SlideShare a Scribd company logo
1 of 41
Download to read offline
REDES COMPLEJAS:
DEL CEREBRO A LAS REDES SOCIALES
JAVIER M. BULDÚ
UNIVERSIDAD REY JUAN CARLOS (MÓSTOLES)
CENTRO DETECNOLOGÍA BIOMÉDICA (POZUELO)
COMPLEJIMAD (MADRID)
CLUB SICOMORO, 25/10/2017
COMPLEJIMAD:
ASOCIACIÓN MADRILEÑA DE CIENCIAS
DE LA COMPLEJIDAD
SISTEMAS COMPLEJOS
Un sistema complejo está formado por partes interrelacionadas que, como conjunto, exhiben
propiedades y comportamientos no evidentes a partir de la suma de las partes
individuales.
Una neurona Un cerebro
SISTEMAS COMPLEJOS
La sociedad, su organización y los procesos que en ella ocurren, se
pueden estudiar bajo la perspectiva de los sistemas complejos:
Red deTwitter. Los nodos son
usuarios conectados por tweets
Subred deTwitter: 415.808 conexiones y 283.317 nodos.
REDES COMPLEJAS
Una Red Compleja es una red con una estructura no trivial, cuyos patrones de conexión ni
son regulares del todo ni completamente aleatorios. Su estructura es fundamental para
entender los procesos que en ella ocurren:
N=9
L=9
1
3
2
4 5
8
6
9
UNA RED
34
356
460
175
7
1203
516
690
726
139
10
697
692
65
511
1404
536
546
570
1518
169
812
1023
1655
1337
910
329
328450547
1610
52
1490554
105
676
331
434
7231590
6
359
149
353
251
386
387
357
240
185
1609
1168
724
509
1051900
828
928
873
147
368
365
252
393
1681
484
44
388
19
347576
111
56
628
1381
567
553
689
679
521
805
533
47
298
743
498
772
28
272
881
309
390
36
33
1025
797
548
414
258
532
392502
391410
223
1372
78
874
89
144
73
71
1004
226
257
219
581
710
209
513
1276
1701
704
216
1034
238
358
256
1374
243
16891348
14
1112
822
1670
15071232
425
75
327
94
416
10921003
921
1591
25
1027
834
1487
441
644
702
688
1228
1444
163
525
1495
1223
1197
31
637
1498
343
342
128
67
1015
137
93
522
212
3954
380
378
27
265
24
1174
218
418
304
722490253
79
95
563
497
374369
377
504
228
38
334
53
363
560
354215
1234
88351
70
1631
1059
45
247
130
499
20558
193
148
604
254
582577
242
506
1017196
1028
1111
214
136
308
1363
208
372
180
599
431
4
150
96
578
980
1094
1387559
181
1515
293
534
1287
903
552
1282
49
178
1544
771
807
437
157
382
282
106
1210
1488
1671
194
313
389
1514
1569
786
1482
339
1221
832
591
937
917
853
1296
1127
699
1022
846
292
400
1319
287
167
286
800
81
5391297
9591231
1045931
74
500
1225
91
752143211751
440
98
891
669
1457
1133
299
1674
1511
470
799
661
1046444
681
119
302517
115
1418
151
1550
915
659
801
326
462
1186
1099
936
783
396
415
1580
6091339
397
887
1250
239
235
615
244
241
575
986
620
586
1357
245
306
1451504
84
1080
92
894
398
1513
544
1395
276
879755
8881
107
925
1121
232
233
1455
234
1603
566
1347
1662
951
589621
318
1628
596
580
623
1105949
618
632
1524231
1643
728
432
1119
569
1512
1103
317
1283
1040
143
795
950
1009
344
29
836
15
104
273
16
1477
277
395188
1526
11
283459
32
62
493
428394
13
13701116
179
255
160
116
50
158
587
1441
991
133
80
352
198
17
579
600
340
159
134
69
126
1440
125
165
237
164
1650
1435
1213
830
821
957
494
655
767
404
972
1331
598
745
1658
633
346
1383
1465
861
146
573
487
430
1005
645
902
1138
1708
888
1139
407
87
1642
267
973
648
1254
1346
271
376
1354
485
20
491
409
285
1604
68
446
383
311
355
455
281
100
508
221
141
337
66
201
997
1533
220
1318
140
263
320
310284
72
335
191
305
1377
189
1608
905
809
1257
206
123
457
8131574
375
1271
162
875
943
1697
1151
315
40
316
289
294
403
268
564
1237
399
118
103
99
57
523
571
291
1334
406
574
565
225
1060
59
1379
295
665
1576
501
127496
176
22
110
866
270
280
156
124
572
186
23
585
1541
349
514
381
236
222
510
478
540
248
325
1554
154
345
324
8190
588
1128
300
519
122
590
330
1102
468
297
55
412
2
132
210
1031
113
303
472
120
466
296
458
43
187
748
421
41
213
597
1429
995
1164
109
952
520
1012
422
429
442
419336
170
529
288
161
275
469
155
593
789
102
211
142
402
524
379
1155
1220
1217
1194
1261
448
606
436
1684
867
1158
1551
11541134
512
1039
862
1170
568
1534
427
819
756
967
350
1233
518
480
1664
461
1582
1241
750
557
675
1201
301
1698
531
443
526
18
121
1079
640
420
456
595
1340
307
5281054
1107
467
338
114
341
613
465
463
5621089
872
8241087
264
639
765
962
4131475
224
373
6161303
1647
384
974
10421317
1369
538
1649
541
1083
1646
884
229
737
1350
197
1227
922
1314
129
842
709
594
192
260
537
1434
934
1157
766
204
184
1492
663
1058
1496
202
906
1295
1288
475
741
774
744
83
3
366
1204
1577
674
360445
848
1694
770
112
759
16021497
1274
1212
1620
701
1399
885
1486
481
449
321
643
333
138
1450
1311
1616
153
1439
1026
433
977
82
172
171
1695
1605
489
1413
1202
435
438
1001
1216
1528
641
454
1433
452
1192
829
1293
1073
1630
1414
168507
1178
1593
876
5
492
362
1219
1207
473
101
730
1537
864
1325
1184
1562
503
42330
1406
495
527
1437
15301300
530
1333
1321
1273
269
551
550
691
634
555451
556
549
776
483
1007
1343
477
173
944
1365
1494
21
930
1682
97
1328
1391
1588
1394
401
1122
515
195
1049
890
12
653
1565
1086
610
90
207
1159
230
199
86
364
542
227
1214
882
261
1547
583
981
1291
826
259
249
1548
246
869278
1596
16251426
10211251
1267
1425
135
592
1419
279
1654
920
707
982
2031675
1286
200
1090
453
361
323
584
1063
987
408
1332
1038
946
447
1402
166
108
9
683
385
46
1384
367
1570
26
48
177
77
6360
1057
64
42
877
482
1289
841
UNA RED COMPLEJA
“Las redes complejas son como el porno, no tengo una definición precisa, pero lo reconozco cuando lo veo”
M.A. Porter (University of Oxford)
REDES COMPLEJAS
Red de tráfico aéreo.
REDES COMPLEJAS
Red criminal de Messina (Italia). Emilio Ferrara, Indiana University
REDES COMPLEJAS
Una vez obtenida la red, la Ciencia de las Redes se encarga de analizarla basándose en cuatro pilares
fundamentales: la teoría de grafos, la física estadística, la dinámica no lineal y el Big Data.
Puedo analizar la estructura de una red, independientemente de su naturaleza.
REDES CEREBRALES
- Cross-correlation
- Wavelet coherence
- Sync. likelihood
- Generalized Sync.
- Phase Sync.
- Mutual Info.
- Granger Causality
- EEG
- MEG
- fMRI
- Histological Analysis
- DTI (MRI)
REDES ANATÓMICAS REDES FUNCIONALES
From Bullmore & Sporns, Nature Rev. 10, 186 (2009)
¿CÓMO SON LAS REDES
CEREBRALES? (SOCIALES)
1.- Suelen tener una estructura heterogénea y como consecuencia tienen
nodos muy conectados (hubs).
2.- Las redes cerebrales son redes de pequeño mundo (small-world).
3.- El coeficiente de clustering suele ser muy alto.
4.- Son redes con alta modularidad: forman comunidades o grupos.
5.- Suelen ser redes asortativas (es decir, los nodos muy conectados
suelen estar conectados entre ellos).
1. SON REDES HETEROGÉNEAS
Las redes reales no son homogéneas, tienen “hubs”. Suelen seguir lo que se conoce
como una ley libre de escala, ya que la distribución de contactos es muy heterogénea:
Red de contactos sexuales.: Parejas durante toda la vida.
Muestra: 4781 suecos. Liljeros, Nature, 411, 907 (2001).
totalacumulado
HUBS
numero de parejas
mujeres
hombres
Los hubs son omnipresentes en las redes sociales:
Facebook Data Science Section (2011).
50% tiene menos de 100 amigos
99% tiene menos de 1500
1. SON REDES HETEROGÉNEAS
HUBS
(1% tiene más de 1500)
Los hubs también aparecen en las redes cerebrales:
1. SON REDES HETEROGÉNEAS
❑ Dos actividades: música y finger tapping
❑ fMRI (resonancia magnética funcional)
❑ 36 x 64 x 64 regiones (147456 voxels)
❑ Se mide la correlación entre regiones:
❑ Se analiza la matriz de conexiones.
Music Finger tapping
Aparecen regiones altamente conectadas: “hubs”
1. SON REDES HETEROGÉNEAS
HUBS
Probabilidad de tener un número k de conexiones (Chialvo et al., PRL 2005)
• Las redes reales son redes de
“pequeño mundo” (small-
world).
• ¿Cómo de alejados estamos
unos de otros?
• Las redes sociales están
altamente conectadas y es fácil
llegar a cualquier persona
mediante la red de contactos
en un bajo número de pasos.
Stanley Milgram (NY, 1933-1984) fue un sorprendente
psicólogo americano que destacó, sobre todo, por sus
trabajos acerca de la obediencia a la autoridad.
2. SON REDES DE PEQUEÑO MUNDO
• (1967) A un grupo de gente (296) de Omaha (Nebraska) y Wichita
(Kansas) se le pidió que enviara una carta a una persona desconocida de
Boston (Massachussetts).
• Regla básica del experimento: La persona debía reenviar la carta a otra
persona de su entorno que considerara más cercana a la persona objetivo, y
así sucesivamente
• Hipótesis: Las redes sociales están altamente conectadas y es fácil llegar a
cualquier persona mediante la red de contactos en un bajo número de
pasos.
1 2
• 232 de 296 carta nunca llegaron a su destino.
• 64 cartas llegaron a su destino (con caminos de entre 2 y 10 pasos).
• El número promedio de pasos fue … 5.2 !!!
EXPERIMENTO
RESULTADOS
SMALL-WORLD
34
356
460
175
7
1203
516
690
726
139
10
697
692
65
511
1404
536
546
570
1518
169
812
1023
1655
1337
910
329
328450547
1610
52
1490554
105
676
331
434
7231590
6
359
149
353
251
386
387
357
240
185
1609
1168
724
509
1051900
828
928
873
147
368
365
252
393
1681
484
44
388
19
347576
111
56
6281
381
567
553
689
679
521
805
533
47
298
743
498
772
28
272
881
309
390
36
33
1025
797
548
414
258
532
392502
391410
223
1372
78
874
89
144
73
71
1004
226
257
219
581
710
209
513
1276
1701
704
216
1034
238
358
256
1374
243
16891348
14
1112
822
1670
15071232
425
75
327
94
416
10921003
921
1591
25
1027
834
1487
441
644
702
688
1228
1444
163
525
1495
1223
1197
31
637
1498
343
342
128
67
1015
137
93
522
212
3954
380
378
27
265
24
1174
218
418
304
722490253
79
95
563
497
374369
377
504
228
38
334
53
363
560
354215
1234
88351
70
1631
1059
45
247
130
499
20558
193
148
604
254
582577
242
506
1017196
1028
1111
214
136
308
1363
208
372
180
599
431
4
150
96
578
980
1094
1387559
181
1515
293
534
1287
903
552
1282
49
178
1544
771
807
437
157
382
282
106
1210
1488
1671
194
313
389
1514
1569
786
1482
339
1221
832
591
937
917
853
1296
1127
699
1022
846
292
400
1319
287
167
286
800
81
5391297
9591231
1045931
74
500
1225
91
752143211751
440
98
891
669
1457
1133
299
1674
1511
470
799
661
1046444
681
119
302517
115
1418
151
1550
915
659
801
326
462
1186
1099
936
783
396
415
1580
6091339
397
887
1250
239
235
615
244
241
575
986
620
586
1357
245
306
1451504
84
1080
92
894
398
1513
544
1395
276
879755
8881
107
925
1121
232
233
1455
234
1603
566
1347
1662
951
5896213
18
1628
596
580
623
1105949
618
632
1524231
1643
728
432
1119
569
1512
1103
317
1283
1040
143
795
950
1009
344
29
836
15
104
273
16
1477
277
395188
1526
11
283459
32
62
493
428394
13
13701116
179
255
160
116
50
158
587
1441
991
133
80
352
198
17
579
600
340
159
134
69
126
1440
125
165
237
164
1650
1435
1213
830
821
957
494
655
767
404
972
1331
598
745
1658
633
346
1383
1465
861
146
573
487
430
1005
645
902
1138
1708
888
1139
407
87
1642
267
973
648
1254
1346
271
376
1354
485
20
491
409
285
1604
68
446
383
311
355
455
281
100
508
221
141
337
66
201
997
1533
220
1318
140
263
320
310284
72
335
191
305
1377
189
1608
905
809
1257
206
123
457
8131574
375
1271
162
875
943
1697
1151
315
40
316
289
294
403
268
564
1237
399
118
103
99
57
523
571
291
1334
406
574
565
225
1060
59
1379
295
665
1576
501
127496
176
22
110
866
270
280
156
124
572
186
23
585
1541
349
514
381
236
222
510
478
540
248
325
1554
154
345
324
8190
588
1128
300
519
122
590
330
1102
468
297
55
412
2
132
210
1031
113
303
472
120
466
296
458
43
187
748
421
41
213
597
1429
995
1164
109
952
520
1012
422
429
442
419336
170
529
288
161
275
469
155
593
789
102
211
142
402
524
379
7321438
998
1096
131
1665
174
1614
85
1011
1075
714
1238
76
474
1371
1155
1220
1217
1194
1261
448
606
436
1684
867
1158
1551
11541134
908649
1308
703
505
15361048
486
37
476
961
512
1039
862
1170
568
1534
427
819
756
967
350
1233
518
480
1664
461
1582
1241
750
557
675
1201
301
1698
531
443
526
18
121
1079
640
420
456
595
1340
307
5281054
1107
467
338
114
341
613
465
463
5621089
872
8241087
264
639
765
962
4131475
224
373
6161303
1647
384
974
10421317
1369
538
1649
541
1083
1646
884
229
737
1350
197
1227
922
1314
129
842
709
594
192
260
537
1434
934
1157
766
204
184
1492
663
1058
1496
202
906
1295
1288
475
741
774
744
83
3
366
1204
1577
674
360445
848
1694
770
112
759
16021497
1274
1212
1620
701
1399
885
1486
481
449
768698
860
314
1707
684
321
643
333
138
1450
1311
1616
153
1439
1026
433
977
82
172
171
1695
1605
489
1413
1202
435
1147
438
1001
405
1216
1528
1393
479
1523
918
763
1018
641
1245
454
1433
452
1192
829
1293
1463
798
322332
1571
1639
736
1403
1073
1630
1414
168507
1178
1593
876
5
492
362
1219
1207
473
101
730
1537
864
1325
1184
1562
503
42330
1406
495
527
1437
15301300
530
1333
1321
1273
269
551
550
691
634
555451
556
549
776
483
1007
1343
477
173
1098
855
1660
411
944
1365
1494
21
930
1682
97
1328
1391
1588
1394
401
1122
515
195
1049
890
12
653
1565
1086
610
90
207
1159
230
199
86
364
542
227
1214
882
261
1547
583
981
1291
826
259
249
1548
246
869278
1596
16251426
10211251
1267
1425
135
592
1419
279
1654
920
707
982
2031675
1286
200
1090
453
361
323
584
1063
987
408
1332
1038
946
447
1402
166
108
9
683
385
46
1384
367
1570
26
48
177
77
6360
1327
1566
312
1242
1141
708
152
1389
120615601306
656
1696
61764
1057
64
42
877
482
1289
841
1648
1190
348
1464
274250
1640
2. SON REDES DE PEQUEÑO MUNDO
Veamos que ocurre en Facebook:
2. SON REDES DE PEQUEÑO MUNDO
Distancia media entre 1.600.000.000 usuarios de Facebook. Fuente: Lars Backstrom, Facebook Data Science.
¿Ocurre lo mismo en las redes cerebrales?
Matriz de conexiones entre neuronas del C. Elegans.
(O. Sporns,The Networks of the Brain)
• C. Elegans, un nematodo
del que sabemos mucho.
• A l r e d e d o r d e 3 0 0
neuronas.
• Te n e m o s t o d a s l a s
conexiones entre neuronas:
podemos estudiar su red.
L=2.65 (Lran=2.25)
2. SON REDES DE PEQUEÑO MUNDO
¿Ocurre lo mismo en el cerebro humano?
2. SON REDES DE PEQUEÑO MUNDO
3. SON REDES CON ALTO CLUSTERING
El coeficiente de clustering mide la cantidad de contactos que, a su vez,
están en contacto entre ellos: los amigos de mis amigos son mis amigos:
Coeficiente de clustering en tres casos sencillos.
1
2 3
4
1
2 3
4
1
2 3
4
C1,2,3,4 = {0,0,0,0}
C=0
C1,2,3,4 = {1,1,1,1}
C=1
C1,2,3,4 = {1,0,1,1/3}
C=7/12
Se puede actuar localmente, mediante los vecinos de un nodo
(en “tripletes”), y aumentar la propagación a nivel global:
Experimento online: un grupo de personas (1528) cuyos
contactos son controlados artificialmente, deciden darse
de alta en diferentes webs. Centola 329, 3 (2010).
EXPERIMENTO ONLINE RESULTADOS
3. SON REDES CON ALTO CLUSTERING
Las redes cerebrales también tienen alto clustering:
Reconstrucción de redes anatómicas mediante resonancia magnética. 998 regiones de interés (ROI)
(Difussion Spectrum Imaging). Hagmann et al. (2008) PLoS Biol. 6, e159
Alto número de
triángulos, comparado
con redes aleatorias.
3. SON REDES CON ALTO CLUSTERING
4. SON REDES MODULARES: FORMAN GRUPOS
Es posible detectar grupos de nodos fuertemente conectados,
indicando la existencia de patrones particulares dentro de la red:
Las redes reales están organizadas en comunidades, aunque en muchas ocasiones es difícil detectarlas.
Mejora la
clasificación de hubs
Hubs locales Hubs globales
Participación
ImportanciaLocal
“P.Amos”
La formación de comunidades permite detectar el papel
que juegan los nodos en la estructura local/global de la red:
Red de colaboración en música
Teitelbaum et al., Chaos, 18, 043105 (2008).
4. SON REDES MODULARES: FORMAN GRUPOS
