Se ha denunciado esta presentación.
Utilizamos tu perfil de LinkedIn y tus datos de actividad para personalizar los anuncios y mostrarte publicidad más relevante. Puedes cambiar tus preferencias de publicidad en cualquier momento.

Harlem Park Building Design Project

2.383 visualizaciones

Publicado el

Harlem Park Building Design Project-Master of Engineering, Lehigh University

  • DOWNLOAD FULL BOOKS, INTO AVAILABLE FORMAT ......................................................................................................................... ......................................................................................................................... 1.DOWNLOAD FULL. PDF EBOOK here { https://tinyurl.com/y8nn3gmc } ......................................................................................................................... 1.DOWNLOAD FULL. EPUB Ebook here { https://tinyurl.com/y8nn3gmc } ......................................................................................................................... 1.DOWNLOAD FULL. doc Ebook here { https://tinyurl.com/y8nn3gmc } ......................................................................................................................... 1.DOWNLOAD FULL. PDF EBOOK here { https://tinyurl.com/y8nn3gmc } ......................................................................................................................... 1.DOWNLOAD FULL. EPUB Ebook here { https://tinyurl.com/y8nn3gmc } ......................................................................................................................... 1.DOWNLOAD FULL. doc Ebook here { https://tinyurl.com/y8nn3gmc } ......................................................................................................................... ......................................................................................................................... ......................................................................................................................... .............. Browse by Genre Available eBooks ......................................................................................................................... Art, Biography, Business, Chick Lit, Children's, Christian, Classics, Comics, Contemporary, Cookbooks, Crime, Ebooks, Fantasy, Fiction, Graphic Novels, Historical Fiction, History, Horror, Humor And Comedy, Manga, Memoir, Music, Mystery, Non Fiction, Paranormal, Philosophy, Poetry, Psychology, Religion, Romance, Science, Science Fiction, Self Help, Suspense, Spirituality, Sports, Thriller, Travel, Young Adult,
       Responder 
    ¿Estás seguro?    No
    Tu mensaje aparecerá aquí

