New in Predictive Analytics IBM SPSS - Apr 2016
Edgar Alejandro Villegas
•
486 vistas
Oracle big data discovery 994294 por Edgar Alejandro Villegas
Oracle big data discovery 994294
Edgar Alejandro Villegas
•
752 vistas
Actian Ingres10.2 Datasheet por Edgar Alejandro Villegas
Actian Ingres10.2 Datasheet
Edgar Alejandro Villegas
•
478 vistas
Actian Matrix Datasheet por Edgar Alejandro Villegas
Actian Matrix Datasheet
Edgar Alejandro Villegas
•
270 vistas
Actian Matrix Whitepaper por Edgar Alejandro Villegas
Actian Matrix Whitepaper
Edgar Alejandro Villegas
•
451 vistas
Actian Vector Whitepaper por Edgar Alejandro Villegas
Actian Vector Whitepaper
Edgar Alejandro Villegas
•
650 vistas
Actian DataFlow Whitepaper por Edgar Alejandro Villegas
Actian DataFlow Whitepaper
Edgar Alejandro Villegas
•
403 vistas
The Four Pillars of Analytics Technology Whitepaper por Edgar Alejandro Villegas
The Four Pillars of Analytics Technology Whitepaper
Edgar Alejandro Villegas
•
587 vistas
SQL in Hadoop To Boldly Go Where no Data Warehouse Has Gone Before por Edgar Alejandro Villegas
SQL in Hadoop To Boldly Go Where no Data Warehouse Has Gone Before
Edgar Alejandro Villegas
•
428 vistas
Realtime analytics with_hadoop por Edgar Alejandro Villegas
Realtime analytics with_hadoop
Edgar Alejandro Villegas
•
589 vistas
SQL – The Natural Language for Analysis - Oracle - Whitepaper - 2431343 por Edgar Alejandro Villegas
SQL – The Natural Language for Analysis - Oracle - Whitepaper - 2431343
Edgar Alejandro Villegas
•
348 vistas
Hadoop and Your Enterprise Data Warehouse por Edgar Alejandro Villegas
Hadoop and Your Enterprise Data Warehouse
Edgar Alejandro Villegas
•
1.1K vistas
Big Data SurVey - IOUG - 2013 - 594292 por Edgar Alejandro Villegas
Big Data SurVey - IOUG - 2013 - 594292
Edgar Alejandro Villegas
•
360 vistas
Big Data and Enterprise Data - Oracle -1663869 por Edgar Alejandro Villegas
Big Data and Enterprise Data - Oracle -1663869
Edgar Alejandro Villegas
•
442 vistas
Fast and Easy Analytics: - Tableau - Data Base Trends - Dbt06122013slides por Edgar Alejandro Villegas
Fast and Easy Analytics: - Tableau - Data Base Trends - Dbt06122013slides
Edgar Alejandro Villegas
•
530 vistas
BITGLASS - DATA BREACH DISCOVERY DATASHEET por Edgar Alejandro Villegas
BITGLASS - DATA BREACH DISCOVERY DATASHEET
Edgar Alejandro Villegas
•
457 vistas
Four Pillars of Business Analytics - e-book - Actuate por Edgar Alejandro Villegas
Four Pillars of Business Analytics - e-book - Actuate
Edgar Alejandro Villegas
•
613 vistas
Sas hpa-va-bda-exadata-2389280 por Edgar Alejandro Villegas
Sas hpa-va-bda-exadata-2389280
Edgar Alejandro Villegas
•
598 vistas
Splice machine-bloor-webinar-data-lakes por Edgar Alejandro Villegas
Splice machine-bloor-webinar-data-lakes
Edgar Alejandro Villegas
•
1.3K vistas
Analytics Trends 20145 - Deloitte - us-da-analytics-analytics-trends-2015 por Edgar Alejandro Villegas
Analytics Trends 20145 - Deloitte - us-da-analytics-analytics-trends-2015
Edgar Alejandro Villegas
•
1.9K vistas
Último
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx por
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx
DataScienceConferenc1
11 vistas
•
16 diapositivas
Customer Data Cleansing Project.pptx por
Customer Data Cleansing Project.pptx
Nat O
6 vistas
•
23 diapositivas
Data Journeys Hard Talk workshop final.pptx por
Data Journeys Hard Talk workshop final.pptx
info828217
11 vistas
•
18 diapositivas
[DSC Europe 23][AI:CSI] Dragan Pleskonjic - AI Impact on Cybersecurity and P... por
[DSC Europe 23][AI:CSI] Dragan Pleskonjic - AI Impact on Cybersecurity and P...