Módulos estructurales en el córtex, obtenidos con resonancia magnética.
Se detectan 6 módulos (discos grises) junto con sus hubs conectores y
locales. Hagmann et al., PLoS Biol 6, 159 (2008).
4. SON REDES MODULARES: FORMAN GRUPOS
Red funcional (reposo) obtenida mediante resonancia magnética funcional (fMRI). Se detectan 5 módulos principales:
central, parieto-frontal, medial occipital, lateral occipital y fronto-temporal. Meunier et al., Front. Neuroinformatics 3:37 (2009).
Modularity of brain networks
B
processes of modularization might be disrupted
in the pathogenesis of neuropsychiatric disor-
ders such as autism or schizophrenia, supporting
abnormal modularity of brain network organiza-
tion as a diagnostic biomarker. In support of this
expectation, some evidence for dysmodularity,
or abnormal modular organization, has already
Central module Parieto−frontal module
Lateral occipital module
A
C
B
FIGURE 4 | Hierarchical modularity of a human brain functional network.
(A) Cortical surface mapping of the community structure of the network at the
highest level of modularity; (B) anatomical representation of the connectivity
between nodes in color-coded modules.The brain is viewed from the left side
with the frontal cortex on the left of the panel and occipital cortex on the right.
Intra-modular edges
are drawn in black; (
(shown centrally) illu
no major sub-modul
sub-modules. Repro
impor
ity of
to co
exam
phren
some,
processes of modularization might be disrupted
in the pathogenesis of neuropsychiatric disor-
ders such as autism or schizophrenia,supporting
abnormal modularity of brain network organiza-
tion as a diagnostic biomarker. In support of this
expectation, some evidence for dysmodularity,
Central module Parieto−frontal module
Lateral occipital module
A
C
B
FIGURE 4 | Hierarchical modularity of a human brain functional network.
(A) Cortical surface mapping of the community structure of the network at the
highest level of modularity; (B) anatomical representation of the connectivity
between nodes in color-coded modules.The brain is viewed from the left side
with the frontal cortex on the left of the panel and occipital cortex on the right.
Intra-modular edges are colo
are drawn in black; (C) sub-m
(shown centrally) illustrates,
no major sub-modules where
sub-modules. Reproduced w
Meunier et al. Modularity of brain networks
Central module Medial occipital moduleParieto−frontal module
Fronto−temporal moduleLateral occipital module
A
C
B
FIGURE 4 | Hierarchical modularity of a human brain functional network.
(A) Cortical surface mapping of the community structure of the network at the
highest level of modularity; (B) anatomical representation of the connectivity
between nodes in color-coded modules.The brain is viewed from the left side
Intra-modular edges are colored differently for each module; inter-modular edges
are drawn in black; (C) sub-modular decomposition of the five largest modules
(shown centrally) illustrates, for example, that the medial occipital module has
no major sub-modules whereas the fronto-temporal module has many
processes of modu
in the pathogenes
ders such as autism
abnormal modular
tion as a diagnostic
expectation, some
or abnormal mod
Central module
Lateral occipital module
A
C
FIGURE 4 | Hierarchical modularity of a human brain functio
(A) Cortical surface mapping of the community structure of the n
highest level of modularity; (B) anatomical representation of the
between nodes in color-coded modules.The brain is viewed from
with the frontal cortex on the left of the panel and occipital cortex
Meunier et al. Modularity of brain netwo
Central module Medial occipital moduleParieto−frontal module
Fronto−temporal moduleLateral occipital module
A
C
B
FIGURE 4 | Hierarchical modularity of a human brain functional network.
(A) Cortical surface mapping of the community structure of the network at the
highest level of modularity; (B) anatomical representation of the connectivity
between nodes in color-coded modules.The brain is viewed from the left side
Intra-modular edges are colored differently for each module; inter-modular edge
are drawn in black; (C) sub-modular decomposition of the five largest modules
(shown centrally) illustrates, for example, that the medial occipital module has
no major sub-modules whereas the fronto-temporal module has many
No importa que la red sea anatómica o funcional, los
módulos aparecen en ambos casos:
4. SON REDES MODULARES: FORMAN GRUPOS
Asortatividad y Homofilia: me gustan los que son como yo…
Asortatividad: Los nodos más felices tienden a estar
conectados entre ellos… y viceversa.
C.A. Bliss, I. M. Kloumann, K. D. Harris, C. M. Danforth, P. S. Dodds.  Twitter Reciprocal Reply Networks Exhibit
Assortativity with Respect to Happiness. Journal of Computational Science. 2012.
because of the uni-modal distribution of havg for the labMT words. Thus a moderate
value for h is chosen ( h is set to 1 for this study).
squares ( havg = 0) and green diamonds ( havg = 1). The average
and standard deviation of the Spearman correlation coefficient
calculated for the 100 randomized happiness scores (null model)
are shown as red circles with error bars (the error bars are smaller
than the symbol). This data supports the hypothesis that happiness
is less assortative as network distance increases.
Lastly, we explore whether these correlations are due to simi-
larity of word usage. For this analysis, we compute the similarity of
word bags for users connected in the reciprocal reply networks. We
compare the distribution of observed similarity scores to similarity
grate results in dead links w
This problem of unfriendi
impact conclusions drawn
infer contagion.
Our characterization o
several trends over the 25
February 2009. The num
work increased as time pr
Twitter’s enormous grow
Similarly, with an increa
smaller proportion of close
decrease). This may be du
to an increasing N, with
(i.e., friends of friends) ca
in the giant component r
0
0.1
0.2
0.3
0.4
0.5
r
s
r
s
1 2 3
0
0.1
0.2
0.3
0.4
0.5
Week 1
Week 2
Week 3
Week 4
Week 5
Week 6
Week 7
Week 8
Week 9
Week 10
Week 11
Week 12
Week 13
Week 14
Week 15
Week 16
Week 17
Week 18
Week 19
Week 20
Week 21
Week 22
Week 23
Week 24
Week 25
Links away
(a) ∆h = 1,α = 1
Fig. 10. Happiness assortativity as measured by Spearman’s correlation coefficients is shown for week networks, with
by users set to ˛ = 1 and (b) ˛ = 50. The dashed lines indicate weakening happiness–happiness correlations as the path len
for each week in the data set.
5. SON REDES ASORTATIVAS: FORMAN RICH-CLUBS
Twitter
Asortatividad y Topología: me conecto con nodos con
conectividad similar:
Ejemplo de un red de usuarios
de twitter (40M tweets)
C.A. Bliss, I. M. Kloumann, K. D. Harris, C. M. Danforth, P. S.
Dodds.  Twitter Reciprocal Reply Networks Exhibit
Assortativity with Respect to Happiness. Journal of
Computational Science. 2012.
5. SON REDES ASORTATIVAS: FORMAN RICH-CLUBS
La asortatividad surge de manera espontánea, no es
necesario forzarla:
2014
5. SON REDES ASORTATIVAS: FORMAN RICH-CLUBS
Lo mismo ocurre en las redes cerebrales:
Las zonas más conectadas, tienden a estar
más conectadas entre ellas. (finger tapping)
música tapping
5. SON REDES ASORTATIVAS: FORMAN RICH-CLUBS
Como consecuencia de la asortatividad y la modularidad,
aparecen rich-clubs:
Red de conexiones cortico-corticales. (A) Aparecen módulos (segregación) conectados entre ellos por hubs conectores
(integración). (B) Módulos: visual (amarillo), auditivo (rojo), somatosensorial-motor (verde), y frontolímbico (azul) areas en el
córtex del gato. (C) Los hubs integran toda la información formando un rich-club solo detectable con el análisis de redes. Zamora et
al, Front. Hum. Neurosci. 5, 83 (2011).
Zamora-López et al. Anatomical brain connectivity
FIGURE 2 | Segregation and integration of multisensory information. (A)
Cortico-cortical networks are organized into modules composed of areas
devoted to the processing of information of one modality.This modular
organization permits the brain to handle information of different modalities in
parallel, at the same time by different regions. (B) At the cortical surface modaly
related areas are found close to each other, as illustrated by the distribution of
visual (yellow), auditory (red), somatosensory-motor (green), and frontolimbic
(blue) areas in the cortex of cats. (C) Cortical hubs form a central module at the
top of the cortical hierarchy, which is capable of integrating multisensory
information as the coordinated activity of the hubs. (D)This module can only be
detected by connectivity analysis because cortical hubs are dispersed
throughout the cortical surface.
5. SON REDES ASORTATIVAS: FORMAN RICH-CLUBS
– Groucho Marx
“Todo esto es tan sencillo que hasta un niño de 5
años lo entendería… Que me traigan a un niño de 5
años!”
DEL CEREBRO A LA RED CEREBRAL
El proceso entero es un campo de minas!
EL PROCESO DE OBTENCIÓN DE LAS REDES
PRESENTA MUCHAS DIFICULTADES
2.4 The Brain as a Complex Network 39
0MROW
*MPXIVMRK1IXVMGW
7XEXMWXMGW
(ITIRHIRGMIW2SHIW
Brain
activity
Recorded
signals
Connectivity
Matrix
Graphs
Topological
properties
Neuromarkers
Healthy vs. Diseased
Rest vs. Task
Figure 2.5: The general framework of brain networks. Clockwise guideline. Nodes can be
regarded as sensor or electrodes recording the electromagnetic signals of the brain, which may
contain dependencies based on correlation or causality. These interdependencies, or link weights,
lead to a weighted connectivity matrix, which is the mathematical representation of a network. This
network is usually filtered using statistical thresholds to work only with the relevant links. Network
PROBLEMA: COMPARAR LAS REDES ENTRE ELLAS
Datos: Red anatómica (Hagmann et aI., 2008) y red funcional (Honey et aI., 2009) para el mismo
grupo de individuos. 998 regiones de interés (ROIs). La matriz estructural es solo positiva, mientras
que la funcional puede ser positiva/negativa. RH: hemisferio izquierdo, LH: hemisferio derecho.
Red anatómica (DTI) Red funcional (fMRI)
PROBLEMA: COMPARAR LAS REDES ENTRE ELLAS
EJEMPLO SOCIAL:
Facebook: Cuatro vistas diferentes
de una misma red de Facebook.
Respectivamente: red de amigos, red
de relaciones (visitas de páginas),
comunicación unidireccional y
comunicación bidireccional.
Misma red, con distintos niveles de información.
D. Easley & J. Kleinberg, Networks, crowds and markets.
Resonancia magnética funcional en (A) reposo y (B) durante una tarea de memoria.
Relaciones funcionales entre las zonas más activas de la red para ambos casos. Nodos:
rMTL, right medial temporal lobe; IMTL, left medial temporal lobe; dmPFC, dorsomedial prefrontal
cortex; vmPFC, ventro medial prefrontal cortex; rTC, right temporal cortex; lTC, left temporal cortex;
rIPL, right inferior parietal lobe; lIPL, left inferior parietal lobe. Fransson et al., Neuroimage (2008).
PROBLEMA: LAS REDES FUNCIONALES CAMBIAN CONTINUAMENTE
Las redes funcionales cambian en función de la tarea que
se esté realizando:
Red funcional (fMRI) con diferentes grupos de edad. Los nodos se agrupan siguiendo un algoritmo
basado en muelles. La zona azul representa la region frontal, la cual se segrega funcionalmente con
la edad. Fair et al. PLoS Comp. Bio.(2009).
PROBLEMA: LAS REDES FUNCIONALES CAMBIAN CON LA EDAD
Con el paso del tiempo, las redes funcionales también
modifican su estructura:
La topología de la red condiciona la dinámica, pero también a la inversa. Por ejemplo,
el aprendizaje hebbiano refuerza las conexiones entre nodos que se coordinan
habitualmente. Sporns, The networks of the Brain.
Las redes no evolucionan…. co-evolucionan!
PROBLEMA:TOPOLOGÍAY DINÁMICA ESTÁN RELACIONADAS
determina
afecta
evolución topológica
afecta
dinámica neuronal
topología
estado
determina
Autorretratos de William Utermohlen (pintor estadounidense (1993-2007)). En
1995 (con 62 años) empieza a ser atendido por problemas de memoria y escritura.
PROBLEMA: LAS REDES FUNCIONALES SE DEGENERAN
C.J. Stam et al., Cereb. Cortex (2006)
RESUMIENDO… (Y LO DEJO!)
I. LA CIENCIA DE LAS REDES PUEDE AYUDARNOS A
COMPRENDER
MEJOR EL CEREBRO… O A INTENTARLO!
II. LA MAYOR PARTE DE LAS REDES REALES
COMPARTEN CIERTAS PROPIEDADES EMERGENTES
Beware of the small-world, neuroscientist!
David Papo1,*
, Massimiliano Zanin2,3
, Johann H. Martínez4,5
, and Javier M. Buldú1,6
1 Laboratory of Biological Networks, Center for Biomedical Technology & GISC, UPM, Madrid, Spain
2 Faculdade de Ciencias e Tecnologia, Departamento de Engenharia Electrotecnica, Universidade Nova de Lisboa, Lisboa, Portugal
3 Innaxis Foundation & Research Institute, Madrid, Spain
4 Department of Physics and Fundamental Mechanics Applied to Agroforestry Engineering, Universidad Politécnica de Madrid, Madrid, Spain
5 Modeling and Simulation Laboratory, Business Faculty, Universidad del Rosario de Colombia, Bogotá, Colombia
6 Complex Systems Group & GISC, Universidad Rey Juan Carlos, Móstoles, Spain
Neuroscientists often assume that the brain is organized as a
small-world network, a structure where few connecting links
drastically shorten the distance between closely knit groups
of nodes. However, the experimental quantification of the
small-world structure and its interpretation in terms of
information processing are so fraught with technical,
to provide a conclusive answer to this question? In a typical
experimental setting, neuroscientists record brain images,
define nodes and links, construct a network, extract its
topological properties, to finally assess their statistical
significance and their possible functional meaning. Behind
each of these stages, particularly when studying functional
Manuscript
Click here to download Manuscript: SW 17 06 2015 def.docx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
rstb.royalsocietypublishing.org
Introduction
Cite this article: Papo D, Buldu´ JM, Boccaletti
S, Bullmore ET. 2014 Complex network theory
and the brain. Phil. Trans. R. Soc. B 369:
20130520.
http://dx.doi.org/10.1098/rstb.2013.0520
One contribution of 12 to a Theme Issue
‘Complex network theory and the brain’.
Subject Areas:
cognition, neuroscience
Keywords:
topology, graph, connectome, neuroimaging,
hubs, community structure
Author for correspondence:
David Papo
Complex network theory and the brain
David Papo1, Javier M. Buldu´1,2, Stefano Boccaletti3 and Edward T. Bullmore4,5
1
Center for Biomedical Technology, Universidad Polite´cnica de Madrid, Madrid, Spain
2
Complex Systems Group, Universidad Rey Juan Carlos, Mo´stoles, Spain
3
CNR, Istituto dei Sistemi Complessi, Florence, Italy
4
Department of Psychiatry, Behavioural and Clinical Neurosciences Institute, University of Cambridge,
Cambridge, UK
5
GlaxoSmithKline, Alternative Discovery and Development, Addenbrooke’s Centre for Clinical Investigations,
Cambridge, UK
1. Brain networks: from anatomy to topology
The first clear, recognizably scientific representations of the human brain were the
drawings and engravings of the Renaissance anatomists. These prototype anatom-
ical maps of brain organization demonstrated a physical structure somewhat
walnut-like in appearance: an approximately symmetrical pair of deeply wrinkled