Harlem Park Building Design Project

  1. 1. Lehigh University Master of Engineering in Structural Engineering<br />Final Design Phase<br />Class of 2010<br />Friday, April 30th, 2010<br />
  2. 2. Two different structures will be designed to increase the educational value of the design process.<br />Harlem Park<br />Saratoga Street Parking Structure<br />Structural Engineer: Tindall/Cagley & Assoc. Architect: HSMM<br />Structural Engineer: DeSimone<br />Architect: Swanke Hayden Connell Architects<br />
  3. 3.
  4. 4. Fall 2009: Gravity System Study and Selection<br />Composite Beam<br />Steel Decking<br />Concrete Slab<br />Shear Studs<br />Welded Wire Fabric<br />Steel W-Section<br />
  5. 5. There are many advantages and disadvantages of composite beam design for this structure<br />Overall:<br />Lighter, more economic system<br />Works best with building geometry<br />Disadvantages:<br />Using “shored” spans<br />High amount of studs<br />Serviceability Concerns<br />
  6. 6. Yellow Structural Engineers<br />Harlem Park Development Final Design<br />Seth E. Darley<br />Steven K. Dutra<br />Anthony J. Ferraro<br />Eddie M. Guerra Fuentes<br />
  7. 7. Lateral Load Resisting System Design <br />Gravity System Design <br />Foundation Design<br />
  8. 8. Foundation Design<br />
  9. 9. Design Loads<br /><ul><li>Unfactored Service Loads:
  10. 10. ASCE 07 Combinations
  11. 11. Factored Service Loads:
  12. 12. ACI 318 Combinations
  13. 13. Loads Considered
  14. 14. Shear
  15. 15. Moment
  16. 16. Downward Axial
  17. 17. Uplift</li></li></ul><li>Subsurface Characterization<br />Geologic Composition<br />Soil Properties<br />FILL<br />Bedrock Strength<br />FINE SAND<br />SILT<br />CLAY<br />Subsurface conditions taken from Geotechnical Report <br />ROCK<br />TILL<br />
  18. 18. Foundation Selection: Caissons<br /><ul><li> High loads can be transferred directly to bedrock
  19. 19. Cost of mobilization
  20. 20. Noise and vibration during construction</li></li></ul><li>Caisson Design<br /><ul><li>Axial Load Capacity
  21. 21. End Bearing
  22. 22. Caisson-Rock Bond
  23. 23. Lateral Load Capacity
  24. 24. Evans & Duncan Method</li></ul>φ’ <br />γ<br />
  25. 25. Caisson Design<br /><ul><li> Longitudinal Reinforcement (ACI 318-10.9)
  26. 26. Ties (ACI 10.13.8.4)
  27. 27. Bearing Strength of concrete (ACI 318-10.14.1)
  28. 28. Embedment of Longitudinal Reinforcement (CRSI 13-42)
  29. 29. Development Lengths (ACI 318-12.2)</li></ul>Maximum <br />Uplift<br />25<br />Maximum <br />Moment<br />24<br />
  30. 30. Foundation Design<br />
  31. 31. Basement Wall Design<br /><ul><li>Assumptions:
  32. 32. Braced Excavation during construction
  33. 33. Neglect surcharge</li></li></ul><li>Basement Wall Design<br />
  34. 34. Basement Wall Design<br />
  35. 35.
  36. 36. Concrete Column Design<br />Gravity<br />Pu = 2168 kips<br />36” x 36”<br />(12) - #11 bars<br />Lateral<br />- Pu = 3944 kips<br /><ul><li>42” x 52”
  37. 37. 16 - #11 bars</li></li></ul><li>Base Plate Design<br />Gravity<br />Pu = 2168 kips<br />36” x 36”<br />(12) - #11 bars<br />Base Plate Design<br />- Column: W 14 x 283<br />- Pu = 2168 kips<br />- Base Plate Dimensions<br /> 30” x 30” x 3 1/2”<br />Lateral<br />- Pu = 3944 kips<br /><ul><li>42” x 52”
  38. 38. 16 - #11 bars</li></ul>Base Plate Design<br />- Column: W 36 x 652<br /><ul><li>Pu = 3944 kips
  39. 39. Mu = 620 kip*ft
  40. 40. Base Plate Dimensions</li></ul> 36” x 48” x 4 ¾”<br />
  41. 41. Anchorage Design<br />Gravity<br />- Code Minimum: 4 Anchors<br />- Headed Anchors<br /><ul><li>Self leveling nuts for easy erection </li></ul>Lateral<br /> - Uplift force = 3225 kip<br /><ul><li> (14) 2” Dia. Anchor Bolts
  42. 42. 60” Embedment Length</li></li></ul><li>Ground Floor Mezzanine<br />
  43. 43. Ground Floor Mezzanine<br />Hanger<br />L3x2x1/4 TYP.<br />
  44. 44. Ground Floor Mezzanine<br />Brace<br />L2x2x1/8 TYP.<br />
  45. 45.
  46. 46. 4th Floor<br />
  47. 47. 4th Floor<br />
  48. 48. 4th Floor<br />
  49. 49. 4th Floor<br />Proposed splice location<br />
  50. 50. 4th Floor<br />
  51. 51.
  52. 52. 6th Floor<br />R = 67 kip<br />R = 75 kip<br />
  53. 53.
  54. 54. 19th Floor Column Offset<br /><ul><li>Five Exterior Columns step back due to the façade at the 19th Floor
  55. 55. Façade constraints also prevent bracing of offset connection</li></li></ul><li>19th Floor Column Offset<br />
  56. 56. 19th Floor Column Offset<br />
  57. 57.
  58. 58. Roof Design<br /><ul><li> Gravity and Lateral Design
  59. 59. Some sections not included in RAM Model
  60. 60. Wind: Partially blocked
  61. 61. Siesmic: ASCE 7-05 Chp. 15
  62. 62. Cooling Tower Dunnage
  63. 63. Typical Connection
  64. 64. Sunken Roof Design
  65. 65. Water Tower Dunnage</li></li></ul><li>Cooling Tower Dunnage<br />
  66. 66. Cooling Tower Dunnage:<br />NS Elevation<br />
  67. 67. Cooling Tower Dunnage: EW Elevation<br />
  68. 68. Cooling Tower Dunnage:<br />Typical Connection<br />
  69. 69. Sunken Roof<br />
  70. 70. Sunken Roof <br />NS Elevation<br />
  71. 71. Sunken Roof<br />EW Elevation<br />
  72. 72. Water Tower Dunnage<br />
  73. 73.
  74. 74. Lateral Design - Forces<br />Wind Base Shear<br />Hand Calculations:<br />RAM Frame Analysis:<br />
  75. 75. Lateral Design - Forces<br />Seismic Base Shear<br />Hand Calculations: 413 kip <br />RAM Frame Analysis: 408 kip<br />Within 2% =<br />
  76. 76. Lateral Design - Forces<br />Center of Rigidity<br />Center of Mass<br />21st Floor<br />dymax = 3.35”<br />dymin = 1.32”<br />
  77. 77. Lateral Design - Forces<br />Center of Rigidity<br />Center of Mass<br />10th Floor<br />dymax = 1.13”<br />dymin = 0.38”<br />
  78. 78. Lateral Design Process<br />Initial Thoughts<br />Façade Step-backs<br />Column Locations<br />Building Geometry<br />
  79. 79. Lateral Design Process<br />Braced Frames<br />Moment Frames<br />Linked Beams<br />Braced Frames<br />Moment Frames<br />Linked Frames<br />
  80. 80. Final Lateral Design<br />
  81. 81. Final Lateral Design<br />
  82. 82. Final Lateral design<br />
  83. 83. Final Lateral design<br />
  84. 84. Final Lateral design<br />
  85. 85. Lateral Design - Forces<br />Lateral Deflection Approximation<br />W14x145<br />A = 42.7in2 I = Ad2<br />dapproximate = 17” <br />dRAM = 20.17”<br />Within 15%<br />
  86. 86. Typical Moment Frame Connection<br />Column: W 14 x 283 Mu = 454 kip*ft<br />Beam: W 30 x 90 Vu = 75 kip<br />
  87. 87. Typical Braced Frame Connection<br />
  88. 88. Questions ?<br />
  89. 89. Questions ?<br />

×