Publicidad

beamformingantennas1-150723193911-lva1-app6892.pdf

23 de Mar de 2023
Publicidad

Más contenido relacionado

Publicidad

beamformingantennas1-150723193911-lva1-app6892.pdf

  1. Beamforming Antennas for Wireless Communications Yikun Huang, Ph.D. ECE/CCB Yikun@cns.montana.edu November 24 2003
  2. Outline Phased Array Antennas Vector Antennas Beamforming antennas for WLAN Conclusion Introduction Beamforming and its applications Beamforming antennas vs. omnidirectional antennas Direction of arrival (DOA) estimation Beamforming Basic configurations: fixed array and adaptive array smart antenna systems:switched array and adaptive array DOA and polarization super CART 3-loop and 2-loop vector antenna array Direction of arrival (DOA) estimation Vector antenna vs. phased array antenna Infrastructure mode An indoor WLAN design Ad hoc mode Ad hoc WLAN for rural area
  3. Applications Description RADAR Phased array RADAR; air traffic control; synthetic aperture RADAR SONAR Source location and classification Communications Smart antenna systems; Directional transmission and reception; sector broadcast in satellite communications Imaging Ultrasonic; optical; tomographic Geophysical Exploration Earth crust mapping; oil exploration Astrophysical Exploration High resolution imaging of universe Biomedical Neuronal spike discrimination; fetal heart monitoring; tissue hyperthermia; hearing aids Source: B.D.Van Veen and K.M. Buckley, University of Michigan, “Beamforming: A Versatile approach to spatial filtering”,1988 Applications of beamforming technology
  4. Phased array RADAR
  5. Phased array spike sorting 0.139 0.544 − Ey 1n t ( ) 1.2 10 4 × 0 t 0.056 0.205 − Ey 2n t ( ) 1.2 10 4 × 0 t 0.042 0.187 − Ey 3n t ( ) 1.2 10 4 × 0 t Sorted Spike of individual neurons. 1 2 3 4 1 6 5 6 7 8 9 1 4 1 5 1 3 1 2 1 1 1 0 0.139 0.534 − Rn 3 t , ( ) 1.2 10 4 × 0 t 0.183 0.539 − Rn 5 t , ( ) 1.2 10 4 × 0 t 0.147 0.534 − Rn 7 t , ( ) 1.2 10 4 × 0 t 0.147 0.534 − Rn 9 t , ( ) 1.2 10 4 × 0 t 0.183 0.539 − Rn 11 t , ( ) 1.2 10 4 × 0 t 0.139 0.534 − Rn 13 t , ( ) 1.2 10 4 × 0 t 0.14 0.534 − Rn 1 t , ( ) 1.2 10 4 × 0 t 0.148 0.534 − Rn 15 t , ( ) 1.2 10 4 × 0 t Neuronal spikes recorded by electrode array Phased array spike sorting system Center for Computational Biology, MSU
  6. Patterns, beamwidth & Gain Isotropic dipole top view(horizontal) side view(vertical) half-wave dipole beamformer 2 1/ φ Half-power beam width Half-power beam width Half-power beam width Main lobe side lobes nulls 2 1/ θ 78°
  7. Beamformers vs. omnidirectional antennas 1) Beamformers have much higher Gain than omnidirectional antennas: Increase coverage and reduce number of antennas! Gain: 2 1 N G GN = 0 30 60 90 120 150 180 210 240 270 300 330 6 4 2 0 6 9.961 10 7 − × Field 6 0 , φ , ( ) Field 2 0 , φ , ( ) Field 1 0 , φ , ( ) φ
  8. Beamformers vs. omnidirectional antennas 2) Beamformers can reject interference while omnidirectional antennas can’t: Improve SNR and system capacity! 3) Beamformers directionally send down link information to the users while omnidirectional antennas can’t: save energy! user interference user interference null
  9. Beamformers vs. omnidirectional antennas user user null multipath 4) Beamformers provide N-fold diversity Gain of omnidirectional antennas: increase system capacity(SDMA) 5) Beamformers suppress delay spread:improve signal quality
  10. DOA estimation β φ kd β φ λ d π k k k + = + = sin sin Δ 2 phase delay 1 2 3 4 5 6 7 N N-2 N-1 N-3 … … … … d k k φ d δ sin = k φ Plane wave
  11. Beamforming phase shifters 1 2 3 4 5 6 7 N N-2 N-1 N-3 … … … … k φ … … ∆1,,k ∆2,,k ∆3,,k ∆4,,k ∆5,,k ∆6,,k ∆7,,k ∆N-3,,k ∆N-2,,k ∆N-1,,k ∆N,,k ) sin )( ( Δ , β φ kd N k k N + − = 1