lobes connected to each other by a central bridge of tissue. More extensive
and detailed dissection of the human brain revealed that its convoluted surface
is thinly covered (less than 3 mm) by a layer of so-called grey matter—
the cortex; and that anatomically separated regions of cortical grey matter are
extensively interconnected to each other (and to subcortical grey matter nuclei)
by axonal projections that are bundled together to form macroscopically visi-
ble white matter tracts, including the major white matter tract linking the two
cerebral hemispheres.
Even these few fundamental observations on the anatomical organization of
the brain indicate that it must be considered as a large-scale (more than 1 mm) net-
work of grey matter regions connected by white matter tracts. It has also been
increasingly well understood, since the first microscopic neuro-anatomists of
the nineteenth century, that there is an intricate pattern of synaptic connections
between locally neighbouring neurons in the same cortical column or area. So
there has long been strong evidence that the brain has a qualitatively complex
network organization at micro (less than 1 mm) as well as macro scales.
At a microscopic scale, we know that drawing a complete network diagram of
the human brain would be a task of currently unmanageable scale and technical
difficulty. The brain comprises an estimated 1011
neurons (105
mm–3
) and axonal
on September 1, 2014rstb.royalsocietypublishing.orgDownloaded from
rstb.royalsocietypublishing.org
Opinion piece
Cite this article: Papo D, Zanin M,
Pineda-Pardo JA, Boccaletti S, Buldu´ JM. 2014
Functional brain networks: great expectations,
hard times and the big leap forward. Phil.
Trans. R. Soc. B 369: 20130525.
http://dx.doi.org/10.1098/rstb.2013.0525
One contribution of 12 to a Theme Issue
‘Complex network theory and the brain’.
Subject Areas:
neuroscience, cognition
Keywords:
complex networks theory, functional
neuroimaging, small-world, robustness,
efficiency, synchronizability
Author for correspondence:
David Papo
e-mail: papodav@gmail.com
Functional brain networks: great
expectations, hard times and the big
leap forward
David Papo1, Massimiliano Zanin2,3, Jose´ Angel Pineda-Pardo1,
Stefano Boccaletti4 and Javier M. Buldu´1,5
1
Center for Biomedical Technology, Universidad Polite´cnica de Madrid, Madrid, Spain
2
Faculdade de Cıˆencias e Tecnologia, Departamento de Engenharia, Electrote´cnica, Universidade Nova de Lisboa,
Lisboa, Portugal
3
Innaxis Foundation and Research Institute, Madrid, Spain
4
Istituto dei Sistemi Complessi, CNR, Florence, Italy
5
Complex Systems Group, Universidad Rey Juan Carlos, Mo´stoles, Spain
Many physical and biological systems can be studied using complex network
theory, a new statistical physics understanding of graph theory. The recent
application of complex network theory to the study of functional brain
networks has generated great enthusiasm as it allows addressing hitherto
non-standard issues in the field, such as efficiency of brain functioning or
vulnerability to damage. However, in spite of its high degree of generality,
the theory was originally designed to describe systems profoundly different
from the brain. We discuss some important caveats in the wholesale application
of existing tools and concepts to a field they were not originally designed to
describe. At the same time, we argue that complex network theory has not
yet been taken full advantage of, as many of its important aspects are yet to
make their appearance in the neuroscience literature. Finally, we propose
that, rather than simply borrowing from an existing theory, functional neural
networks can inspire a fundamental reformulation of complex network
theory, to account for its exquisitely complex functioning mode.
1. Introduction
Characterizing how the brain organizes its activity to carry out complex tasks is
highly non-trivial. While early neuroimaging and electrophysiological studies
typically aimed at identifying patches of task-specific activation or local time-
varying patterns of activity, there has now been consensus that task-related
brain activity has a temporally multiscale, spatially extended character, as net-
works of coordinated brain areas are continuously formed and destroyed [1,2].
Up until recently, though, the emphasis of functional brain activity studies
has been on the identity of the particular nodes forming these networks, and
on the characterization of connectivity metrics between them [3], the underlying
covert hypothesis being that each node, constituting a coarse-grained represen-
tation of a given brain region, provides a unique contribution to the whole.
Thus, functional neuroimaging initially integrated the two basic ingredients of
early neuropsychology: localization of cognitive function into specialized brain
modules and the role of connection fibres in the integration of various modules.
Lately, brain structure and function have started being investigated using
complex network theory, a statistical mechanics understanding of an old
branch of pure mathematics: graph theory [4]. Graph theory allows endowing
networks with a great number of quantitative properties [5,6], thus vastly
enriching the set of objective descriptors of brain structure and function at
neuroscientists’ disposal.
However, in spite of a great potential, the results have so far not entirely met
the expectations in that complex network theory has not yet given rise to a
on September 1, 2014rstb.royalsocietypublishing.orgDownloaded from
OPINION ARTICLE
published: 27 February 2014
doi: 10.3389/fnhum.2014.00107
Reconstructing functional brain networks: have we got the
basics right?
David Papo1
*, Massimiliano Zanin2,3
and Javier M. Buldú4,5
1
Computational Systems Biology Group, Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
2
Departamento de Engenharia Electrotecnica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Lisboa, Portugal
3
Innaxis Foundation & Research Institute, Madrid, Spain
4
Laboratory of Biological Networks, Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
5
Departamento de Tecnología Electrónica, Universidad Rey Juan Carlos, Móstoles, Spain
*Correspondence: papodav@gmail.com
Edited by:
Daniel S. Margulies, Max Planck Institute for Human Cognitive and Brain Sciences, Germany
Keywords: complex networks theory, functional brain networks, correlations, synchronization, data mining
Both at rest and during the executions of
cognitive tasks, the brain continuously cre-
ates and reshapes complex patterns of cor-
general are defined in system-level studies
using noninvasive techniques, which may
be critical when interpreting the results of
in spatial correlations in the topology of
reconstructed networks.
Even more importantly, sub-sampling
HUMAN NEUROSCIENCE
Reorganization of Functional Networks in Mild Cognitive
Impairment
Javier M. Buldu´ 1,2
*, Ricardo Bajo3
, Fernando Maestu´ 3
, Nazareth Castellanos3
, Inmaculada Leyva1,2
, Pablo
Gil4
, Irene Sendin˜ a-Nadal1,2
, Juan A. Almendral1,2
, Angel Nevado3
, Francisco del-Pozo3
, Stefano
Boccaletti5,6
1 Complex Systems Group, Universidad Rey Juan Carlos, Fuenlabrada, Spain, 2 Laboratory of Biological Networks, Centre for Biomedical Technology, Madrid, Spain,
3 Cognitive and Computational Neuroscience Lab, Centre for Biomedical Technology, Polytechnic and Complutense University of Madrid (UPM-UCM), Madrid, Spain,
4 Memory Unit, Hospital Clı´nico San Carlos, Madrid, Spain, 5 Computational Systems Biology Group, Centre for Biomedical Technology, Madrid, Spain, 6 Istituto dei Sistemi
Complessi, CNR, Florence, Italy
Abstract
Whether the balance between integration and segregation of information in the brain is damaged in Mild Cognitive
Impairment (MCI) subjects is still a matter of debate. Here we characterize the functional network architecture of MCI
subjects by means of complex networks analysis. Magnetoencephalograms (MEG) time series obtained during a memory
task were evaluated by synchronization likelihood (SL), to quantify the statistical dependence between MEG signals and to
obtain the functional networks. Graphs from MCI subjects show an enhancement of the strength of connections, together
with an increase in the outreach parameter, suggesting that memory processing in MCI subjects is associated with higher
energy expenditure and a tendency toward random structure, which breaks the balance between integration and
segregation. All features are reproduced by an evolutionary network model that simulates the degenerative process of a
healthy functional network to that associated with MCI. Due to the high rate of conversion from MCI to Alzheimer Disease
(AD), these results show that the analysis of functional networks could be an appropriate tool for the early detection of both
MCI and AD.
Citation: Buldu´ JM, Bajo R, Maestu´ F, Castellanos N, Leyva I, et al. (2011) Reorganization of Functional Networks in Mild Cognitive Impairment. PLoS ONE 6(5):
e19584. doi:10.1371/journal.pone.0019584
Editor: Michal Zochowski, University of Michigan, United States of America
Received December 17, 2010; Accepted April 1, 2011; Published May 23, 2011
Copyright: ß 2011 Buldu´ et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Funding: This work was supported by MADRI.B project, Obra Social Caja Madrid, by the Spanish Ministry of S&T [FIS2009-07072, PSI2009-14415-C03-01] and by
the Community of Madrid under the R&D Program of activities MODELICO-CM [S2009ESP-1691]. All funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.
Competing Interests: The authors have declared that no competing interests exist.
* E-mail: javier.buldu@urjc.es
Author's personal copy
Principles of recovery from traumatic brain injury: Reorganization of
functional networks
Nazareth P. Castellanos a,
⁎, Inmaculada Leyva b,c,
⁎, Javier M. Buldú b,c
, Ricardo Bajo a
, Nuria Paúl d
,
Pablo Cuesta a
, Victoria E. Ordóñez a
, Cristina L. Pascua e
, Stefano Boccaletti f
,
Fernando Maestú a
, Francisco del-Pozo a
a
Cognitive and Computational Neuroscience Laboratory, Centre for Biomedical Technology (CTB), Technical University of Madrid and Complutense University of Madrid, Spain
b
Complex Systems Group, Universidad Rey Juan Carlos, Fuenlabrada, Spain
c
Laboratory of Biological Networks, Centre for Biomedical Technology (CTB), Technical University of Madrid, Spain
d
Department of Psychiatric and Medical Psychology, Medicine School, Complutense University of Madrid, Spain
e
Centre of Brain Injury Treatment LESCER, Madrid, Spain
f
CNR-Institute for Complex Systems, Florence, Italy
a b s t r a c ta r t i c l e i n f o
Article history:
Received 19 July 2010
Revised 1 December 2010
Accepted 16 December 2010
Available online 29 December 2010
Keywords:
Magnetoencephalography (MEG)
Functional connectivity
Graph theory
Traumatic brain injury (TBI)
Plasticity
Recovery after brain injury is an excellent platform to study the mechanism underlying brain plasticity, the
reorganization of networks. Do complex network measures capture the physiological and cognitive
alterations that occurred after a traumatic brain injury and its recovery? Patients as well as control subjects
underwent resting-state MEG recording following injury and after neurorehabilitation. Next, network
measures such as network strength, path length, efficiency, clustering and energetic cost were calculated. We
show that these parameters restore, in many cases, to control ones after recovery, specifically in delta and
alpha bands, and we design a model that gives some hints about how the functional networks modify their
weights in the recovery process. Positive correlations between complex network measures and some of the
general index of the WAIS-III test were found: changes in delta-based path-length and those in Performance
IQ score, and alpha-based normalized global efficiency and Perceptual Organization Index. These results
indicate that: 1) the principle of recovery depends on the spectral band, 2) the structure of the functional
networks evolves in parallel to brain recovery with correlations with neuropsychological scales, and 3)
energetic cost reveals an optimal principle of recovery.
© 2010 Elsevier Inc. All rights reserved.
Introduction
Traditionally, localizationist and holist views of brain function have
exclusively emphasized either functional segregation or functional
integration among components of the nervous system. While segrega-
tion indicates a high functional specialization of each brain region,
integration highlights the idea of a global structure and cooperative
behaviour. Neither of these views alone adequately accounts for the
multiple levels at which interactions occur during brain functioning.
Modern views conceive the human brain as having the capacity to
conjoin local specialization with global integration (Tononi et al., 1994).
Under this framework, the study of brain functioning is based on the
idea that the brain is a complex network of complex systems with
abundant interactions between local and distant areas (Singer, 1999;
Varela et al., 2001; Fries, 2005; 2009; Singer, 2009). An approach to
understand the dynamical nature of the links between neural
assemblies could be functional connectivity (Friston et al., 1994),
which refers to the statistical interdependencies between physiological
time series recorded in various brain areas (Aertsen et al., 1989).
Functional connectivity is, then, an essential tool for the study of brain
functioning and the implications of the deviation from healthy patterns
is a much debated question recently (Schnitzler and Gross, 2005;
Guggisberg et al., 2008). Functional connectivity patterns have been
proved to be altered by brain injury but, could they also reflect the
capability of brain to compensate for such injury? One could think that it
is possible, since brain plasticity produces changes at multiple levels of
neuronal reorganization, from synapses to cortical maps and large-scale
neuronal networks (Buonomano and Merzenich, 1998). Studies of the
changes which occurred in the functional connectivity patterns after
brain tumor rejections (Douw et al., 2008), recovery from capsular
stroke (Gerloff et al., 2006) or traumatic brain injury (Castellanos et al.,
2010) are some examples of the way the brain reorganizes after lesion.
However, little is known about the principles governing the structural
reorganization of functional networks after an acquired brain injury and
during recovery.
NeuroImage 55 (2011) 1189–1199
⁎ Corresponding authors. N.P. Castellanos is to be contacted at Laboratory of
Cognitive and Computational Neuroscience, Centre of Biomedical Technology (CTB),
Universidad Politécnica de Madrid, Campus de Montegancedo, 28660 Madrid, Spain.
I. Leyva, Complex Systems Group, Universidad Rey Juan Carlos, Camino del Molino
s/n, 28943 Fuenlabrada, Madrid, Spain.
E-mail address: nazareth@pluri.ucm.es (N.P. Castellanos).
1053-8119/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.neuroimage.2010.12.046
Contents lists available at ScienceDirect
NeuroImage
journal homepage: www.elsevier.com/locate/ynimg
ALGUNAS REFERENCIAS AL RESPECTO…

