SlideShare una empresa de Scribd logo
1 de 25
Descargar para leer sin conexión
1
n
n
n
n
Clutter is the term used for radar targets which are not of
interest to the user.
Clutter is usually caused by static objects near the radar
but sometimes far away as well:
11/24/2016 2
n
n
n
n
Sometimes clutter can be caused by sidelobes in the
antenna pattern or a poorly adjusted antenna
In any case it is desirable to eliminate as much
clutter as possible
11/24/2016 3
n
n
n
n
This is done by using the fact that the desired target
is usually moving relative to the radar and thus
causes a Doppler shift in the return signal.
The Doppler shift can also be used to determine the
relative speed of the target.
11/24/2016 4
n
n
n
n
The simple CW example can be modified to
incorporate pulse modulation
Note that the same oscillator is used transmission and
demodulation of the return
Thus the return is processed coherently
i.e. the phase of the signal is preserved
11/24/2016 5
n
n
n
n
The transmitted signal is
and the received signal is
these are mixed and the
difference is extracted
This has two components, one is a sine wave at Doppler
frequency, the other is a phase shift which depends on the
range to the target, R0
11/24/2016 6
n
n
n
n
Note that for stationary targets fd = 0 so Vdiff is constant
Depending on the Doppler frequency one two situations will occur
fd>1/τ
fd<1/τ
11/24/2016 7
n
n
n
n
Note that for a pulse width of 1μs, the dividing line is a
Doppler shift of 1 MHz.
If the carrier frequency is 1 GHz, this implies a relative
speed of 30,000 m/s .
Thus all terrestrial radars operate in a sampled mode
and thus are subject to the rules of sampled signals
e.g. Nyquist’s criterion
We shall also see that we can use Discrete Sample
Processing (DSP) to handle some of the problems
11/24/2016 8
n
n
n
n
Looking a successive oscilloscope displays of radar
receiver output we see:
At the ranges of the two
targets, the return amplitude
is varying as the radar
samples the (relatively) slow
Doppler signal.
The bottom trace shows what
would be seen in real time
with the moving targets
indicated by the amplitude
changes.
11/24/2016 9
n
n
n
n
We usually want to process the information
automatically. To do this we take advantage of the fact
that the amplitudes of successive pulse returns are
different:
OR
z-1
-
11/24/2016 10
n
n
n
n
MTI Radar Block Diagrams
MOPA (master oscillator, power amplifier)
Power amplifiers:
Klystron
TWT (Travelling wave tube)
Solid State (Parallel)
11/24/2016 11
n
n
n
n
One of the problems with MTI in pulsed radars is that
magnetrons are ON/OFF devices.
i.e. When the magnetron is pulsed it starts up with a
random phase and is thus its ouput is not coherent with the
pulse before it. Also it can not provide a reference oscillator to
mix with the received signals.
Therefore some means must be provided to maintain the
coherence (at least during a single pulse period)
11/24/2016
ELEC4600 Radar and Navigation
Engineering 12
n
n
n
n
PLL
11/24/2016 13
n
n
n
n
The notes have a section on various types of delay line
cancellers.
This is a bit out of date because almost all radars today
use digitized data and implementing the required
delays is relatively trivial but it also opens up much
more complex processing possibilities.
11/24/2016 14
n
n
n
n
The Filtering Characteristics of a Delay Line Canceller
The output of a single delay canceller is:
This will be zero whenever πfdT is 0 or
a multiple of π
The speeds at which this occurs are
called the blind speeds of the radar
.
where n is
0,1,2,3,…
11/24/2016 15
n
n
n
n
If the first blind speed is to be greater than the highest
expected radial speed the λfp must be large
large λ means larger antennas for a given beamwidth
large fp means that the unambiguous range will be quite small
So there has to be a compromise in the design of an MTI radar
11/24/2016 16
n
n
n
n
The choice of operating with blind speeds or ambiguous
ranges depends on the application
Two ways to mitigate the problem at the expense of increased
complexity are:
a. operating with multiple prfs
b. operating with multiple carrier frequencies
11/24/2016 17
n
n
n
n
Double Cancellation:
Single cancellers do not have a very sharp cutoff at the nulls
which limits their rejection of clutter
(clutter does not have a zero width spectrum)
Adding more cancellers sharpens the nulls
11/24/2016 18
n
n
n
n
Double Cancellation:
There are two implementations:
These have the same frequency response: which is the
square of the single canceller response
)
(
sin
4 2
T
f
v d