  12. phased array (fixed/adaptive) configurations-time domain Basic phased array configurations Narrowband sN(k) s2(k) s1(k) . . . w*N w*2 w*1 ∑ ) (k y broadband sN(k) s2(k) s1(k) . . . ∑ ) (k y w*N,0 w*N,1 w*N,k-1 . . . Z-1 Z-1 w*2,0 w*2,1 w*2,k-1 . . . Z-1 Z-1 w*1,0 w*1,1 w*1,k-1 . . . Z-1 Z-1
  13. phased array (fixed/adaptive) configuration-frequency domain Basic phased array configurations … … … sN(k) s2(k) s1(k) . . . - + I F F T MSE F F T w*N w*2 w*1 ∑ ) (k y ) (t d F F T F F T F F T broadband . . .
  14. Smart antenna systems Military networks Cellular communication networks Wireless local area networks switched array adaptive array switched array adaptive array switched array adaptive array Wi-Fi Data rate:11Mbps 3G Data rate:100kbps
  15. Switched array (predetermined) top view(horizontal) Smart antenna systems interference user 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
  16. user 1 Interference 1 top view(horizontal) user 2 Smart antenna systems Interference 2 Adaptive array
  17. Smart antenna system www.vivato.net 12° 100° In door range (Mixed Office) 11 Mbps: up to 300m 5.5 Mbps: up to 400m 2 Mbps: up to 500m 1 Mbps: up to 600m Out door range (outdoor to indoor) 11 Mbps: up to 1.00km 5.5 Mbps: up to 1.25km 2 Mbps: up to 2.00km 1 Mbps: up to 2.50km Out door range (outdoor to outdoor) 11 Mbps: up to 4.20km 5.5 Mbps: up to 5.10km 2 Mbps: up to 6.00km 1 Mbps: up to 7.20km Active user per switch 100 Example: Vivato 2.4 GHz indoor & outdoor Wi-Fi Switches (EIRP=44dBm;Gain=25 dBi;3-beam)
  18. Polarization circular Eθ γ linear η=0° Eφ Eθ γ ellipse η=45° X Y Z i E θ η j i e γ E sin γ Ei cos φ θ’ Eφ γ Eθ η=90° Eφ
  19. SuperCART Compact array radiolocation technology Flam&Russell,Inc.,1990 U.S. Patent No., 5,300,885;1994 Frequency range: 2 – 30 MHz Super CART
  20. 3-loop V6 V4 V3 V1 V2 V5 Y X φ L e Z I V ) 0 ( 0 − = L e Z I V ) (π π − = i H z 0 ˆ  ⋅ ∝ Σ I i E y 0 ˆ  ⋅ ∝ ∆ I kb≤0.5 b
  21. 2-loop H E S Steering vector                   − − =               = γ γ a η cos e sin Θ sin Θ cos Φ cos Φ sin Θ sin Φ cos Θ cos Φ sin h h e e j z x z y 0 0 0 0 0 0 0 4 ζ H i i E0 0 = 1 2 2 2 = + + z y x e e e 1 2 2 2 = + + z y x h h h Blind point
  22. Vector antennas vs. spatial array antennas Vector antennas measure: φ,θ,γ,η, and power simultaneously, no phase shift device, or synchronization is needed. Phased array antennas with omnidirectional element measure: φ,θ, and power
  23. Source: Nehorai,A.,University of Illinois at Chicago Vector antennas vs. spatial array antennas VA SA VA SA
  24. Vector antennas vs. spatial array antennas Phased array antennas: spatial ambiguities exist 2 2 1 1 φ f φ f sin sin = 1 2 3 4 5 6 7 … … k φ k φ 1 2 3 4 5 6 7 … … 1 φ 2 φ P η γ θ φ , , , , h , h , h , e , e , e z y x z y x ⇒ Vector antenna: no ambiguities for DOA estimation
  25. Vector antennas Vs. phased array antennas Disadvantages of vector antennas Cheap? Can use hardware and software of existing communication systems for performance? f=2.4GHz, λ =0.125m; vector antenna size: 0.0125m ~ 0.063m Phased array:d≤ λ/2=0.063m;L=(N-1)d: 0.188m-0.69m(N=4…12) f=800MHz, λ =0.375m; antenna size: 0.04m ~ 0.19m Phased array:d≤ λ/2=0.19m;L=(N-1)d: 0.56m-2.06m(N=4…12) Low profile?
  26. source:M.R. Andrews et al., Nature, Vol. 409(6818), 18 Jan. 2001, pp 316-318. Working in scattering environment
  27. (a) 2-dipole(monopole) Low profile antennas with polarization diversity (c) dipole-loop (b) 2-loop
  28. TDD/TDMA Packet switching A AP1 AP2 user Handoff between Aps was not standardized at the same time as 802.11b
  29. Packet switching: 3 beam system top view(horizontal) i i i P P P d 1 1 − + − = P. Sanchis, et al. 02 i P 1 − i P 1 + i P φ Δ φ Δ ( ) ( )      > ⋅ − − < ⋅ + − < ⋅ + − = 1 2 2 1 1 2 1 2 2 1 d φ d φ d φ d φ d φ d φ φ i i i DOA ), / Δ ( / ), / Δ ( ), / Δ ( / ˆ max max max