More Related Content

Similar to Redes complejas: del cerebro a las redes sociales

02 Introduction to Social Networks and Health: Key Concepts and Overview
02 Introduction to Social Networks and Health: Key Concepts and Overview02 Introduction to Social Networks and Health: Key Concepts and Overview
02 Introduction to Social Networks and Health: Key Concepts and OverviewDuke Network Analysis Center
 
00 Introduction to SN&H: Key Concepts and Overview
00 Introduction to SN&H: Key Concepts and Overview00 Introduction to SN&H: Key Concepts and Overview
00 Introduction to SN&H: Key Concepts and OverviewDuke Network Analysis Center
 
Small Worlds of Ambridge: Power, Networks & Actants
Small Worlds of Ambridge: Power, Networks & Actants Small Worlds of Ambridge: Power, Networks & Actants
Small Worlds of Ambridge: Power, Networks & Actants Nicola Headlam
 
01 Introduction to Networks Methods and Measures (2016)
01 Introduction to Networks Methods and Measures (2016)01 Introduction to Networks Methods and Measures (2016)
01 Introduction to Networks Methods and Measures (2016)Duke Network Analysis Center
 
01 Introduction to Networks Methods and Measures
01 Introduction to Networks Methods and Measures01 Introduction to Networks Methods and Measures
01 Introduction to Networks Methods and Measuresdnac
 
Social networking-for-social-integration-prelim-transcript
Social networking-for-social-integration-prelim-transcriptSocial networking-for-social-integration-prelim-transcript
Social networking-for-social-integration-prelim-transcriptReyesErica1
 
Antoniou: complex systems and web
Antoniou: complex systems and webAntoniou: complex systems and web
Antoniou: complex systems and webOKFN-GR
 
Introductory Talk on Social Network Analysis at Facebook Developer Circle Me...
Introductory Talk on Social Network Analysis  at Facebook Developer Circle Me...Introductory Talk on Social Network Analysis  at Facebook Developer Circle Me...
Introductory Talk on Social Network Analysis at Facebook Developer Circle Me...Premsankar Chakkingal
 
Socialnetworkanalysis
SocialnetworkanalysisSocialnetworkanalysis
Socialnetworkanalysiskcarter14
 
Community structure in social and biological structures
Community structure in social and biological structuresCommunity structure in social and biological structures
Community structure in social and biological structuresMaxim Boiko Savenko
 
Social networkanalysisfinal
Social networkanalysisfinalSocial networkanalysisfinal
Social networkanalysisfinalkcarter14
 
It’s a “small world” after all
It’s a “small world” after allIt’s a “small world” after all
It’s a “small world” after allquanmengli
 
Wanted: a larger, different kind of box
Wanted: a larger, different kind of boxWanted: a larger, different kind of box
Wanted: a larger, different kind of boxLina Martinsson Achi
 
Wanted: a larger, different kind of box
Wanted: a larger, different kind of boxWanted: a larger, different kind of box
Wanted: a larger, different kind of boxLina Martinsson Achi
 
An Introduction to Network Theory
An Introduction to Network TheoryAn Introduction to Network Theory
An Introduction to Network TheorySocialphysicist
 
Fundamentals of Neural Network (Soft Computing)
Fundamentals of Neural Network (Soft Computing)Fundamentals of Neural Network (Soft Computing)
Fundamentals of Neural Network (Soft Computing)Amit Kumar Rathi
 
Social Networks & Memes
Social Networks & MemesSocial Networks & Memes
Social Networks & Memesmorganjbruce
 

Similar to Redes complejas: del cerebro a las redes sociales (20)

02 Introduction to Social Networks and Health: Key Concepts and Overview
02 Introduction to Social Networks and Health: Key Concepts and Overview02 Introduction to Social Networks and Health: Key Concepts and Overview
02 Introduction to Social Networks and Health: Key Concepts and Overview
 
00 Introduction to SN&H: Key Concepts and Overview
00 Introduction to SN&H: Key Concepts and Overview00 Introduction to SN&H: Key Concepts and Overview
00 Introduction to SN&H: Key Concepts and Overview
 
Small Worlds of Ambridge: Power, Networks & Actants
Small Worlds of Ambridge: Power, Networks & Actants Small Worlds of Ambridge: Power, Networks & Actants
Small Worlds of Ambridge: Power, Networks & Actants
 
01 Introduction to Networks Methods and Measures (2016)
01 Introduction to Networks Methods and Measures (2016)01 Introduction to Networks Methods and Measures (2016)
01 Introduction to Networks Methods and Measures (2016)
 
01 Introduction to Networks Methods and Measures
01 Introduction to Networks Methods and Measures01 Introduction to Networks Methods and Measures
01 Introduction to Networks Methods and Measures
 
Social networking-for-social-integration-prelim-transcript
Social networking-for-social-integration-prelim-transcriptSocial networking-for-social-integration-prelim-transcript
Social networking-for-social-integration-prelim-transcript
 
Networks & Knowledge Sharing
Networks & Knowledge SharingNetworks & Knowledge Sharing
Networks & Knowledge Sharing
 
Antoniou: complex systems and web
Antoniou: complex systems and webAntoniou: complex systems and web
Antoniou: complex systems and web
 
Introductory Talk on Social Network Analysis at Facebook Developer Circle Me...
Introductory Talk on Social Network Analysis  at Facebook Developer Circle Me...Introductory Talk on Social Network Analysis  at Facebook Developer Circle Me...
Introductory Talk on Social Network Analysis at Facebook Developer Circle Me...
 