11/24/2016 19
n
n
n
n
Double Cancellation:
11/24/2016 20
n
n
n
n
Transversal Filters
These are basically a tapped delay line with the taps
summed at the output
11/24/2016 21
n
n
n
n
Transversal Filters
To obtain a frequency response of sinnπfdT,
the taps must be binomially weighted i.e.
11/24/2016 22
n
n
n
n
Filter Performance Measures
MTI Improvement Factor, IC
in
out
C
C
S
C
S
I
)
/
(
)
/
(

Note that this is averaged over all Doppler frequencies
1/2T
0
Signal Clutter
1/2T
0
Filter
23
n
n
n
n
Filter Performance Measures
Clutter Attenuation ,C/A
The ratio of the clutter power at the input of the canceler
to the clutter power at the output of the canceler
It is normalized, (or adjusted) to the signal attenuation of
the canceler.
i.e. the inherent signal attenuation of the canceler is
ignored
11/24/2016 24
n
n
n
n
Transversal Filters with Binomial Weighting with alternating
sign
Advantages:
Close to optimum for maximizing the Clutter
improvement factor
Also close to maximizing the Clutter Attenuation
Cin/Cout
in
out
C
C
S
C
S
I
)
/
(
)
/
(

11/24/2016 25
n
n
n
n
Transversal Filters with Binomial Weighting with alternating
sign
Disadvantage:
As n increases the sinn filter cuts off more and more of the
spectrum around DC and multiples of PRF
This leads to wider blind speed zones and hence loss of
legitimate targets.

Más contenido relacionado

Similar a movingtargetindicatorradarmtilecture-161124175117.pdf

Principles of RADAR Systems
Principles of RADAR SystemsPrinciples of RADAR Systems
Principles of RADAR Systemsjanakiravi
 
LOW,MEDIUM,HIGH_Doppler_MTI.pptx
LOW,MEDIUM,HIGH_Doppler_MTI.pptxLOW,MEDIUM,HIGH_Doppler_MTI.pptx
LOW,MEDIUM,HIGH_Doppler_MTI.pptxFirstknightPhyo
 
14. doppler radar and mti 2014
14. doppler radar and mti 201414. doppler radar and mti 2014
14. doppler radar and mti 2014Lohith Kumar
 
chandra shekhar_Unit 2 _Radar_ feb 4 2016
chandra shekhar_Unit 2 _Radar_ feb 4 2016chandra shekhar_Unit 2 _Radar_ feb 4 2016
chandra shekhar_Unit 2 _Radar_ feb 4 2016CHANDRA SHEKHAR
 
Fianl Year Project Report
Fianl Year Project ReportFianl Year Project Report
Fianl Year Project ReportShruti Nadkarni
 
ENEL301 report _Joseph Haystead_1132999
ENEL301 report _Joseph Haystead_1132999ENEL301 report _Joseph Haystead_1132999
ENEL301 report _Joseph Haystead_1132999Joseph Haystead
 
RADAR MEASUREMENTS LECTURE EECS BERKELY!
RADAR MEASUREMENTS LECTURE EECS BERKELY!RADAR MEASUREMENTS LECTURE EECS BERKELY!
RADAR MEASUREMENTS LECTURE EECS BERKELY!nagatic941
 
Radar Systems- Unit-III : MTI and Pulse Doppler Radars
Radar Systems- Unit-III : MTI and Pulse Doppler RadarsRadar Systems- Unit-III : MTI and Pulse Doppler Radars
Radar Systems- Unit-III : MTI and Pulse Doppler RadarsVenkataRatnam14
 
Antenna Analogies .ppt
Antenna Analogies .pptAntenna Analogies .ppt
Antenna Analogies .pptMLUQMANNAZAR
 
Chap 5 (small scale fading)
Chap 5 (small scale fading)Chap 5 (small scale fading)
Chap 5 (small scale fading)asadkhan1327
 
Lect 11.regenerative repeaters
Lect 11.regenerative repeatersLect 11.regenerative repeaters
Lect 11.regenerative repeatersNebiye Slmn
 
Transceiver design
Transceiver designTransceiver design
Transceiver designChetan Soni
 
Subsystems of radar and signal processing
Subsystems of radar and signal processing Subsystems of radar and signal processing
Subsystems of radar and signal processing Ronak Vyas
 
Oscillators
OscillatorsOscillators
Oscillators12nitin
 
Radarsurvbw 1232267772428796-3
Radarsurvbw 1232267772428796-3Radarsurvbw 1232267772428796-3
Radarsurvbw 1232267772428796-3RRFF
 
Components of a Pulse Radar System
Components of a Pulse Radar SystemComponents of a Pulse Radar System
Components of a Pulse Radar SystemÜlger Ahmet
 
wireless communications
wireless communications wireless communications
wireless communications faisalsaad18
 