  30. An indoor WLAN design A 4-story office building (including basement), high 30 m, wide 60m and long 100m. We plan to install a Vivato switched array on the 3rd floor. L=100m h=30m w=60m Switched array 3 2 1 Basement
  31. An indoor WLAN design Data rate 1Mbps, 2Mbps, 5.5Mbps, 11Mbps AP’s EIEP 44dBm AP’s antenna Gain GA 25 dBi PC antenna Gain GP 0 dBi Shadowing 8dB AP’s antenna receiving sensitivity Smin -95dBm ,-92dBm, ,-89dBm, -86dBm AP’s Noise floor -178dBm/Hz Body/orientation loss 2dB Soft partition attenuate factor (p= number) p×1.39 dB Concrete-wall attenuate factor(q= number) q×2.38 dB Average floor attenuation(floor number) 14.0dB(1),19.0dB(2),23.0dB(3),26.0dB(4) Frequency 2.4GHz Reference pathloss PL0 (LOS/NLS, r=1m) 45.9dB/ 50.3dB Pathloss exponent γ (LOS/NLS, r=1m) 2.1/3.0 Pathloss standard deviation σ (LOS/NLS) 2.3dB/4.1dB Average floor attenuation(floor number) 14.0dB(1),19.0dB(2),23.0dB(3),26.0dB(4) Data of AP’s antenna is from www.vivato.net
  32. An indoor WLAN design Mean pathloss with smin: P G S EIRP L + − = min o sd fl sm w allowable L L L L L L PL − − − − − = Path loss model: ) log( ) ( 0 0 10 r r γ PL r PL + = al PL r PL = ) ( The coverage ranges are:r=36m,29m,23m and 18m for date rate at 1Mbps, 2Mbps, 5.5Mbps and 11Mbps respectively Allowable pathloss: Case 1: user is on the 3rd floor: 3 concrete walls, 3 soft partitions The coverage ranges are: r=176m,140m,111m and 88m for date rate at 1Mbps, 2Mbps, 5.5Mbps and 11Mbps respectively . Case 2: user is in the basement : 3 floors; 2 concrete walls, 3 soft partitions
  33. Beamforming antennas in ad hoc networks P.Gupta and P.R. Kumar,00 throughput obtained by each node         n nlog W ~ Beam- forming antennas ? new routing protocol new channel access scheme
  34. Beamforming antennas in ad hoc networks interference target Phased patch antenna D.Lu and D.Rutledge,Caltech,02 Z0=50Ω Z0=50Ω,L≈λ/2 Z0=25Ω,L≈λ/2 Series resonant patch array Phased patch array
  35. Beamforming antennas in ad hoc networks Medium Access Control Protocol(CSMA/CA) CSMA/CA:carrier sense multiple access/collision avoidance ( for omnidirectional antennas) (Scheduled/On-demand) Packet routing Neighbor discovery  No standard MAC protocols for directional antenna  Ad hoc networks may achieve better performance in some cases using beamforming antennas.  No obvious improvement for throughput using beamforming antennas  Neighbor discovery become more complex using beamforming antennas.  Beamforming antennas can significantly increasing node and network lifetime in ad hoc networks.
  36. 1) traditional exposed node problem for omnidirectional antennas Channel access Source:Y Ko et al., 00 A B C D E RTS CTS DATA ACK RTS CTS DATA DATA DATA ACK A B C D E RTS CTS CTS DATA DATA ACK RTS CTS CTS DATA DATA ACK 1) No coverage change. May save power. 2) B may not know the location of C. The nodes are prohibit to transmit or receive signals The node is free to transmit or receive signals The node is blocked to communica te with C 2) Omnidirectional and directional antennas solve the exposed node problem
  37. Channel access A B C D E RTS CTS CTS DATA RTS collision deaf collision A B C D E RTS CTS DATA DATA RTS 3) beamforming antennas create new problems
  38. Neighbor discovery A B C D E A t Nt “Hello” AP Neighbors A B,C B A,C C A,B,E D E E C,D
  39. Ad hoc WLAN for rural area
  40. Conclusion Beamforming antenna systems improve wireless network performance -increase system capacity -improve signal quality -suppress interference and noise -save power Beamforming antennas improve infrastructure networks performance. They may improve ad hoc networks performance. New MAC protocol standards are needed. Vector antennas may replace spatial arrays to further improve beamforming performance
Publicidad