DataScienceConferenc1
8 vistas
•
36 diapositivas
PRIVACY AWRE PERSONAL DATA STORAGE por
PRIVACY AWRE PERSONAL DATA STORAGE
antony420421
7 vistas
•
56 diapositivas
Product Research sample.pdf por
Product Research sample.pdf
AllenSingson
33 vistas
•
29 diapositivas
Último
(20)
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx por DataScienceConferenc1
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx
DataScienceConferenc1
•
11 vistas
Customer Data Cleansing Project.pptx por Nat O
Customer Data Cleansing Project.pptx
Nat O
•
6 vistas
Data Journeys Hard Talk workshop final.pptx por info828217
Data Journeys Hard Talk workshop final.pptx
info828217
•
11 vistas
[DSC Europe 23][AI:CSI] Dragan Pleskonjic - AI Impact on Cybersecurity and P... por DataScienceConferenc1
[DSC Europe 23][AI:CSI] Dragan Pleskonjic - AI Impact on Cybersecurity and P...
DataScienceConferenc1
•
8 vistas
PRIVACY AWRE PERSONAL DATA STORAGE por antony420421
PRIVACY AWRE PERSONAL DATA STORAGE
antony420421
•
7 vistas
Product Research sample.pdf por AllenSingson
Product Research sample.pdf
AllenSingson
•
33 vistas
6498-Butun_Beyinli_Cocuq-Daniel_J.Siegel-Tina_Payne_Bryson-2011-259s.pdf por 10urkyr34
6498-Butun_Beyinli_Cocuq-Daniel_J.Siegel-Tina_Payne_Bryson-2011-259s.pdf
10urkyr34
•
7 vistas
[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init... por DataScienceConferenc1
[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init...
DataScienceConferenc1
•
5 vistas
OECD-Persol Holdings Workshop on Advancing Employee Well-being in Business an... por StatsCommunications
OECD-Persol Holdings Workshop on Advancing Employee Well-being in Business an...
StatsCommunications
•
7 vistas
CRM stick or twist workshop por info828217
CRM stick or twist workshop
info828217
•
14 vistas
Data about the sector workshop por info828217
Data about the sector workshop
info828217
•
29 vistas
META.pptx por vasanthan19012003
META.pptx
vasanthan19012003
•
6 vistas
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation por DataScienceConferenc1
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation
DataScienceConferenc1
•
19 vistas
Oral presentation (1).pdf por reemalmazroui8
Oral presentation (1).pdf
reemalmazroui8
•
5 vistas
OPPOTUS - Malaysians on Malaysia 3Q2023.pdf por Oppotus
OPPOTUS - Malaysians on Malaysia 3Q2023.pdf
Oppotus
•
30 vistas
Amy slides.pdf por StatsCommunications
Amy slides.pdf
StatsCommunications
•
5 vistas
Lack of communication among family.pptx por ahmed164023
Lack of communication among family.pptx
ahmed164023
•
14 vistas
Construction Accidents & Injuries por Bisnar Chase Personal Injury Attorneys
Construction Accidents & Injuries
Bisnar Chase Personal Injury Attorneys
•
6 vistas
Inawisdom Quick Sight por PhilipBasford
Inawisdom Quick Sight
PhilipBasford
•
7 vistas
SUPER STORE SQL PROJECT.pptx por khan888620
SUPER STORE SQL PROJECT.pptx
khan888620
•
13 vistas
Best Practices for Oracle Exadata and the Oracle Optimizer
1.
1 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. Best Practices for Oracle Exadata and the Oracle Optimizer Maria Colgan, Product Manager, Oracle Optimizer Levi Norman, Product Marketing Director, Oracle Exadata
2.
2 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. • Fastest Data Warehouse & OLTP • Best Cost/Performance Data Warehouse & OLTP • Optimized Hardware • Software Breakthroughs • Scales from ¼ Rack to 8 Full Racks Oracle Exadata Database Machine Extreme performance. Lowest cost.
3.
3 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. Hybrid Columnar Compression Smart Flash Cache Smart Scan Queries Up to 50X10X + ++ Oracle Exadata Innovation Storage Server Software
4.
4 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. Standardized and Simple to Deploy Delivered Ready-to-Run • Oracle Exadata Database Machines Are The Same Thoroughly Tested & Highly Supportable Identical Configuration Used by Oracle Engineering • Run Existing OLTP and DW Applications 30 Years of Oracle DB Capabilities No Exadata Certification Required • Leverage Oracle Ecosystem Skills, Knowledge Base, People, & Partners
5.