Socialnetworkanalysis
SocialnetworkanalysisSocialnetworkanalysis
Socialnetworkanalysis
 
Community structure in social and biological structures
Community structure in social and biological structuresCommunity structure in social and biological structures
Community structure in social and biological structures
 
Social networkanalysisfinal
Social networkanalysisfinalSocial networkanalysisfinal
Social networkanalysisfinal
 
It’s a “small world” after all
It’s a “small world” after allIt’s a “small world” after all
It’s a “small world” after all
 
Wanted: a larger, different kind of box
Wanted: a larger, different kind of boxWanted: a larger, different kind of box
Wanted: a larger, different kind of box
 
Wanted: a larger, different kind of box
Wanted: a larger, different kind of boxWanted: a larger, different kind of box
Wanted: a larger, different kind of box
 
An Introduction to Network Theory
An Introduction to Network TheoryAn Introduction to Network Theory
An Introduction to Network Theory
 
Fundamentals of Neural Network (Soft Computing)
Fundamentals of Neural Network (Soft Computing)Fundamentals of Neural Network (Soft Computing)
Fundamentals of Neural Network (Soft Computing)
 
What isa border_kings
What isa border_kingsWhat isa border_kings
What isa border_kings
 
03 Communities in Networks (2017)
03 Communities in Networks (2017)03 Communities in Networks (2017)
03 Communities in Networks (2017)
 
Social Networks & Memes
Social Networks & MemesSocial Networks & Memes
Social Networks & Memes
 

More from Fundacion Sicomoro

Strategic Topics. Banking and Fintechs
Strategic Topics. Banking and FintechsStrategic Topics. Banking and Fintechs
Strategic Topics. Banking and FintechsFundacion Sicomoro
 
Estrategia Digital José María Fuster
Estrategia Digital José María FusterEstrategia Digital José María Fuster
Estrategia Digital José María FusterFundacion Sicomoro
 
Ideas Para una estrategia 5G por José María Fuster
Ideas Para una estrategia 5G por José María FusterIdeas Para una estrategia 5G por José María Fuster
Ideas Para una estrategia 5G por José María FusterFundacion Sicomoro
 
Virus Origen de la Vida. Club Sicomoro
Virus Origen de la Vida. Club SicomoroVirus Origen de la Vida. Club Sicomoro
Virus Origen de la Vida. Club SicomoroFundacion Sicomoro
 
Transformación Digital, Quinta Dimensión Digital
Transformación Digital, Quinta Dimensión DigitalTransformación Digital, Quinta Dimensión Digital
Transformación Digital, Quinta Dimensión DigitalFundacion Sicomoro
 
Emergencia de lo social_Ponencia El Hueco_JMF
Emergencia de lo social_Ponencia El Hueco_JMFEmergencia de lo social_Ponencia El Hueco_JMF
Emergencia de lo social_Ponencia El Hueco_JMFFundacion Sicomoro
 
Tecnologias de la Información y Edad Digital
Tecnologias de la Información y Edad DigitalTecnologias de la Información y Edad Digital
Tecnologias de la Información y Edad DigitalFundacion Sicomoro
 
Complejidad en biología - Ester Lázaro
Complejidad en biología - Ester LázaroComplejidad en biología - Ester Lázaro
Complejidad en biología - Ester LázaroFundacion Sicomoro
 
Genes y genealogias susanna manrubia - curso introduccion a los sistemas co...
Genes y genealogias   susanna manrubia - curso introduccion a los sistemas co...Genes y genealogias   susanna manrubia - curso introduccion a los sistemas co...
Genes y genealogias susanna manrubia - curso introduccion a los sistemas co...Fundacion Sicomoro
 
El juego de la evolucion jose cuesta - curso introduccion sistemas complejos
El juego de la evolucion   jose cuesta - curso introduccion sistemas complejosEl juego de la evolucion   jose cuesta - curso introduccion sistemas complejos
El juego de la evolucion jose cuesta - curso introduccion sistemas complejosFundacion Sicomoro
 
Econofísica bartolo luque - curso introduccion sistemas complejos
Econofísica  bartolo luque - curso introduccion sistemas complejosEconofísica  bartolo luque - curso introduccion sistemas complejos
Econofísica bartolo luque - curso introduccion sistemas complejosFundacion Sicomoro
 
Fractales bartolo luque - curso de introduccion sistemas complejos
Fractales   bartolo luque - curso de introduccion sistemas complejosFractales   bartolo luque - curso de introduccion sistemas complejos
Fractales bartolo luque - curso de introduccion sistemas complejosFundacion Sicomoro
 
Introduction to Complex Systems
Introduction to Complex SystemsIntroduction to Complex Systems
Introduction to Complex SystemsFundacion Sicomoro
 

More from Fundacion Sicomoro (17)

Strategic Topics. Banking and Fintechs
Strategic Topics. Banking and FintechsStrategic Topics. Banking and Fintechs
Strategic Topics. Banking and Fintechs
 
Estrategia Digital José María Fuster
Estrategia Digital José María FusterEstrategia Digital José María Fuster
Estrategia Digital José María Fuster
 
Ideas Para una estrategia 5G por José María Fuster
Ideas Para una estrategia 5G por José María FusterIdeas Para una estrategia 5G por José María Fuster
Ideas Para una estrategia 5G por José María Fuster
 
Virus Origen de la Vida. Club Sicomoro
Virus Origen de la Vida. Club SicomoroVirus Origen de la Vida. Club Sicomoro
Virus Origen de la Vida. Club Sicomoro
 
Transformación Digital, Quinta Dimensión Digital
Transformación Digital, Quinta Dimensión DigitalTransformación Digital, Quinta Dimensión Digital
Transformación Digital, Quinta Dimensión Digital
 
Emergencia de lo social_Ponencia El Hueco_JMF
Emergencia de lo social_Ponencia El Hueco_JMFEmergencia de lo social_Ponencia El Hueco_JMF
Emergencia de lo social_Ponencia El Hueco_JMF
 
Proyecto Ibsen Horizon2020
 Proyecto Ibsen Horizon2020 Proyecto Ibsen Horizon2020
Proyecto Ibsen Horizon2020
 
Ponencia Sobre Multiverso
Ponencia Sobre Multiverso Ponencia Sobre Multiverso
Ponencia Sobre Multiverso
 
Tecnologias de la Información y Edad Digital
Tecnologias de la Información y Edad DigitalTecnologias de la Información y Edad Digital
Tecnologias de la Información y Edad Digital
 
Redes sicomoro
Redes sicomoroRedes sicomoro
Redes sicomoro
 
Complejidad en biología - Ester Lázaro
Complejidad en biología - Ester LázaroComplejidad en biología - Ester Lázaro
Complejidad en biología - Ester Lázaro
 
Genes y genealogias susanna manrubia - curso introduccion a los sistemas co...
Genes y genealogias   susanna manrubia - curso introduccion a los sistemas co...Genes y genealogias   susanna manrubia - curso introduccion a los sistemas co...
Genes y genealogias susanna manrubia - curso introduccion a los sistemas co...
 
El juego de la evolucion jose cuesta - curso introduccion sistemas complejos
El juego de la evolucion   jose cuesta - curso introduccion sistemas complejosEl juego de la evolucion   jose cuesta - curso introduccion sistemas complejos
El juego de la evolucion jose cuesta - curso introduccion sistemas complejos
 
Econofísica bartolo luque - curso introduccion sistemas complejos
Econofísica  bartolo luque - curso introduccion sistemas complejosEconofísica  bartolo luque - curso introduccion sistemas complejos
Econofísica bartolo luque - curso introduccion sistemas complejos
 
Fractales bartolo luque - curso de introduccion sistemas complejos
Fractales   bartolo luque - curso de introduccion sistemas complejosFractales   bartolo luque - curso de introduccion sistemas complejos
Fractales bartolo luque - curso de introduccion sistemas complejos
 
Sociophysics
SociophysicsSociophysics
Sociophysics
 
Introduction to Complex Systems
Introduction to Complex SystemsIntroduction to Complex Systems
Introduction to Complex Systems
 

Recently uploaded

Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxmalonesandreagweneth
 
Carbon Dioxide Capture and Storage (CSS)
Carbon Dioxide Capture and Storage (CSS)Carbon Dioxide Capture and Storage (CSS)
Carbon Dioxide Capture and Storage (CSS)Tamer Koksalan, PhD
 
Bioteknologi kelas 10 kumer smapsa .pptx
Bioteknologi kelas 10 kumer smapsa .pptxBioteknologi kelas 10 kumer smapsa .pptx
Bioteknologi kelas 10 kumer smapsa .pptx023NiWayanAnggiSriWa
 
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPirithiRaju
 
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)Columbia Weather Systems
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In DubaiDubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubaikojalkojal131
 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naJASISJULIANOELYNV
 
Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayupadhyaymani499
 
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTXALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTXDole Philippines School
 
User Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationUser Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationColumbia Weather Systems
 
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...D. B. S. College Kanpur
 
User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)Columbia Weather Systems
 
Davis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologyDavis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologycaarthichand2003
 
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptxECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptxmaryFF1
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxNandakishor Bhaurao Deshmukh
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024innovationoecd
 
basic entomology with insect anatomy and taxonomy
basic entomology with insect anatomy and taxonomybasic entomology with insect anatomy and taxonomy
basic entomology with insect anatomy and taxonomyDrAnita Sharma
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPirithiRaju
 

Recently uploaded (20)

Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
 
Carbon Dioxide Capture and Storage (CSS)
Carbon Dioxide Capture and Storage (CSS)Carbon Dioxide Capture and Storage (CSS)
Carbon Dioxide Capture and Storage (CSS)
 
Bioteknologi kelas 10 kumer smapsa .pptx
Bioteknologi kelas 10 kumer smapsa .pptxBioteknologi kelas 10 kumer smapsa .pptx
Bioteknologi kelas 10 kumer smapsa .pptx
 
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
 
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
 
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In DubaiDubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by na
 
Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyay
 
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTXALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
 
User Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationUser Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather Station
 
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
 
User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)
 
Davis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologyDavis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technology
 
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptxECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024
 
basic entomology with insect anatomy and taxonomy
basic entomology with insect anatomy and taxonomybasic entomology with insect anatomy and taxonomy
basic entomology with insect anatomy and taxonomy
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
 

