-
Sé el primero en recomendar esto
LinkedIn emplea cookies para mejorar la funcionalidad y el rendimiento de nuestro sitio web, así como para ofrecer publicidad relevante. Si continúas navegando por ese sitio web, aceptas el uso de cookies. Consulta nuestras Condiciones de uso y nuestra Política de privacidad para más información.
LinkedIn emplea cookies para mejorar la funcionalidad y el rendimiento de nuestro sitio web, así como para ofrecer publicidad relevante. Si continúas navegando por ese sitio web, aceptas el uso de cookies. Consulta nuestra Política de privacidad y nuestras Condiciones de uso para más información.
Publicado el
This paper proposes a Factor-Augmented Dynamic Nelson-Siegel (FADNS) model to predict the yield curve in the US that relies on a large data set of weekly financial and macroeconomic variables. The FADNS model significantly improves interest rate forecasts relative to the extant models in the literature. For longer horizons, it beats autoregressive alternatives, with a reduction in mean absolute error of up to 40%. For shorter horizons, it offers a good challenge to autoregressive forecasting models, outperforming them for the 7- and 10-year yields. The out-of-sample analysis shows that the good performance comes mostly from the forward-looking nature of the variables we employ. Including them reduces the mean absolute error in 5 basis points on average with respect to models that reflect only past macroeconomic events.
Date: 2017-03
Authors:
Vieira, Fausto José Araújo
Chague, Fernando Daniel
Fernandes, Marcelo
Sé el primero en recomendar esto
Parece que ya has recortado esta diapositiva en .
Inicia sesión para ver los comentarios