Similar a movingtargetindicatorradarmtilecture-161124175117.pdf (20)

Principles of RADAR Systems
Principles of RADAR SystemsPrinciples of RADAR Systems
Principles of RADAR Systems
 
LOW,MEDIUM,HIGH_Doppler_MTI.pptx
LOW,MEDIUM,HIGH_Doppler_MTI.pptxLOW,MEDIUM,HIGH_Doppler_MTI.pptx
LOW,MEDIUM,HIGH_Doppler_MTI.pptx
 
14. doppler radar and mti 2014
14. doppler radar and mti 201414. doppler radar and mti 2014
14. doppler radar and mti 2014
 
chandra shekhar_Unit 2 _Radar_ feb 4 2016
chandra shekhar_Unit 2 _Radar_ feb 4 2016chandra shekhar_Unit 2 _Radar_ feb 4 2016
chandra shekhar_Unit 2 _Radar_ feb 4 2016
 
Fianl Year Project Report
Fianl Year Project ReportFianl Year Project Report
Fianl Year Project Report
 
ENEL301 report _Joseph Haystead_1132999
ENEL301 report _Joseph Haystead_1132999ENEL301 report _Joseph Haystead_1132999
ENEL301 report _Joseph Haystead_1132999
 
RADAR MEASUREMENTS LECTURE EECS BERKELY!
RADAR MEASUREMENTS LECTURE EECS BERKELY!RADAR MEASUREMENTS LECTURE EECS BERKELY!
RADAR MEASUREMENTS LECTURE EECS BERKELY!
 
Radar Systems- Unit-III : MTI and Pulse Doppler Radars
Radar Systems- Unit-III : MTI and Pulse Doppler RadarsRadar Systems- Unit-III : MTI and Pulse Doppler Radars
Radar Systems- Unit-III : MTI and Pulse Doppler Radars
 
Fz3510511056
Fz3510511056Fz3510511056
Fz3510511056
 
Antenna Analogies .ppt
Antenna Analogies .pptAntenna Analogies .ppt
Antenna Analogies .ppt
 
Dr. Wiley - PRI Analysis and Deinterleaving
Dr. Wiley - PRI Analysis and DeinterleavingDr. Wiley - PRI Analysis and Deinterleaving
Dr. Wiley - PRI Analysis and Deinterleaving
 
Chap 5 (small scale fading)
Chap 5 (small scale fading)Chap 5 (small scale fading)
Chap 5 (small scale fading)
 
Lect 11.regenerative repeaters
Lect 11.regenerative repeatersLect 11.regenerative repeaters
Lect 11.regenerative repeaters
 
Transceiver design
Transceiver designTransceiver design
Transceiver design
 
Subsystems of radar and signal processing
Subsystems of radar and signal processing Subsystems of radar and signal processing
Subsystems of radar and signal processing
 
Oscillators
OscillatorsOscillators
Oscillators
 
Radarsurvbw 1232267772428796-3
Radarsurvbw 1232267772428796-3Radarsurvbw 1232267772428796-3
Radarsurvbw 1232267772428796-3
 
Components of a Pulse Radar System
Components of a Pulse Radar SystemComponents of a Pulse Radar System
Components of a Pulse Radar System
 
Coffee can radar
Coffee can radarCoffee can radar
Coffee can radar
 
wireless communications
wireless communications wireless communications
wireless communications
 

Más de FirstknightPhyo

Más de FirstknightPhyo (9)

typesofantennacs-160529065709.pdf
typesofantennacs-160529065709.pdftypesofantennacs-160529065709.pdf
typesofantennacs-160529065709.pdf
 
antennapresentation-200118165313.pdf
antennapresentation-200118165313.pdfantennapresentation-200118165313.pdf
antennapresentation-200118165313.pdf
 
lec-antennas.ppt
lec-antennas.pptlec-antennas.ppt
lec-antennas.ppt
 
beamformingantennas1-150723193911-lva1-app6892.pdf
beamformingantennas1-150723193911-lva1-app6892.pdfbeamformingantennas1-150723193911-lva1-app6892.pdf
beamformingantennas1-150723193911-lva1-app6892.pdf
 
Beamforming_202011.pptx
Beamforming_202011.pptxBeamforming_202011.pptx
Beamforming_202011.pptx
 
beamforming.pptx
beamforming.pptxbeamforming.pptx
beamforming.pptx
 
12812361.ppt
12812361.ppt12812361.ppt
12812361.ppt
 
lecture 8.pptx
lecture 8.pptxlecture 8.pptx
lecture 8.pptx
 
Radar ppt.pptx
Radar ppt.pptxRadar ppt.pptx
Radar ppt.pptx
 

Último

Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
multiple access in wireless communication
multiple access in wireless communicationmultiple access in wireless communication
multiple access in wireless communicationpanditadesh123
 