5 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. Oracle Exadata in the Market Rapid Adoption Across Geographies and Industries
6.
6 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. Agenda • How to gather statistics • Additional types of statistics • When to gather statistics • Statistics gathering performance
7.
7 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. How to Gather Statistics • Analyze command is deprecated – Only good for row chaining • The GATHER_*_STATS procedures take 13 parameters – Ideally you should only set the first 2-3 parameters • SCHEMA NAME • TABLE NAME • PARTITION NAME Use DBMS_STATS Package
8.
8 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. How to Gather Statistics Use DBMS_STATS Package • Your gather statistics commands should be this simple
9.
9 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. How to Gather Statistics • Can change the default value at the global level – DBMS_STATS.SET_GLOBAL_PREF – This changes the value for all existing objects and any new objects • Can change the default value at the table level – DBMS_STATS.SET_TABLE_PREF Changing Default Parameter Values for Gathering Statistics
10.
10 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. How to Gather Statistics • CASCADE • CONCURRENT • DEGREE • ESTIMATE_PERCENT • METHOD_OPT • NO_INVALIDATE • GRANULARITY • PUBLISH • INCREMENTAL • STALE_PERCENT • AUTOSTATS_TARGET (SET_GLOBAL_PREFS only) Changing Default Parameter Values for Gathering Statistics •The following parameter defaults can be changed:
11.
11 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. How to Gather Statistics • # 1 most commonly asked question – “What sample size should I use?” • Controlled by ESTIMATE_PRECENT parameter • From 11g onwards use default value AUTO_SAMPLE_SIZE – New hash based algorithm – Speed of a 10% sample – Accuracy of 100% sample Sample Size
12.
12 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. How to Gather Statistics • Speed of a 10% sample • Accuracy of 100% sample Sample Size Run Num AUTO_SAMPLE_SIZE 10% SAMPLE 100% SAMPLE 1 00:02:21.86 00:02:31.56 00:08:24.10 2 00:02:38.11 00:02:49.49 00:07:38.25 3 00:02:39.31 00:02:38.55 00:07:37.83 Column Name NDV with AUTO_SAMPLE_SIZE NDV with 10% SAMPLE NDV with 100% SAMPLE C1 59852 31464 60351 C2 1270912 608544 1289760 C3 768384 359424 777942
13.
13 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. Agenda • How to gather statistics • Additional types of statistics • When to gather statistics • Statistics gathering performance
14.
14 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. Additional Types of Statistics • Two types of Extended Statistics – Column groups statistics • Column group statistics useful when multiple column from the same table are used in where clause predicates – Expression statistics • Expression statistics useful when a column is used as part of a complex expression in where clause predicate • Can be manually or automatically created • Automatically maintained when statistics are gathered When Table and Column Statistics are not enough
15.
15 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. Extended Statistics – SELECT * FROM vehicles WHERE model = ‘530xi’ AND color = 'RED’; Column Group Statistics SLIVERC320MERC REDSLKMERC RED911PORSCHE SILVER530xiBMW BLACK530xiBMW RED530xiBMW ColorModelMake Vehicles Table Cardinality #ROWS * 1 * 1 12 * 1 * 1 1 NDV c1 NDV c2 4 3 = => MAKE MODEL COLOR BMW 530xi RED =
16.
16 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. Extended Statistics SELECT * FROM vehicles WHERE model = ‘530xi’ AND make = ‘BMW’; Column Group Statistics SLIVERC320MERC REDSLKMERC RED911PORSCHE SILVER530xiBMW BLACK530xiBMW RED530xiBMW ColorModelMake Vehicles Table Cardinality #ROWS * 1 * 1 12 * 1 * 1 1 NDV c1 NDV c2 4 3 = => = MAKE MODEL COLOR BMW 530xi RED BMW 530xi BLACK BMW 530xi SLIVER
17.
17 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. Extended Statistics • Create extended statistics on the Model & Make columns using DBMS_STATS.CREATE_EXTENDED_STATS Column Group Statistics New Column with system generated name
18.
18 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. Extended Statistics SELECT * FROM vehicles WHERE model = ‘530xi’ AND make = ‘BMW’; Column Group Statistics SLIVERC320MERC REDSLKMERC RED911PORSCHE SILVER530xiBMW BLACK530xiBMW RED530xiBMW ColorModelMake Vehicles Table Cardinality calculated using column group statistics MAKE MODEL COLOR BMW 530xi RED BMW 530xi BLACK BMW 530xi SLIVER
19.