Redes complejas: del cerebro a las redes sociales

  • 1. REDES COMPLEJAS: DEL CEREBRO A LAS REDES SOCIALES JAVIER M. BULDÚ UNIVERSIDAD REY JUAN CARLOS (MÓSTOLES) CENTRO DETECNOLOGÍA BIOMÉDICA (POZUELO) COMPLEJIMAD (MADRID) CLUB SICOMORO, 25/10/2017
  • 2. COMPLEJIMAD: ASOCIACIÓN MADRILEÑA DE CIENCIAS DE LA COMPLEJIDAD
  • 3. SISTEMAS COMPLEJOS Un sistema complejo está formado por partes interrelacionadas que, como conjunto, exhiben propiedades y comportamientos no evidentes a partir de la suma de las partes individuales. Una neurona Un cerebro
  • 4. SISTEMAS COMPLEJOS La sociedad, su organización y los procesos que en ella ocurren, se pueden estudiar bajo la perspectiva de los sistemas complejos: Red deTwitter. Los nodos son usuarios conectados por tweets Subred deTwitter: 415.808 conexiones y 283.317 nodos.
  • 5. REDES COMPLEJAS Una Red Compleja es una red con una estructura no trivial, cuyos patrones de conexión ni son regulares del todo ni completamente aleatorios. Su estructura es fundamental para entender los procesos que en ella ocurren: N=9 L=9 1 3 2 4 5 8 6 9 UNA RED 34 356 460 175 7 1203 516 690 726 139 10 697 692 65 511 1404 536 546 570 1518 169 812 1023 1655 1337 910 329 328450547 1610 52 1490554 105 676 331 434 7231590 6 359 149 353 251 386 387 357 240 185 1609 1168 724 509 1051900 828 928 873 147 368 365 252 393 1681 484 44 388 19 347576 111 56 628 1381 567 553 689 679 521 805 533 47 298 743 498 772 28 272 881 309 390 36 33 1025 797 548 414 258 532 392502 391410 223 1372 78 874 89 144 73 71 1004 226 257 219 581 710 209 513 1276 1701 704 216 1034 238 358 256 1374 243 16891348 14 1112 822 1670 15071232 425 75 327 94 416 10921003 921 1591 25 1027 834 1487 441 644 702 688 1228 1444 163 525 1495 1223 1197 31 637 1498 343 342 128 67 1015 137 93 522 212 3954 380 378 27 265 24 1174 218 418 304 722490253 79 95 563 497 374369 377 504 228 38 334 53 363 560 354215 1234 88351 70 1631 1059 45 247 130 499 20558 193 148 604 254 582577 242 506 1017196 1028 1111 214 136 308 1363 208 372 180 599 431 4 150 96 578 980 1094 1387559 181 1515 293 534 1287 903 552 1282 49 178 1544 771 807 437 157 382 282 106 1210 1488 1671 194 313 389 1514 1569 786 1482 339 1221 832 591 937 917 853 1296 1127 699 1022 846 292 400 1319 287 167 286 800 81 5391297 9591231 1045931 74 500 1225 91 752143211751 440 98 891 669 1457 1133 299 1674 1511 470 799 661 1046444 681 119 302517 115 1418 151 1550 915 659 801 326 462 1186 1099 936 783 396 415 1580 6091339 397 887 1250 239 235 615 244 241 575 986 620 586 1357 245 306 1451504 84 1080 92 894 398 1513 544 1395 276 879755 8881 107 925 1121 232 233 1455 234 1603 566 1347 1662 951 589621 318 1628 596 580 623 1105949 618 632 1524231 1643 728 432 1119 569 1512 1103 317 1283 1040 143 795 950 1009 344 29 836 15 104 273 16 1477 277 395188 1526 11 283459 32 62 493 428394 13 13701116 179 255 160 116 50 158 587 1441 991 133 80 352 198 17 579 600 340 159 134 69 126 1440 125 165 237 164 1650 1435 1213 830 821 957 494 655 767 404 972 1331 598 745 1658 633 346 1383 1465 861 146 573 487 430 1005 645 902 1138 1708 888 1139 407 87 1642 267 973 648 1254 1346 271 376 1354 485 20 491 409 285 1604 68 446 383 311 355 455 281 100 508 221 141 337 66 201 997 1533 220 1318 140 263 320 310284 72 335 191 305 1377 189 1608 905 809 1257 206 123 457 8131574 375 1271 162 875 943 1697 1151 315 40 316 289 294 403 268 564 1237 399 118 103 99 57 523 571 291 1334 406 574 565 225 1060 59 1379 295 665 1576 501 127496 176 22 110 866 270 280 156 124 572 186 23 585 1541 349 514 381 236 222 510 478 540 248 325 1554 154 345 324 8190 588 1128 300 519 122 590 330 1102 468 297 55 412 2 132 210 1031 113 303 472 120 466 296 458 43 187 748 421 41 213 597 1429 995 1164 109 952 520 1012 422 429 442 419336 170 529 288 161 275 469 155 593 789 102 211 142 402 524 379 1155 1220 1217 1194 1261 448 606 436 1684 867 1158 1551 11541134 512 1039 862 1170 568 1534 427 819 756 967 350 1233 518 480 1664 461 1582 1241 750 557 675 1201 301 1698 531 443 526 18 121 1079 640 420 456 595 1340 307 5281054 1107 467 338 114 341 613 465 463 5621089 872 8241087 264 639 765 962 4131475 224 373 6161303 1647 384 974 10421317 1369 538 1649 541 1083 1646 884 229 737 1350 197 1227 922 1314 129 842 709 594 192 260 537 1434 934 1157 766 204 184 1492 663 1058 1496 202 906 1295 1288 475 741 774 744 83 3 366 1204 1577 674 360445 848 1694 770 112 759 16021497 1274 1212 1620 701 1399 885 1486 481 449 321 643 333 138 1450 1311 1616 153 1439 1026 433 977 82 172 171 1695 1605 489 1413 1202 435 438 1001 1216 1528 641 454 1433 452 1192 829 1293 1073 1630 1414 168507 1178 1593 876 5 492 362 1219 1207 473 101 730 1537 864 1325 1184 1562 503 42330 1406 495 527 1437 15301300 530 1333 1321 1273 269 551 550 691 634 555451 556 549 776 483 1007 1343 477 173 944 1365 1494 21 930 1682 97 1328 1391 1588 1394 401 1122 515 195 1049 890 12 653 1565 1086 610 90 207 1159 230 199 86 364 542 227 1214 882 261 1547 583 981 1291 826 259 249 1548 246 869278 1596 16251426 10211251 1267 1425 135 592 1419 279 1654 920 707 982 2031675 1286 200 1090 453 361 323 584 1063 987 408 1332 1038 946 447 1402 166 108 9 683 385 46 1384 367 1570 26 48 177 77 6360 1057 64 42 877 482 1289 841 UNA RED COMPLEJA “Las redes complejas son como el porno, no tengo una definición precisa, pero lo reconozco cuando lo veo” M.A. Porter (University of Oxford)
  • 6. REDES COMPLEJAS Red de tráfico aéreo.
  • 7. REDES COMPLEJAS Red criminal de Messina (Italia). Emilio Ferrara, Indiana University
  • 8. REDES COMPLEJAS Una vez obtenida la red, la Ciencia de las Redes se encarga de analizarla basándose en cuatro pilares fundamentales: la teoría de grafos, la física estadística, la dinámica no lineal y el Big Data. Puedo analizar la estructura de una red, independientemente de su naturaleza.
  • 9. REDES CEREBRALES - Cross-correlation - Wavelet coherence - Sync. likelihood - Generalized Sync. - Phase Sync. - Mutual Info. - Granger Causality - EEG - MEG - fMRI - Histological Analysis - DTI (MRI) REDES ANATÓMICAS REDES FUNCIONALES From Bullmore & Sporns, Nature Rev. 10, 186 (2009)
  • 10. ¿CÓMO SON LAS REDES CEREBRALES? (SOCIALES) 1.- Suelen tener una estructura heterogénea y como consecuencia tienen nodos muy conectados (hubs). 2.- Las redes cerebrales son redes de pequeño mundo (small-world). 3.- El coeficiente de clustering suele ser muy alto. 4.- Son redes con alta modularidad: forman comunidades o grupos. 5.- Suelen ser redes asortativas (es decir, los nodos muy conectados suelen estar conectados entre ellos).
  • 11. 1. SON REDES HETEROGÉNEAS Las redes reales no son homogéneas, tienen “hubs”. Suelen seguir lo que se conoce como una ley libre de escala, ya que la distribución de contactos es muy heterogénea: Red de contactos sexuales.: Parejas durante toda la vida. Muestra: 4781 suecos. Liljeros, Nature, 411, 907 (2001). totalacumulado HUBS numero de parejas mujeres hombres
  • 12. Los hubs son omnipresentes en las redes sociales: Facebook Data Science Section (2011). 50% tiene menos de 100 amigos 99% tiene menos de 1500 1. SON REDES HETEROGÉNEAS HUBS (1% tiene más de 1500)
  • 13. Los hubs también aparecen en las redes cerebrales: 1. SON REDES HETEROGÉNEAS ❑ Dos actividades: música y finger tapping ❑ fMRI (resonancia magnética funcional) ❑ 36 x 64 x 64 regiones (147456 voxels) ❑ Se mide la correlación entre regiones: ❑ Se analiza la matriz de conexiones. Music Finger tapping
  • 14. Aparecen regiones altamente conectadas: “hubs” 1. SON REDES HETEROGÉNEAS HUBS Probabilidad de tener un número k de conexiones (Chialvo et al., PRL 2005)
  • 15. • Las redes reales son redes de “pequeño mundo” (small- world). • ¿Cómo de alejados estamos unos de otros? • Las redes sociales están altamente conectadas y es fácil llegar a cualquier persona mediante la red de contactos en un bajo número de pasos. Stanley Milgram (NY, 1933-1984) fue un sorprendente psicólogo americano que destacó, sobre todo, por sus trabajos acerca de la obediencia a la autoridad. 2. SON REDES DE PEQUEÑO MUNDO
  • 16. • (1967) A un grupo de gente (296) de Omaha (Nebraska) y Wichita (Kansas) se le pidió que enviara una carta a una persona desconocida de Boston (Massachussetts). • Regla básica del experimento: La persona debía reenviar la carta a otra persona de su entorno que considerara más cercana a la persona objetivo, y así sucesivamente • Hipótesis: Las redes sociales están altamente conectadas y es fácil llegar a cualquier persona mediante la red de contactos en un bajo número de pasos. 1 2 • 232 de 296 carta nunca llegaron a su destino. • 64 cartas llegaron a su destino (con caminos de entre 2 y 10 pasos). • El número promedio de pasos fue … 5.2 !!! EXPERIMENTO RESULTADOS SMALL-WORLD 34 356 460 175 7 1203 516 690 726 139 10 697 692 65 511 1404 536 546 570 1518 169 812 1023 1655 1337 910 329 328450547 1610 52 1490554 105 676 331 434 7231590 6 359 149 353 251 386 387 357 240 185 1609 1168 724 509 1051900 828 928 873 147 368 365 252 393 1681 484 44 388 19 347576 111 56 6281 381 567 553 689 679 521 805 533 47 298 743 498 772 28 272 881 309 390 36 33 1025 797 548 414 258 532 392502 391410 223 1372 78 874 89 144 73 71 1004 226 257 219 581 710 209 513 1276 1701 704 216 1034 238 358 256 1374 243 16891348 14 1112 822 1670 15071232 425 75 327 94 416 10921003 921 1591 25 1027 834 1487 441 644 702 688 1228 1444 163 525 1495 1223 1197 31 637 1498 343 342 128 67 1015 137 93 522 212 3954 380 378 27 265 24 1174 218 418 304 722490253 79 95 563 497 374369 377 504 228 38 334 53 363 560 354215 1234 88351 70 1631 1059 45 247 130 499 20558 193 148 604 254 582577 242 506 1017196 1028 1111 214 136 308 1363 208 372 180 599 431 4 150 96 578 980 1094 1387559 181 1515 293 534 1287 903 552 1282 49 178 1544 771 807 437 157 382 282 106 1210 1488 1671 194 313 389 1514 1569 786 1482 339 1221 832 591 937 917 853 1296 1127 699 1022 846 292 400 1319 287 167 286 800 81 5391297 9591231 1045931 74 500 1225 91 752143211751 440 98 891 669 1457 1133 299 1674 1511 470 799 661 1046444 681 119 302517 115 1418 151 1550 915 659 801 326 462 1186 1099 936 783 396 415 1580 6091339 397 887 1250 239 235 615 244 241 575 986 620 586 1357 245 306 1451504 84 1080 92 894 398 1513 544 1395 276 879755 8881 107 925 1121 232 233 1455 234 1603 566 1347 1662 951 5896213 18 1628 596 580 623 1105949 618 632 1524231 1643 728 432 1119 569 1512 1103 317 1283 1040 143 795 950 1009 344 29 836 15 104 273 16 1477 277 395188 1526 11 283459 32 62 493 428394 13 13701116 179 255 160 116 50 158 587 1441 991 133 80 352 198 17 579 600 340 159 134 69 126 1440 125 165 237 164 1650 1435 1213 830 821 957 494 655 767 404 972 1331 598 745 1658 633 346 1383 1465 861 146 573 487 430 1005 645 902 1138 1708 888 1139 407 87 1642 267 973 648 1254 1346 271 376 1354 485 20 491 409 285 1604 68 446 383 311 355 455 281 100 508 221 141 337 66 201 997 1533 220 1318 140 263 320 310284 72 335 191 305 1377 189 1608 905 809 1257 206 123 457 8131574 375 1271 162 875 943 1697 1151 315 40 316 289 294 403 268 564 1237 399 118 103 99 57 523 571 291 1334 406 574 565 225 1060 59 1379 295 665 1576 501 127496 176 22 110 866 270 280 156 124 572 186 23 585 1541 349 514 381 236 222 510 478 540 248 325 1554 154 345 324 8190 588 1128 300 519 122 590 330 1102 468 297 55 412 2 132 210 1031 113 303 472 120 466 296 458 43 187 748 421 41 213 597 1429 995 1164 109 952 520 1012 422 429 442 419336 170 529 288 161 275 469 155 593 789 102 211 142 402 524 379 7321438 998 1096 131 1665 174 1614 85 1011 1075 714 1238 76 474 1371 1155 1220 1217 1194 1261 448 606 436 1684 867 1158 1551 11541134 908649 1308 703 505 15361048 486 37 476 961 512 1039 862 1170 568 1534 427 819 756 967 350 1233 518 480 1664 461 1582 1241 750 557 675 1201 301 1698 531 443 526 18 121 1079 640 420 456 595 1340 307 5281054 1107 467 338 114 341 613 465 463 5621089 872 8241087 264 639 765 962 4131475 224 373 6161303 1647 384 974 10421317 1369 538 1649 541 1083 1646 884 229 737 1350 197 1227 922 1314 129 842 709 594 192 260 537 1434 934 1157 766 204 184 1492 663 1058 1496 202 906 1295 1288 475 741 774 744 83 3 366 1204 1577 674 360445 848 1694 770 112 759 16021497 1274 1212 1620 701 1399 885 1486 481 449 768698 860 314 1707 684 321 643 333 138 1450 1311 1616 153 1439 1026 433 977 82 172 171 1695 1605 489 1413 1202 435 1147 438 1001 405 1216 1528 1393 479 1523 918 763 1018 641 1245 454 1433 452 1192 829 1293 1463 798 322332 1571 1639 736 1403 1073 1630 1414 168507 1178 1593 876 5 492 362 1219 1207 473 101 730 1537 864 1325 1184 1562 503 42330 1406 495 527 1437 15301300 530 1333 1321 1273 269 551 550 691 634 555451 556 549 776 483 1007 1343 477 173 1098 855 1660 411 944 1365 1494 21 930 1682 97 1328 1391 1588 1394 401 1122 515 195 1049 890 12 653 1565 1086 610 90 207 1159 230 199 86 364 542 227 1214 882 261 1547 583 981 1291 826 259 249 1548 246 869278 1596 16251426 10211251 1267 1425 135 592 1419 279 1654 920 707 982 2031675 1286 200 1090 453 361 323 584 1063 987 408 1332 1038 946 447 1402 166 108 9 683 385 46 1384 367 1570 26 48 177 77 6360 1327 1566 312 1242 1141 708 152 1389 120615601306 656 1696 61764 1057 64 42 877 482 1289 841 1648 1190 348 1464 274250 1640 2. SON REDES DE PEQUEÑO MUNDO
  • 17. Veamos que ocurre en Facebook: 2. SON REDES DE PEQUEÑO MUNDO Distancia media entre 1.600.000.000 usuarios de Facebook. Fuente: Lars Backstrom, Facebook Data Science.
  • 18. ¿Ocurre lo mismo en las redes cerebrales? Matriz de conexiones entre neuronas del C. Elegans. (O. Sporns,The Networks of the Brain) • C. Elegans, un nematodo del que sabemos mucho. • A l r e d e d o r d e 3 0 0 neuronas. • Te n e m o s t o d a s l a s conexiones entre neuronas: podemos estudiar su red. L=2.65 (Lran=2.25) 2. SON REDES DE PEQUEÑO MUNDO
  • 19. ¿Ocurre lo mismo en el cerebro humano? 2. SON REDES DE PEQUEÑO MUNDO
  • 20. 3. SON REDES CON ALTO CLUSTERING El coeficiente de clustering mide la cantidad de contactos que, a su vez, están en contacto entre ellos: los amigos de mis amigos son mis amigos: Coeficiente de clustering en tres casos sencillos. 1 2 3 4 1 2 3 4 1 2 3 4 C1,2,3,4 = {0,0,0,0} C=0 C1,2,3,4 = {1,1,1,1} C=1 C1,2,3,4 = {1,0,1,1/3} C=7/12
  • 21. Se puede actuar localmente, mediante los vecinos de un nodo (en “tripletes”), y aumentar la propagación a nivel global: Experimento online: un grupo de personas (1528) cuyos contactos son controlados artificialmente, deciden darse de alta en diferentes webs. Centola 329, 3 (2010). EXPERIMENTO ONLINE RESULTADOS 3. SON REDES CON ALTO CLUSTERING
  • 22. Las redes cerebrales también tienen alto clustering: Reconstrucción de redes anatómicas mediante resonancia magnética. 998 regiones de interés (ROI) (Difussion Spectrum Imaging). Hagmann et al. (2008) PLoS Biol. 6, e159 Alto número de triángulos, comparado con redes aleatorias. 3. SON REDES CON ALTO CLUSTERING
  • 23. 4. SON REDES MODULARES: FORMAN GRUPOS Es posible detectar grupos de nodos fuertemente conectados, indicando la existencia de patrones particulares dentro de la red: Las redes reales están organizadas en comunidades, aunque en muchas ocasiones es difícil detectarlas. Mejora la clasificación de hubs Hubs locales Hubs globales Participación ImportanciaLocal “P.Amos”