Ch10-Global Supply Chain - Cadena de Suministro.pdf
Ch10-Global Supply Chain - Cadena de Suministro.pdfCh10-Global Supply Chain - Cadena de Suministro.pdf
Ch10-Global Supply Chain - Cadena de Suministro.pdfChristianCDAM
 
Risk Management in Engineering Construction Project
Risk Management in Engineering Construction ProjectRisk Management in Engineering Construction Project
Risk Management in Engineering Construction ProjectErbil Polytechnic University
 
Industrial Safety Unit-IV workplace health and safety.ppt
Industrial Safety Unit-IV workplace health and safety.pptIndustrial Safety Unit-IV workplace health and safety.ppt
Industrial Safety Unit-IV workplace health and safety.pptNarmatha D
 
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School CourseKatarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Coursebim.edu.pl
 
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfgUnit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfgsaravananr517913
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Mine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxMine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxRomil Mishra
 
Crystal Structure analysis and detailed information pptx
Crystal Structure analysis and detailed information pptxCrystal Structure analysis and detailed information pptx
Crystal Structure analysis and detailed information pptxachiever3003
 
Indian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptIndian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptMadan Karki
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
Engineering Drawing section of solid
Engineering Drawing     section of solidEngineering Drawing     section of solid
Engineering Drawing section of solidnamansinghjarodiya
 
Research Methodology for Engineering pdf
Research Methodology for Engineering pdfResearch Methodology for Engineering pdf
Research Methodology for Engineering pdfCaalaaAbdulkerim
 
Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...121011101441
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 

Último (20)

young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
multiple access in wireless communication
multiple access in wireless communicationmultiple access in wireless communication
multiple access in wireless communication
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
Ch10-Global Supply Chain - Cadena de Suministro.pdf
Ch10-Global Supply Chain - Cadena de Suministro.pdfCh10-Global Supply Chain - Cadena de Suministro.pdf
Ch10-Global Supply Chain - Cadena de Suministro.pdf
 
Risk Management in Engineering Construction Project
Risk Management in Engineering Construction ProjectRisk Management in Engineering Construction Project
Risk Management in Engineering Construction Project
 
Industrial Safety Unit-IV workplace health and safety.ppt
Industrial Safety Unit-IV workplace health and safety.pptIndustrial Safety Unit-IV workplace health and safety.ppt
Industrial Safety Unit-IV workplace health and safety.ppt
 
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School CourseKatarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Course
 
Designing pile caps according to ACI 318-19.pptx
Designing pile caps according to ACI 318-19.pptxDesigning pile caps according to ACI 318-19.pptx
Designing pile caps according to ACI 318-19.pptx
 
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfgUnit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Mine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxMine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptx
 
Crystal Structure analysis and detailed information pptx
Crystal Structure analysis and detailed information pptxCrystal Structure analysis and detailed information pptx
Crystal Structure analysis and detailed information pptx
 
Indian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptIndian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.ppt
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
Engineering Drawing section of solid
Engineering Drawing     section of solidEngineering Drawing     section of solid
Engineering Drawing section of solid
 
Research Methodology for Engineering pdf
Research Methodology for Engineering pdfResearch Methodology for Engineering pdf
Research Methodology for Engineering pdf
 
Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 

movingtargetindicatorradarmtilecture-161124175117.pdf

  • 1. 1 n n n n Clutter is the term used for radar targets which are not of interest to the user. Clutter is usually caused by static objects near the radar but sometimes far away as well:
  • 2. 11/24/2016 2 n n n n Sometimes clutter can be caused by sidelobes in the antenna pattern or a poorly adjusted antenna In any case it is desirable to eliminate as much clutter as possible
  • 3. 11/24/2016 3 n n n n This is done by using the fact that the desired target is usually moving relative to the radar and thus causes a Doppler shift in the return signal. The Doppler shift can also be used to determine the relative speed of the target.
  • 4. 11/24/2016 4 n n n n The simple CW example can be modified to incorporate pulse modulation Note that the same oscillator is used transmission and demodulation of the return Thus the return is processed coherently i.e. the phase of the signal is preserved
  • 5. 11/24/2016 5 n n n n The transmitted signal is and the received signal is these are mixed and the difference is extracted This has two components, one is a sine wave at Doppler frequency, the other is a phase shift which depends on the range to the target, R0
  • 6. 11/24/2016 6 n n n n Note that for stationary targets fd = 0 so Vdiff is constant Depending on the Doppler frequency one two situations will occur fd>1/τ fd<1/τ
  • 7. 11/24/2016 7 n n n n Note that for a pulse width of 1μs, the dividing line is a Doppler shift of 1 MHz. If the carrier frequency is 1 GHz, this implies a relative speed of 30,000 m/s . Thus all terrestrial radars operate in a sampled mode and thus are subject to the rules of sampled signals e.g. Nyquist’s criterion We shall also see that we can use Discrete Sample Processing (DSP) to handle some of the problems
  • 8. 11/24/2016 8 n n n n Looking a successive oscilloscope displays of radar receiver output we see: At the ranges of the two targets, the return amplitude is varying as the radar samples the (relatively) slow Doppler signal. The bottom trace shows what would be seen in real time with the moving targets indicated by the amplitude changes.
  • 9. 11/24/2016 9 n n n n We usually want to process the information automatically. To do this we take advantage of the fact that the amplitudes of successive pulse returns are different: OR z-1 -
  • 10. 11/24/2016 10 n n n n MTI Radar Block Diagrams MOPA (master oscillator, power amplifier) Power amplifiers: Klystron TWT (Travelling wave tube) Solid State (Parallel)
  • 11. 11/24/2016 11 n n n n One of the problems with MTI in pulsed radars is that magnetrons are ON/OFF devices. i.e. When the magnetron is pulsed it starts up with a random phase and is thus its ouput is not coherent with the pulse before it. Also it can not provide a reference oscillator to mix with the received signals. Therefore some means must be provided to maintain the coherence (at least during a single pulse period)
  • 12. 11/24/2016 ELEC4600 Radar and Navigation Engineering 12 n n n n PLL
  • 13. 11/24/2016 13 n n n n The notes have a section on various types of delay line cancellers. This is a bit out of date because almost all radars today use digitized data and implementing the required delays is relatively trivial but it also opens up much more complex processing possibilities.
  • 14. 11/24/2016 14 n n n n The Filtering Characteristics of a Delay Line Canceller The output of a single delay canceller is: This will be zero whenever πfdT is 0 or a multiple of π The speeds at which this occurs are called the blind speeds of the radar . where n is 0,1,2,3,…
  • 15. 11/24/2016 15 n n n n If the first blind speed is to be greater than the highest expected radial speed the λfp must be large large λ means larger antennas for a given beamwidth large fp means that the unambiguous range will be quite small So there has to be a compromise in the design of an MTI radar
  • 16. 11/24/2016 16 n n n n The choice of operating with blind speeds or ambiguous ranges depends on the application Two ways to mitigate the problem at the expense of increased complexity are: a. operating with multiple prfs b. operating with multiple carrier frequencies
  • 17. 11/24/2016 17 n n n n Double Cancellation: Single cancellers do not have a very sharp cutoff at the nulls which limits their rejection of clutter (clutter does not have a zero width spectrum) Adding more cancellers sharpens the nulls
  • 18. 11/24/2016 18 n n n n Double Cancellation: There are two implementations: These have the same frequency response: which is the square of the single canceller response ) ( sin 4 2 T f v d  
  • 20. 11/24/2016 20 n n n n Transversal Filters These are basically a tapped delay line with the taps summed at the output
  • 21. 11/24/2016 21 n n n n Transversal Filters To obtain a frequency response of sinnπfdT, the taps must be binomially weighted i.e.
  • 22. 11/24/2016 22 n n n n Filter Performance Measures MTI Improvement Factor, IC in out C C S C S I ) / ( ) / (  Note that this is averaged over all Doppler frequencies 1/2T 0 Signal Clutter 1/2T 0 Filter
  • 23. 23 n n n n Filter Performance Measures Clutter Attenuation ,C/A The ratio of the clutter power at the input of the canceler to the clutter power at the output of the canceler It is normalized, (or adjusted) to the signal attenuation of the canceler. i.e. the inherent signal attenuation of the canceler is ignored
  • 24. 11/24/2016 24 n n n n Transversal Filters with Binomial Weighting with alternating sign Advantages: Close to optimum for maximizing the Clutter improvement factor Also close to maximizing the Clutter Attenuation Cin/Cout in out C C S C S I ) / ( ) / ( 
  • 25. 11/24/2016 25 n n n n Transversal Filters with Binomial Weighting with alternating sign Disadvantage: As n increases the sinn filter cuts off more and more of the spectrum around DC and multiples of PRF This leads to wider blind speed zones and hence loss of legitimate targets.