19 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. Extended Statistics SELECT * FROM Customers WHERE UPPER(CUST_LAST_NAME) = ‘SMITH’; • Optimizer doesn’t know how function affects values in the column • Optimizer guesses the cardinality to be 1% of rows SELECT count(*) FROM customers; COUNT(*) 55500 Expression Statistics Cardinality estimate is 1% of the rows
20.
20 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. Extended Statistics Expression Statistics New Column with system generated name
21.
21 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. Extended Statistics 1. Start column group usage capture Automatic Column Group Detection • Oracle can automatically detect column group candidates based on an STS or by monitoring a workload • Uses DBMS_STATS procedure SEED_COL_USAGE • If the first two arguments are set to NULL the current workload will be monitored • The third argument is the time limit in seconds
22.
22 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. Extended Statistics 2. Run your workload Automatic Column Group Detection • Actual number of rows returned by this query is 932 • Optimizer under-estimates the cardinality as it assumes each where clause predicate will reduce number of rows returned • Optimizer is not aware of real-world relations between city, state, & country
23.
23 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. Extended Statistics 2. Run your workload Automatic Column Group Detection • Actual number of rows returned by this query is 145 • Optimizer over-estimates the cardinality as it is not aware of the real-world relations between state & country
24.
24 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. Extended Statistics 3. Check column usage information recorded for our table Automatic Column Group Detection COLUMN USAGE REPORT FOR SH.CUSTOMERS 1. COUNTRY_ID : EQ 2. CUST_CITY : EQ 3. CUST_STATE_PROVINCE : EQ 4. (CUST_CITY, CUST_STATE_PROVINCE, COUNTRY_ID) : FILTER 5. (CUST_STATE_PROVINCE, COUNTRY_ID) : GROUP_BY SELECT dbms_stats.report_col_usage(user, 'customers') FROM dual; EQ means column was used in equality predicate in query 1 GROUP_BY columns used in group by expression in query 2 FILTER means columns used together as filter predicates rather than join etc. Comes from query 1
25.
25 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. Statistics Enhancements 4. Create extended stats for customers based on usage EXTENSIONS FOR SH.CUSTOMERS 1. (CUST_CITY, CUST_STATE_PROVINCE, COUNTRY_ID): SYS_STUMZ$C3AIHLPBROI#SKA58H_N created 2. (CUST_STATE_PROVINCE, COUNTRY_ID) : SYS_STU#S#WF25Z#QAHIHE#MOFFMM_ created Column group statistics will now be automatically maintained every time you gather statistics on this table Automatic Column Group Detection SELECT dbms_stats.create_extended_stats(user, 'customers') FROM dual;
26.
26 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. Agenda • How to gather statistics • Additional types of statistics • When to gather statistics • Statistics gathering performance
27.
27 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. When to Gather Statistics • Oracle automatically collect statistics for all database objects, which are missing or have stale statistics • AutoTask run during a predefined maintenance window • Internally prioritizes the database objects – Both user schema and dictionary tables – Objects that need updated statistics most are processed first • Controlled by DBMS_AUTO_TASK_ADMIN package or via Enterprise Manager Automatic Statistics Gathering
28.
28 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. When to Gather Statistics Automatic Statistics Gathering in Enterprise Manager • Enterprise Manager allows you to control all aspects of the automatic statistics gathering task • The statistics gathering task can be set to only run during certain maintenance windows
29.
29 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. When to Gather Statistics • If you want to disable auto job for application schema leaving it on for Oracle dictionary tables • The scope of the auto job is controlled by the global preference AUTOSTATS_TARGET • Possible values are – AUTO Oracle decides what tables need statistics (Default) – All Statistics gathered for all tables in the system – ORACLE Statistics gathered for only the dictionary tables Automatic Statistics Gathering
30.
30 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. When to Gather Statistics • Need to determine when to manually gather statistics • After large data loads – Add statistics gather to the ETL or ELT process • If trickle loading or online transactions – Manually determine when statistics are stale and trigger gather – USER_TAB_MODIFICATIONS lists # INSERTS, UPDATES, and DELETES that occurs on each table • If trickle loading into a partition table – Used dbms.stats.copy_table_stats() If the Auto Statistics Gather Job is not suitable
31.