  • 24. La formación de comunidades permite detectar el papel que juegan los nodos en la estructura local/global de la red: Red de colaboración en música Teitelbaum et al., Chaos, 18, 043105 (2008). 4. SON REDES MODULARES: FORMAN GRUPOS
  • 25. Módulos estructurales en el córtex, obtenidos con resonancia magnética. Se detectan 6 módulos (discos grises) junto con sus hubs conectores y locales. Hagmann et al., PLoS Biol 6, 159 (2008). 4. SON REDES MODULARES: FORMAN GRUPOS
  • 26. Red funcional (reposo) obtenida mediante resonancia magnética funcional (fMRI). Se detectan 5 módulos principales: central, parieto-frontal, medial occipital, lateral occipital y fronto-temporal. Meunier et al., Front. Neuroinformatics 3:37 (2009). Modularity of brain networks B processes of modularization might be disrupted in the pathogenesis of neuropsychiatric disor- ders such as autism or schizophrenia, supporting abnormal modularity of brain network organiza- tion as a diagnostic biomarker. In support of this expectation, some evidence for dysmodularity, or abnormal modular organization, has already Central module Parieto−frontal module Lateral occipital module A C B FIGURE 4 | Hierarchical modularity of a human brain functional network. (A) Cortical surface mapping of the community structure of the network at the highest level of modularity; (B) anatomical representation of the connectivity between nodes in color-coded modules.The brain is viewed from the left side with the frontal cortex on the left of the panel and occipital cortex on the right. Intra-modular edges are drawn in black; ( (shown centrally) illu no major sub-modul sub-modules. Repro impor ity of to co exam phren some, processes of modularization might be disrupted in the pathogenesis of neuropsychiatric disor- ders such as autism or schizophrenia,supporting abnormal modularity of brain network organiza- tion as a diagnostic biomarker. In support of this expectation, some evidence for dysmodularity, Central module Parieto−frontal module Lateral occipital module A C B FIGURE 4 | Hierarchical modularity of a human brain functional network. (A) Cortical surface mapping of the community structure of the network at the highest level of modularity; (B) anatomical representation of the connectivity between nodes in color-coded modules.The brain is viewed from the left side with the frontal cortex on the left of the panel and occipital cortex on the right. Intra-modular edges are colo are drawn in black; (C) sub-m (shown centrally) illustrates, no major sub-modules where sub-modules. Reproduced w Meunier et al. Modularity of brain networks Central module Medial occipital moduleParieto−frontal module Fronto−temporal moduleLateral occipital module A C B FIGURE 4 | Hierarchical modularity of a human brain functional network. (A) Cortical surface mapping of the community structure of the network at the highest level of modularity; (B) anatomical representation of the connectivity between nodes in color-coded modules.The brain is viewed from the left side Intra-modular edges are colored differently for each module; inter-modular edges are drawn in black; (C) sub-modular decomposition of the five largest modules (shown centrally) illustrates, for example, that the medial occipital module has no major sub-modules whereas the fronto-temporal module has many processes of modu in the pathogenes ders such as autism abnormal modular tion as a diagnostic expectation, some or abnormal mod Central module Lateral occipital module A C FIGURE 4 | Hierarchical modularity of a human brain functio (A) Cortical surface mapping of the community structure of the n highest level of modularity; (B) anatomical representation of the between nodes in color-coded modules.The brain is viewed from with the frontal cortex on the left of the panel and occipital cortex Meunier et al. Modularity of brain netwo Central module Medial occipital moduleParieto−frontal module Fronto−temporal moduleLateral occipital module A C B FIGURE 4 | Hierarchical modularity of a human brain functional network. (A) Cortical surface mapping of the community structure of the network at the highest level of modularity; (B) anatomical representation of the connectivity between nodes in color-coded modules.The brain is viewed from the left side Intra-modular edges are colored differently for each module; inter-modular edge are drawn in black; (C) sub-modular decomposition of the five largest modules (shown centrally) illustrates, for example, that the medial occipital module has no major sub-modules whereas the fronto-temporal module has many No importa que la red sea anatómica o funcional, los módulos aparecen en ambos casos: 4. SON REDES MODULARES: FORMAN GRUPOS
  • 27. Asortatividad y Homofilia: me gustan los que son como yo… Asortatividad: Los nodos más felices tienden a estar conectados entre ellos… y viceversa. C.A. Bliss, I. M. Kloumann, K. D. Harris, C. M. Danforth, P. S. Dodds.  Twitter Reciprocal Reply Networks Exhibit Assortativity with Respect to Happiness. Journal of Computational Science. 2012. because of the uni-modal distribution of havg for the labMT words. Thus a moderate value for h is chosen ( h is set to 1 for this study). squares ( havg = 0) and green diamonds ( havg = 1). The average and standard deviation of the Spearman correlation coefficient calculated for the 100 randomized happiness scores (null model) are shown as red circles with error bars (the error bars are smaller than the symbol). This data supports the hypothesis that happiness is less assortative as network distance increases. Lastly, we explore whether these correlations are due to simi- larity of word usage. For this analysis, we compute the similarity of word bags for users connected in the reciprocal reply networks. We compare the distribution of observed similarity scores to similarity grate results in dead links w This problem of unfriendi impact conclusions drawn infer contagion. Our characterization o several trends over the 25 February 2009. The num work increased as time pr Twitter’s enormous grow Similarly, with an increa smaller proportion of close decrease). This may be du to an increasing N, with (i.e., friends of friends) ca in the giant component r 0 0.1 0.2 0.3 0.4 0.5 r s r s 1 2 3 0 0.1 0.2 0.3 0.4 0.5 Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 Week 15 Week 16 Week 17 Week 18 Week 19 Week 20 Week 21 Week 22 Week 23 Week 24 Week 25 Links away (a) ∆h = 1,α = 1 Fig. 10. Happiness assortativity as measured by Spearman’s correlation coefficients is shown for week networks, with by users set to ˛ = 1 and (b) ˛ = 50. The dashed lines indicate weakening happiness–happiness correlations as the path len for each week in the data set. 5. SON REDES ASORTATIVAS: FORMAN RICH-CLUBS Twitter
  • 28. Asortatividad y Topología: me conecto con nodos con conectividad similar: Ejemplo de un red de usuarios de twitter (40M tweets) C.A. Bliss, I. M. Kloumann, K. D. Harris, C. M. Danforth, P. S. Dodds.  Twitter Reciprocal Reply Networks Exhibit Assortativity with Respect to Happiness. Journal of Computational Science. 2012. 5. SON REDES ASORTATIVAS: FORMAN RICH-CLUBS
  • 29. La asortatividad surge de manera espontánea, no es necesario forzarla: 2014 5. SON REDES ASORTATIVAS: FORMAN RICH-CLUBS
  • 30. Lo mismo ocurre en las redes cerebrales: Las zonas más conectadas, tienden a estar más conectadas entre ellas. (finger tapping) música tapping 5. SON REDES ASORTATIVAS: FORMAN RICH-CLUBS
  • 31. Como consecuencia de la asortatividad y la modularidad, aparecen rich-clubs: Red de conexiones cortico-corticales. (A) Aparecen módulos (segregación) conectados entre ellos por hubs conectores (integración). (B) Módulos: visual (amarillo), auditivo (rojo), somatosensorial-motor (verde), y frontolímbico (azul) areas en el córtex del gato. (C) Los hubs integran toda la información formando un rich-club solo detectable con el análisis de redes. Zamora et al, Front. Hum. Neurosci. 5, 83 (2011). Zamora-López et al. Anatomical brain connectivity FIGURE 2 | Segregation and integration of multisensory information. (A) Cortico-cortical networks are organized into modules composed of areas devoted to the processing of information of one modality.This modular organization permits the brain to handle information of different modalities in parallel, at the same time by different regions. (B) At the cortical surface modaly related areas are found close to each other, as illustrated by the distribution of visual (yellow), auditory (red), somatosensory-motor (green), and frontolimbic (blue) areas in the cortex of cats. (C) Cortical hubs form a central module at the top of the cortical hierarchy, which is capable of integrating multisensory information as the coordinated activity of the hubs. (D)This module can only be detected by connectivity analysis because cortical hubs are dispersed throughout the cortical surface. 5. SON REDES ASORTATIVAS: FORMAN RICH-CLUBS
  • 32. – Groucho Marx “Todo esto es tan sencillo que hasta un niño de 5 años lo entendería… Que me traigan a un niño de 5 años!” DEL CEREBRO A LA RED CEREBRAL
  • 33. El proceso entero es un campo de minas! EL PROCESO DE OBTENCIÓN DE LAS REDES PRESENTA MUCHAS DIFICULTADES 2.4 The Brain as a Complex Network 39 0MROW *MPXIVMRK1IXVMGW 7XEXMWXMGW (ITIRHIRGMIW2SHIW Brain activity Recorded signals Connectivity Matrix Graphs Topological properties Neuromarkers Healthy vs. Diseased Rest vs. Task Figure 2.5: The general framework of brain networks. Clockwise guideline. Nodes can be regarded as sensor or electrodes recording the electromagnetic signals of the brain, which may contain dependencies based on correlation or causality. These interdependencies, or link weights, lead to a weighted connectivity matrix, which is the mathematical representation of a network. This network is usually filtered using statistical thresholds to work only with the relevant links. Network
  • 34. PROBLEMA: COMPARAR LAS REDES ENTRE ELLAS Datos: Red anatómica (Hagmann et aI., 2008) y red funcional (Honey et aI., 2009) para el mismo grupo de individuos. 998 regiones de interés (ROIs). La matriz estructural es solo positiva, mientras que la funcional puede ser positiva/negativa. RH: hemisferio izquierdo, LH: hemisferio derecho. Red anatómica (DTI) Red funcional (fMRI)
  • 35. PROBLEMA: COMPARAR LAS REDES ENTRE ELLAS EJEMPLO SOCIAL: Facebook: Cuatro vistas diferentes de una misma red de Facebook. Respectivamente: red de amigos, red de relaciones (visitas de páginas), comunicación unidireccional y comunicación bidireccional. Misma red, con distintos niveles de información. D. Easley & J. Kleinberg, Networks, crowds and markets.
  • 36. Resonancia magnética funcional en (A) reposo y (B) durante una tarea de memoria. Relaciones funcionales entre las zonas más activas de la red para ambos casos. Nodos: rMTL, right medial temporal lobe; IMTL, left medial temporal lobe; dmPFC, dorsomedial prefrontal cortex; vmPFC, ventro medial prefrontal cortex; rTC, right temporal cortex; lTC, left temporal cortex; rIPL, right inferior parietal lobe; lIPL, left inferior parietal lobe. Fransson et al., Neuroimage (2008). PROBLEMA: LAS REDES FUNCIONALES CAMBIAN CONTINUAMENTE Las redes funcionales cambian en función de la tarea que se esté realizando:
  • 37. Red funcional (fMRI) con diferentes grupos de edad. Los nodos se agrupan siguiendo un algoritmo basado en muelles. La zona azul representa la region frontal, la cual se segrega funcionalmente con la edad. Fair et al. PLoS Comp. Bio.(2009). PROBLEMA: LAS REDES FUNCIONALES CAMBIAN CON LA EDAD Con el paso del tiempo, las redes funcionales también modifican su estructura:
  • 38. La topología de la red condiciona la dinámica, pero también a la inversa. Por ejemplo, el aprendizaje hebbiano refuerza las conexiones entre nodos que se coordinan habitualmente. Sporns, The networks of the Brain. Las redes no evolucionan…. co-evolucionan! PROBLEMA:TOPOLOGÍAY DINÁMICA ESTÁN RELACIONADAS determina afecta evolución topológica afecta dinámica neuronal topología estado determina
  • 39. Autorretratos de William Utermohlen (pintor estadounidense (1993-2007)). En 1995 (con 62 años) empieza a ser atendido por problemas de memoria y escritura. PROBLEMA: LAS REDES FUNCIONALES SE DEGENERAN C.J. Stam et al., Cereb. Cortex (2006)
  • 40. RESUMIENDO… (Y LO DEJO!) I. LA CIENCIA DE LAS REDES PUEDE AYUDARNOS A COMPRENDER MEJOR EL CEREBRO… O A INTENTARLO! II. LA MAYOR PARTE DE LAS REDES REALES COMPARTEN CIERTAS PROPIEDADES EMERGENTES
  • 41. Beware of the small-world, neuroscientist! David Papo1,* , Massimiliano Zanin2,3 , Johann H. Martínez4,5 , and Javier M. Buldú1,6 1 Laboratory of Biological Networks, Center for Biomedical Technology & GISC, UPM, Madrid, Spain 2 Faculdade de Ciencias e Tecnologia, Departamento de Engenharia Electrotecnica, Universidade Nova de Lisboa, Lisboa, Portugal 3 Innaxis Foundation & Research Institute, Madrid, Spain 4 Department of Physics and Fundamental Mechanics Applied to Agroforestry Engineering, Universidad Politécnica de Madrid, Madrid, Spain 5 Modeling and Simulation Laboratory, Business Faculty, Universidad del Rosario de Colombia, Bogotá, Colombia 6 Complex Systems Group & GISC, Universidad Rey Juan Carlos, Móstoles, Spain Neuroscientists often assume that the brain is organized as a small-world network, a structure where few connecting links drastically shorten the distance between closely knit groups of nodes. However, the experimental quantification of the small-world structure and its interpretation in terms of information processing are so fraught with technical, to provide a conclusive answer to this question? In a typical experimental setting, neuroscientists record brain images, define nodes and links, construct a network, extract its topological properties, to finally assess their statistical significance and their possible functional meaning. Behind each of these stages, particularly when studying functional Manuscript Click here to download Manuscript: SW 17 06 2015 def.docx 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 rstb.royalsocietypublishing.org Introduction Cite this article: Papo D, Buldu´ JM, Boccaletti S, Bullmore ET. 2014 Complex network theory and the brain. Phil. Trans. R. Soc. B 369: 20130520. http://dx.doi.org/10.1098/rstb.2013.0520 One contribution of 12 to a Theme Issue ‘Complex network theory and the brain’. Subject Areas: cognition, neuroscience Keywords: topology, graph, connectome, neuroimaging, hubs, community structure Author for correspondence: David Papo Complex network theory and the brain David Papo1, Javier M. Buldu´1,2, Stefano Boccaletti3 and Edward T. Bullmore4,5 1 Center for Biomedical Technology, Universidad Polite´cnica de Madrid, Madrid, Spain 2 Complex Systems Group, Universidad Rey Juan Carlos, Mo´stoles, Spain 3 CNR, Istituto dei Sistemi Complessi, Florence, Italy 4 Department of Psychiatry, Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge, UK 5 GlaxoSmithKline, Alternative Discovery and Development, Addenbrooke’s Centre for Clinical Investigations, Cambridge, UK 1. Brain networks: from anatomy to topology The first clear, recognizably scientific representations of the human brain were the drawings and engravings of the Renaissance anatomists. These prototype anatom- ical maps of brain organization demonstrated a physical structure somewhat walnut-like in appearance: an approximately symmetrical pair of deeply wrinkled lobes connected to each other by a central bridge of tissue. More extensive and detailed dissection of the human brain revealed that its convoluted surface is thinly covered (less than 3 mm) by a layer of so-called grey matter— the cortex; and that anatomically separated regions of cortical grey matter are extensively interconnected to each other (and to subcortical grey matter nuclei) by axonal projections that are bundled together to form macroscopically visi- ble white matter tracts, including the major white matter tract linking the two cerebral hemispheres. Even these few fundamental observations on the anatomical organization of the brain indicate that it must be considered as a large-scale (more than 1 mm) net- work of grey matter regions connected by white matter tracts. It has also been increasingly well understood, since the first microscopic neuro-anatomists of the nineteenth century, that there is an intricate pattern of synaptic connections between locally neighbouring neurons in the same cortical column or area. So there has long been strong evidence that the brain has a qualitatively complex network organization at micro (less than 1 mm) as well as macro scales. At a microscopic scale, we know that drawing a complete network diagram of the human brain would be a task of currently unmanageable scale and technical difficulty. The brain comprises an estimated 1011 neurons (105 mm–3 ) and axonal on September 1, 2014rstb.royalsocietypublishing.orgDownloaded from rstb.royalsocietypublishing.org Opinion piece Cite this article: Papo D, Zanin M, Pineda-Pardo JA, Boccaletti S, Buldu´ JM. 2014 Functional brain networks: great expectations, hard times and the big leap forward. Phil. Trans. R. Soc. B 369: 20130525. http://dx.doi.org/10.1098/rstb.2013.0525 One contribution of 12 to a Theme Issue ‘Complex network theory and the brain’. Subject Areas: neuroscience, cognition Keywords: complex networks theory, functional neuroimaging, small-world, robustness, efficiency, synchronizability Author for correspondence: David Papo e-mail: papodav@gmail.com Functional brain networks: great expectations, hard times and the big leap forward David Papo1, Massimiliano Zanin2,3, Jose´ Angel Pineda-Pardo1, Stefano Boccaletti4 and Javier M. Buldu´1,5 1 Center for Biomedical Technology, Universidad Polite´cnica de Madrid, Madrid, Spain 2 Faculdade de Cıˆencias e Tecnologia, Departamento de Engenharia, Electrote´cnica, Universidade Nova de Lisboa, Lisboa, Portugal 3 Innaxis Foundation and Research Institute, Madrid, Spain 4 Istituto dei Sistemi Complessi, CNR, Florence, Italy 5 Complex Systems Group, Universidad Rey Juan Carlos, Mo´stoles, Spain Many physical and biological systems can be studied using complex network theory, a new statistical physics understanding of graph theory. The recent application of complex network theory to the study of functional brain networks has generated great enthusiasm as it allows addressing hitherto non-standard issues in the field, such as efficiency of brain functioning or vulnerability to damage. However, in spite of its high degree of generality, the theory was originally designed to describe systems profoundly different from the brain. We discuss some important caveats in the wholesale application of existing tools and concepts to a field they were not originally designed to describe. At the same time, we argue that complex network theory has not yet been taken full advantage of, as many of its important aspects are yet to make their appearance in the neuroscience literature. Finally, we propose that, rather than simply borrowing from an existing theory, functional neural networks can inspire a fundamental reformulation of complex network theory, to account for its exquisitely complex functioning mode. 1. Introduction Characterizing how the brain organizes its activity to carry out complex tasks is highly non-trivial. While early neuroimaging and electrophysiological studies typically aimed at identifying patches of task-specific activation or local time- varying patterns of activity, there has now been consensus that task-related brain activity has a temporally multiscale, spatially extended character, as net- works of coordinated brain areas are continuously formed and destroyed [1,2]. Up until recently, though, the emphasis of functional brain activity studies has been on the identity of the particular nodes forming these networks, and on the characterization of connectivity metrics between them [3], the underlying covert hypothesis being that each node, constituting a coarse-grained represen- tation of a given brain region, provides a unique contribution to the whole. Thus, functional neuroimaging initially integrated the two basic ingredients of early neuropsychology: localization of cognitive function into specialized brain modules and the role of connection fibres in the integration of various modules. Lately, brain structure and function have started being investigated using complex network theory, a statistical mechanics understanding of an old branch of pure mathematics: graph theory [4]. Graph theory allows endowing networks with a great number of quantitative properties [5,6], thus vastly enriching the set of objective descriptors of brain structure and function at neuroscientists’ disposal. However, in spite of a great potential, the results have so far not entirely met the expectations in that complex network theory has not yet given rise to a on September 1, 2014rstb.royalsocietypublishing.orgDownloaded from OPINION ARTICLE published: 27 February 2014 doi: 10.3389/fnhum.2014.00107 Reconstructing functional brain networks: have we got the basics right? David Papo1 *, Massimiliano Zanin2,3 and Javier M. Buldú4,5 1 Computational Systems Biology Group, Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain 2 Departamento de Engenharia Electrotecnica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Lisboa, Portugal 3 Innaxis Foundation & Research Institute, Madrid, Spain 4 Laboratory of Biological Networks, Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain 5 Departamento de Tecnología Electrónica, Universidad Rey Juan Carlos, Móstoles, Spain *Correspondence: papodav@gmail.com Edited by: Daniel S. Margulies, Max Planck Institute for Human Cognitive and Brain Sciences, Germany Keywords: complex networks theory, functional brain networks, correlations, synchronization, data mining Both at rest and during the executions of cognitive tasks, the brain continuously cre- ates and reshapes complex patterns of cor- general are defined in system-level studies using noninvasive techniques, which may be critical when interpreting the results of in spatial correlations in the topology of reconstructed networks. Even more importantly, sub-sampling HUMAN NEUROSCIENCE Reorganization of Functional Networks in Mild Cognitive Impairment Javier M. Buldu´ 1,2 *, Ricardo Bajo3 , Fernando Maestu´ 3 , Nazareth Castellanos3 , Inmaculada Leyva1,2 , Pablo Gil4 , Irene Sendin˜ a-Nadal1,2 , Juan A. Almendral1,2 , Angel Nevado3 , Francisco del-Pozo3 , Stefano Boccaletti5,6 1 Complex Systems Group, Universidad Rey Juan Carlos, Fuenlabrada, Spain, 2 Laboratory of Biological Networks, Centre for Biomedical Technology, Madrid, Spain, 3 Cognitive and Computational Neuroscience Lab, Centre for Biomedical Technology, Polytechnic and Complutense University of Madrid (UPM-UCM), Madrid, Spain, 4 Memory Unit, Hospital Clı´nico San Carlos, Madrid, Spain, 5 Computational Systems Biology Group, Centre for Biomedical Technology, Madrid, Spain, 6 Istituto dei Sistemi Complessi, CNR, Florence, Italy Abstract Whether the balance between integration and segregation of information in the brain is damaged in Mild Cognitive Impairment (MCI) subjects is still a matter of debate. Here we characterize the functional network architecture of MCI subjects by means of complex networks analysis. Magnetoencephalograms (MEG) time series obtained during a memory task were evaluated by synchronization likelihood (SL), to quantify the statistical dependence between MEG signals and to obtain the functional networks. Graphs from MCI subjects show an enhancement of the strength of connections, together with an increase in the outreach parameter, suggesting that memory processing in MCI subjects is associated with higher energy expenditure and a tendency toward random structure, which breaks the balance between integration and segregation. All features are reproduced by an evolutionary network model that simulates the degenerative process of a healthy functional network to that associated with MCI. Due to the high rate of conversion from MCI to Alzheimer Disease (AD), these results show that the analysis of functional networks could be an appropriate tool for the early detection of both MCI and AD. Citation: Buldu´ JM, Bajo R, Maestu´ F, Castellanos N, Leyva I, et al. (2011) Reorganization of Functional Networks in Mild Cognitive Impairment. PLoS ONE 6(5): e19584. doi:10.1371/journal.pone.0019584 Editor: Michal Zochowski, University of Michigan, United States of America Received December 17, 2010; Accepted April 1, 2011; Published May 23, 2011 Copyright: ß 2011 Buldu´ et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was supported by MADRI.B project, Obra Social Caja Madrid, by the Spanish Ministry of S&T [FIS2009-07072, PSI2009-14415-C03-01] and by the Community of Madrid under the R&D Program of activities MODELICO-CM [S2009ESP-1691]. All funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * E-mail: javier.buldu@urjc.es Author's personal copy Principles of recovery from traumatic brain injury: Reorganization of functional networks Nazareth P. Castellanos a, ⁎, Inmaculada Leyva b,c, ⁎, Javier M. Buldú b,c , Ricardo Bajo a , Nuria Paúl d , Pablo Cuesta a , Victoria E. Ordóñez a , Cristina L. Pascua e , Stefano Boccaletti f , Fernando Maestú a , Francisco del-Pozo a a Cognitive and Computational Neuroscience Laboratory, Centre for Biomedical Technology (CTB), Technical University of Madrid and Complutense University of Madrid, Spain b Complex Systems Group, Universidad Rey Juan Carlos, Fuenlabrada, Spain c Laboratory of Biological Networks, Centre for Biomedical Technology (CTB), Technical University of Madrid, Spain d Department of Psychiatric and Medical Psychology, Medicine School, Complutense University of Madrid, Spain e Centre of Brain Injury Treatment LESCER, Madrid, Spain f CNR-Institute for Complex Systems, Florence, Italy a b s t r a c ta r t i c l e i n f o Article history: Received 19 July 2010 Revised 1 December 2010 Accepted 16 December 2010 Available online 29 December 2010 Keywords: Magnetoencephalography (MEG) Functional connectivity Graph theory Traumatic brain injury (TBI) Plasticity Recovery after brain injury is an excellent platform to study the mechanism underlying brain plasticity, the reorganization of networks. Do complex network measures capture the physiological and cognitive alterations that occurred after a traumatic brain injury and its recovery? Patients as well as control subjects underwent resting-state MEG recording following injury and after neurorehabilitation. Next, network measures such as network strength, path length, efficiency, clustering and energetic cost were calculated. We show that these parameters restore, in many cases, to control ones after recovery, specifically in delta and alpha bands, and we design a model that gives some hints about how the functional networks modify their weights in the recovery process. Positive correlations between complex network measures and some of the general index of the WAIS-III test were found: changes in delta-based path-length and those in Performance IQ score, and alpha-based normalized global efficiency and Perceptual Organization Index. These results indicate that: 1) the principle of recovery depends on the spectral band, 2) the structure of the functional networks evolves in parallel to brain recovery with correlations with neuropsychological scales, and 3) energetic cost reveals an optimal principle of recovery. © 2010 Elsevier Inc. All rights reserved. Introduction Traditionally, localizationist and holist views of brain function have exclusively emphasized either functional segregation or functional integration among components of the nervous system. While segrega- tion indicates a high functional specialization of each brain region, integration highlights the idea of a global structure and cooperative behaviour. Neither of these views alone adequately accounts for the multiple levels at which interactions occur during brain functioning. Modern views conceive the human brain as having the capacity to conjoin local specialization with global integration (Tononi et al., 1994). Under this framework, the study of brain functioning is based on the idea that the brain is a complex network of complex systems with abundant interactions between local and distant areas (Singer, 1999; Varela et al., 2001; Fries, 2005; 2009; Singer, 2009). An approach to understand the dynamical nature of the links between neural assemblies could be functional connectivity (Friston et al., 1994), which refers to the statistical interdependencies between physiological time series recorded in various brain areas (Aertsen et al., 1989). Functional connectivity is, then, an essential tool for the study of brain functioning and the implications of the deviation from healthy patterns is a much debated question recently (Schnitzler and Gross, 2005; Guggisberg et al., 2008). Functional connectivity patterns have been proved to be altered by brain injury but, could they also reflect the capability of brain to compensate for such injury? One could think that it is possible, since brain plasticity produces changes at multiple levels of neuronal reorganization, from synapses to cortical maps and large-scale neuronal networks (Buonomano and Merzenich, 1998). Studies of the changes which occurred in the functional connectivity patterns after brain tumor rejections (Douw et al., 2008), recovery from capsular stroke (Gerloff et al., 2006) or traumatic brain injury (Castellanos et al., 2010) are some examples of the way the brain reorganizes after lesion. However, little is known about the principles governing the structural reorganization of functional networks after an acquired brain injury and during recovery. NeuroImage 55 (2011) 1189–1199 ⁎ Corresponding authors. N.P. Castellanos is to be contacted at Laboratory of Cognitive and Computational Neuroscience, Centre of Biomedical Technology (CTB), Universidad Politécnica de Madrid, Campus de Montegancedo, 28660 Madrid, Spain. I. Leyva, Complex Systems Group, Universidad Rey Juan Carlos, Camino del Molino s/n, 28943 Fuenlabrada, Madrid, Spain. E-mail address: nazareth@pluri.ucm.es (N.P. Castellanos). 1053-8119/$ – see front matter © 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.neuroimage.2010.12.046 Contents lists available at ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg ALGUNAS REFERENCIAS AL RESPECTO…