31 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. When to Gather Statistics If the Auto Statistics Gather Job is not suitable Partitioned Table Partition 1 June 1st 2012 : Partition 4 June 4th 2012 Partition 5 June 5th 2012 DBMS_STATS.COPY_TABLE_STATS(); • Copies statistic from source partition to new partition • Adjusts min & max values for partition column • Both partition & global statistics • Copies statistics of the dependent objects • Columns, local (partitioned) indexes* etc. • Does not update global indexes
32.
32 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. Agenda • How to gather statistics • Additional types of statistics • When to gather statistics • Statistics gathering performance
33.
33 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. Statistics Gathering Performance • Three parallel options to speed up statistics gathering – Inter object using parallel execution – Intra object using concurrency – The combination of Inter and Intra object • Incremental statistics gathering for partitioned tables How to speed up statistics gathering
34.
34 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. Statistics Gathering Performance • Controlled by GATHER_*_STATS parameter DEGREE • Default is to use parallel degree specified on object • If set to AUTO Oracle decide parallel degree used • Works on one object at a time Inter Object using parallel execution
35.
35 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. Statistics Gathering Performance Inter Object using parallel execution P4 P3 P2 P1 Customers Table • Customers table has a degree of parallelism of 4 • 4 parallel server processes will be used to gather stats
36.
36 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. Statistics Gathering Performance Inter Object using parallel execution Exec DBMS_STATS.GATHER_TABLE_STATS(‘SH’,’SALES); Sales Table Partition 1 May 18th 2012 Partition 2 May 19th 2012 Partition 3 May 20th 2012 • Each individual partition will have statistics gathered one after the other • The statistics gather procedure on each individual partition operates in parallel BUT the statistics gathering procedures won’t happen concurrently P4 P3 P2 P1
37.
37 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. Statistics Gathering Performance • Gather statistics on multiple objects at the same time • Controlled by DBMS_STATS preference, CONCURRENT • Uses Database Scheduler and Advanced Queuing • Number of concurrent gather operations controlled by job_queue_processes parameter • Each gather operation can still operate in parallel Intra Object
38.
38 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. Statistics Gathering Performance Intra Object Statistics Gathering for SH Schema Exec DBMS_STATS.GATHER_SCHEMA_STATS(‘SH’); • A statistics gathering job is created for each table and partition in the schema • Level 1 contain statistics gathering jobs for all non- partitioned tables and a coordinating job for each partitioned table • Level 2 contain statistics gathering jobs for each partition in the partitioned tables
39.
39 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. Statistics Gathering Performance Inter Object using concurrent parallel execution Exec DBMS_STATS.GATHER_TABLE_STATS(‘SH’,’SALES); Sales Table Partition 1 May 18th 2012 Partition 2 May 19th 2012 Partition 3 May 20th 2012 Job1 Job2 Job3 • The number of concurrent gathers is controlled by the parameter job_queue_processes • In this example it is set to 3 • Remember each concurrent gather operates in parallel • In this example parallel degree is 4
40.
40 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. Statistics Gathering Performance • Typically gathering statistics after a bulk loading data into one partition would causes a full scan of all partitions to gather global table statistics – Extremely time consuming • With Incremental Statistic gather statistics for touched partition(s) ONLY – Table (global) statistics are accurately built from partition statistics – Reduce statistics gathering time considerably – Controlled by INCREMENTAL preference Incremental Statistics Gathering for Partitioned tables
41.
41 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. Incremental Statistics Gathering Sales Table May 22nd 2011 May 23rd 2011 May 18th 2011 May 19th 2011 May 20th 2011 May 21st 2011 Sysaux Tablespace 1. Partition level stats are gathered & synopsis created 2. Global stats generated by aggregating partition level statistics and synopsis
42.
42 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. Incremental Statistics Gathering Sales Table May 22nd 2011 May 23rd 2011 May 18th 2011 May 19th 2011 May 20th 2011 May 21st 2011 Sysaux Tablespace May 24th 2011 4. Gather partition statistics for new partition 5. Retrieve synopsis for each of the other partitions from Sysaux 6. Global stats generated by aggregating the original partition synopsis with the new one 3. A new partition is added to the table & Data is Loaded
43.
43 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved. More Information • Accompanying Two Part White Paper Series – Understanding Optimizer Statistics – Best Practices for Managing Optimizer Statistics • Optimizer Blog – http://blogs.oracle.com/optimizer • Oracle.com – http://www.oracle.com/technetwork/database/focus-areas/bi- datawarehousing/dbbi-tech-info-optmztn-092214.html • Oracle Exadata Database Machine – http://www.oracle.com/exadata
44.
44 Copyright ©
2011, Oracle and/or its affiliates. All rights reserved.